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Abstract

This paper is concerned with improving dia-
logue generation models through injection of
knowledge, e.g., content relevant to the post
that can increase the quality of responses. Past
research extends the training of the genera-
tive models by incorporating statistical prop-
erties of posts, responses and related knowl-
edge, without explicitly assessing the knowl-
edge quality. In our work, we demonstrate the
importance of knowledge relevance and adopt
a two-phase approach. We first apply a novel
method, Transformer & Post based Posterior
Approximation (TPPA) to select knowledge,
and then use the Transformer with Expanded
Decoder (TED) model to generate responses
from both the post and the knowledge. TPPA
method processes posts, post related knowl-
edge, and response related knowledge at both
word and sentence level. Our experiments
with the TED generative model demonstrate
the effectiveness of TPPA as it outperforms
a set of strong baseline models. Our TPPA
method is extendable and supports further opti-
mization of knowledge retrieval and injection.

1 Introduction

In recent years, there have been concerted efforts to
model dialogue interactions and generate an appro-
priate response to an initial user statement, referred
to as a post. Research has led to generative mod-
els, e.g., Sequence-to-Sequence (Sutskever et al.
(2014)) and Transformer (Vaswani et al., 2017),
that produce reasonable responses using the origi-
nal post solely during the generation process.

Recent studies (Weston et al., 2018; Ghazvinine-
jad et al., 2018; Zheng and Zhou, 2019) explored
more realistic dialogue models that include knowl-
edge related to the posts, typically a collection of
sentences that refer to the topics in the posts and
responses. Consequently, the response generation

Wiz Post: Yep. you’ve got to select for safety standards, of course, but
when you’re designing at a Mercedes level the folks buying those cars
are going to expect a certain standard of comfort, too!
Wiz Response: Especially, I think consumers expect great in Formula
One, highest class auto racing.
TPPA (top 1): Formula One (also Formula 1 or F1 and officially the
FIA Formula One World Championship) is the highest class of single
seat auto racing that is sanctioned by the Federation Internationale de
l’Automobile (FIA).
TPPA (top 2): Stock car racing is a form of automobile racing found
mainly and most prominently in the United States and Canada, with Aus-
tralia, New Zealand and Brazil also having forms of stock car auto rac-
ing.
PRK (top 1): Mercedes is part of the McQueen family and is the longest
serving McQueen on the series.
PRK (top 2): He also won races in midget cars, and sprint cars.
RRK (top 1): Formula One (also Formula 1 or F1 and officially the
FIA Formula One World Championship) is the highest class of single
seat auto racing that is sanctioned by the Federation Internationale de
l’Automobile (FIA).
RRK (top 2): The FIA Formula One World Championship has been
one of the premier forms of racing around the world since its inaugural
season in 1950.

Table 1: Example of a post and a response from the
Wizard of Wikipedia (Wiz) data set (§5.1) with top 2
ranked outputs from TPPA, the post-retrieved knowl-
edge PRK and the response-retrieved knowledge RRK.
Blue indicate words present in the Wiz response and
RRK but not in PRK.

process involves an information retrieval compo-
nent that needs to be optimized for the selection and
injection of relevant knowledge into the generative
model.

Evaluation of such approaches has shown that
the knowledge based on posts alone may lack fo-
cus, i.e., may exhibit topic drifts and thus introduce
noise. Table 1 illustrates Post-Retrieved Knowl-
edge (PRK) that has a good overlap with the post
but introduces content that is not present in the
response and thus deemed non-relevant. By con-
trast, the Response-Retrieved Knowledge (RRK)
shares content with the response, thus illustrating
that dialogue training needs to incorporate relevant
knowledge related to the response.

In practice, however, the key challenge is to im-
plement an effective selection of response related
knowledge, considering that the responses to posts
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are not observed during dialogue generation. In
this paper, we present the Transformer & Post
based Posterior Approximation (TPPA) method
that achieves that by applying multi-stage process-
ing of posts, post related knowledge and response
related knowledge to capture word and sentence
level characteristics (through word embeddings,
Transformer and max-pooling), that can be useful
for ranking and selecting knowledge of new posts
during the test phase.

Table 1 illustrates the high overlap that TPPA
outputs achieve with true responses (for post-
response pair from the Wizard of Wikipedia (Wiz)
data collection (Dinan et al., 2019). Furthermore,
we empirically demonstrate the effectiveness of
TPPA, by injecting TPPA selected knowledge into
generative models, in particular the Transformer
Extended Decoder (TED) that allows integrating
knowledge from multiple sources (Zheng and Zhou,
2019). The combination of TED and TPPA out-
performs a set of strong baseline systems, includ-
ing systems that do not separate knowledge selec-
tion from modelling response generation: Post-KS
(Lian et al., 2019) and SKT (Sequential Latent-
knowledge Selection) (Kim et al., 2020).

Most important contributions of our work are:

1. Empirical evidence that generative models
with injecting response-retrieved knowledge
outperform those that use only post-retrieved
knowledge (§3).

2. New method for knowledge selection (TPPA)
that includes Transformer-based representa-
tions of posts and post related knowledge to se-
lect relevant knowledge processed with word
embedding and MaxPooling (§4).

3. Experimental results that demonstrate the ben-
efit of TPPA knowledge injection into the
TED generative model (Zheng and Zhou,
2019), outperforming state-of-the-art models
on two publicly available data sets (§5, §6).

In addition, the separation of the knowledge se-
lection from the generative models offers maxi-
mum flexibility for integrating and exploring alter-
native retrieval models and knowledge represen-
tations. We make our codes publicly available at
https://github.com/tonywenuon/emnlp2020 tppa.

2 Related Work

In this section we first discuss retrieval models and
then knowledge injection into generative models.

Retrieval Models. Most traditional retrieval mod-
els, such as BM25 (Robertson et al., 2004), are
unsupervised methods, relying on lexical match-
ing between query terms and document text using
different weighting and normalization schemes. In
contrast, recent studies use neural ranking models,
such as deep structured semantic models (DSSM)
(Huang et al., 2013; Shen et al., 2014), weakly su-
pervised neural ranking models (Dehghani et al.,
2017) and jointly trained neural models (Yan et al.,
2016; Mitra et al., 2017). They are built to respond
to information needs represented by a query. We il-
lustrate our approach by adopting BM25 for initial
retrieval of relevant knowledge. We also use the
post related results to create an extended represen-
tation of the post, similar to the pseudo-relevance-
feedback in query-based search (Cao et al., 2008).

Generative Models & Knowledge Injection. In-
jection of knowledge into generative models
has been pursued to improve the quality of re-
sponses, considering that during dialogue gener-
ation only a post and related knowledge are ob-
served. Ghazvininejad et al. (2018) encode and
merge knowledge with a post representation, cre-
ating a final vector representation that is input into
the decoder. Tam (2020) extends this method with
a copy-mechanism that enables the model to gener-
ate response words either from the post or from the
generative model.

Zheng and Zhou (2019) use the Transformer
Extended Decoder (TED) to incorporate words
from multiple sources by assigning weights to
knowledge sources based on relevance between
the knowledge and the decoding words, and taking
the weighted-sum vector to generate responses.

Closest to our work is the PostKS model pro-
posed by Lian et al. (2019) that includes a knowl-
edge manager which fits the prior word distribution
(from posts) to the posterior word distribution (with
both post and response observed). By applying
the Gumbel-Softmax method, they select the best
knowledge for the dialogue generation. Similarly,
the sequential latent-knowledge selection (SKT)
proposed by Kim et al. (2020) jointly trains the
knowledge selection and the dialogue generation
model. Both methods consider knowledge rele-
vance to posts and responses during training but
do not leverage post-retrieved knowledge during
testing.

Our proposed Transformer & Post based Poste-
rior Approximation (TPPA) model distinguishes
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itself by explicitly incorporating response related
knowledge into training and applying pseudo rel-
evance feedback approach by training an auto-
pointer vector to identify potentially the most rel-
evant knowledge. Combined with the TED gener-
ative model, TPPA leads to responses that outper-
form state-of-the-art methods (§6).

3 Problem Statement and Motivation

3.1 Key Notations and Research Objectives

Dialogue generation models that incorporate
knowledge aim to expand the input beyond the ob-
servable post and incorporate a responder’s knowl-
edge. It is assumed that the available knowledge
Kp for a given post p includes content that is re-
lated to the response, although the quality of that
knowledge is not certain. The key issue is, thus,
to determine which of the knowledge statements
k ∈ Kp are relevant to the unobserved response
r. During the training phase, where the post p, re-
sponse r andKp are all available, we use p and r as
queries to rank all the statements in Kp and create
the corresponding ranked lists: Response-retrieved
Knowledge RRK and Post-retrieved Knowledge
PRK, respectively. We use lower-case rrk1 and
prk1 to indicate top 1 ranked item in RRK and
PRK, respectively.

3.2 RRK Assessment on Wiz Training Data

In this section, we analyze RRK for the Wiz train-
ing data (§5.1) where both posts p and responses r
are known as well as the corresponding knowledge
set Kp. Assuming that we deploy a reasonable
search algorithm, we expect that rrk1 will have
a high overlap with the response r that is used as
a query. We also assume that generative models
will be able to use rrk1 to generate a good qual-
ity response considering its overlap with the true
response. The objective of this section is to gain in-
sights on what difference RRK can make compared
to the use of PRK alone.
Word count. We compare the number of common
words (after removing stop words) between the
original response r and the four sequences: (1) the
post p, (2) prk1, i.e., the top 1 ranked item in PRK,
(3) rrk1, i.e., the top 1 ranked item in RRK, and (4)
a random post chosen from the data set. The dis-
tributions of word overlaps are shown in Figure 1.
The x-axis indicates the count of common words
and y-axis shows the percentage of the posts p and
responses r sample with the given word overlap.

Figure 1: Common words count distribution between
each source and the target response on the Wiz training
set. The dashed lines are the average count of common
words of each group (after removing stop words).

As expected, the word overlaps of p and prk1
with r are similar, with the overlap of p and r being
lower. For the randomly selected post p, the aver-
age term overlap with r is slightly lower but close
to post p, suggesting that posts alone are not very
informative for the response generation. The dif-
ference for prk1 and rrk1 is quite marked showing
that rrk1 has on average almost twice the overlap
of the prk1 (98% increase). Based on the Kol-
mogorov–Smirnov test, all the differences among
the four groups in Figure 1 are statistically signifi-
cant. For the Holl-E data set (that is another data
set we used in §5.1), a similar trend is observed.
Response generation. We assess the effectiveness
of RRK when injected into the generative model by
conducting experiments with the standard Trans-
former (Vaswani et al., 2017) and the Transformer
with Expanded Decoder (TED) (Zheng and Zhou,
2019). Transformer takes only a post while TED
uses a post and multiple sources of knowledge to
get the responses.

Table 2a shows the results for Transformer with
(1) original post, (2) a randomly selected sentence,
(3) prk1, (4) rrk1 and (5) a human selected knowl-
edge, i.e., a sentence provided in Wiz. Table 2 with
results metrics (BLEU, METEOR and Div-2, §5)
show that replacing the original post by a randomly
selected sentence reduces the performance signif-
icantly. Using prk1 leads to lower performance,
indicating a possible topic drift and noise. Using
rrk1 shows promising performance improvement;
with higher retrieval performance, it may achieve
the effectiveness of the human selected knowledge.
Similarly, for the TED generative model, we incor-
porate the post content and evaluate the cumulative
effect of adding knowledge from different sources.
As expected, the best performance is achieved by
the human selection of knowledge followed by the
RRK (Table 2b).

In conclusion, it is worthwhile putting an ef-
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(a) Transformer BLEU-4 METEOR Div-2
Original Post 1.76 6.6 7.3
Random Post 0.39 4.47 0.19
prk1 1.23 6.36 5.62
rrk1 2.85 7.99 12.88
Human selection 4.6 9.97 18.86
(b) TED BLEU-4 METEOR Div-2
Post+1 Random sentence 2.8 7.13 18.73
Post+prk1 3.35 8.45 16.2
Post+rrk1 8.14 11.36 24.63
Post+Human selection 10.06 13.13 25.7

Table 2: Injection of various sources into the Trans-
former and TED using Wiz data set. All the values are
percentages reported by the performance metrics (%).

fort to create resources that represent a responder’s
knowledge and effective retrieval methods to re-
trieve knowledge relevant to the response content.
Since the response is not available, we devise TPPA
to leverage post p and post-retrieved knowledge
PRK and train models to approximate RRK.

4 TPPA Method

In this section, we describe the architecture and
the process of selecting knowledge using the TPPA
method. Figure 2 depicts three TPPA components:
(1) Post Processing Unit comprising a word em-
bedding and a Transformer that incorporates the
post p and a set of n of retrieved prki, where n
is determined empirically (typically n = 10 out
of 50 knowledge items in Kp, on average). The
results are a Transformer representation vp for the
post and vPRK for all of the prks. In the end, a sin-
gle vprk (representing the potentially most useful
prk for identifying the rrk1) is selected based on
Auto-Pointer and Gumble Softmax algorithms.
(2) Response Processing Unit that, during train-
ing, considers each response r and corresponding
Kp to get rrk1 and a set of negs (i.e., m nega-
tive samples which are non-relevant knowledge to
the rrk1) in order to train a word embedding that
forms knowledge representation (we call it as vk).
The number of negative examples m is selected
empirically, to avoid overfitting.
(3) Knowledge Selection Unit, a search compo-
nent that uses vp and vprk as queries to score
the knowledge representation vk. The score is a
weighted sum of similarity metrics using a hyper-
parameter α that can be chosen to emphasize the
similarity with p or prk.

TPPA operation consists of Phase 1: Training
phase that utilizes training data (p, r,Kp) to train
all the three components of the system based on
known responses r; and Phase 2: Test phase during

which individual post-knowledge samples (p,Kp)
are processed in order to arrive at a selection of
knowledge (k ∈ Kp) to be injected into the gener-
ative models.

4.1 TPPA Training phase
4.1.1 Post and PRK Processing
The post p and a set of prki, i = 1, ..., n (i is the
i-th ranked post-related knowledge) are processed
with the same Transformer encoder to obtain word
representations and then passed through the max-
pooling to obtain the sequence semantic vector.

e(p) = TransformerΘ (e(wi)) 1 ≤ i ≤ L (1)

vp = maxpool (e(p)) (2)

where Θ is the trainable parameter set inside the
Transformer. p is the input post, wi is the i-th word
of the p post sequence. L is the maximum post
length. e(wi) ∈ Rd is the post word embedding
for wi, and d is the embedding dimension. e(p)
represents the semantic representation of all the
words in the post while vp is the post representation
(sentence-level). For the prki, they follow exactly
the same process following Equation 1 and 2.

We consider multiple knowledge items prki in
order to construct an effective query for knowledge
selection that complements the post and increases
the chances of selecting knowledge that is relevant
to the response. We train an auto-pointer to assign
scores to each prki. The auto-pointer module takes
vPRK as input and outputs a PRK scores vector (vap)
that indicates the importance degree of the prks.
This is followed by a Gumbel-Softmax (Jang et al.,
2016) module to select the best prk for knowledge
retrieval:

vap = (vPRKW
T + b)WT

auto pointer (3)

vprk = Gumbel-Softmax(vap, vPRK) (4)

where vPRK ∈ Rn×d represents all prki represen-
tations obtained by Eq. 1 and 2 and vprk is the
representation of the finally chosen post-related
knowledge. W ∈ Rd×d and b ∈ Rd are trainable
parameters; Wauto pointer ∈ R1×d is the trainable
auto-pointer for selecting useful prk.

4.1.2 Response Processing Unit
The knowledge representation vk is obtained by
going through raw knowledge word embedding1

1Alternative approaches, e.g., using Transformer based
representations, were considered but led to sub-optimal results
within the current TPPA set up.
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Figure 2: TPPA Architecture comprises (1) Post Processing Unit, (2) Response Processing Unit (right) and (3)
Knowledge Selection Unit (middle).

and a max-pooling operation (seeing Figure 2 Re-
sponse Processing Unit). The conduction of obtain-
ing vk is similar to Eq. 1 and 2 but replacing the
Transformer to a raw knowledge word embedding
lookup operation.

Since the objective is to augment vocabulary and
avoid noise, during training, we constrain the pos-
itive knowledge to the highly relevant knowledge
item, i.e. rrk1 by using BM25. We also randomly
select knowledge to be as negative samples (from
the union of all Kp after the rrk1s of the posts are
removed). Both of the positive sample and negative
samples will pass through the Response Processing
Unit to gain their representations.

4.1.3 Knowledge Scoring and Selection
Following the post vp and vprk representation and
knowledge representation vk, we compute similari-
ties S(p, k) and S(prk, k):

S(p, k) =
cosine(vp, vk)

‖vp‖ · ‖vk‖
;S(prk, k) =

cosine(vprk, vk)

‖vprk‖ · ‖vk‖
(5)

where S(·) designates the similarity function; vp,
vk and vprk refer to the representations of the post,
knowledge and the selected prk, respectively.

Depending on a type of dialogue, the response
may incorporate the content of the post to a dif-
ferent degree. Thus, to support flexible scoring
with regards to p and prk, we introduce a hyper-
parameter, α to the final scoring function:

Score(p, prk, k) = α×S(p, k)+(1−α)×S(prk, k) (6)

We tune α parameter on the training set and in the
final Score(p, prk, k), setting it to 0.7 to give more
importance to the post.

After we get the scores of the positive and neg-
ative samples, for all the positive-negative sample
pairs, we apply softmax to the similarity scores:

P (ki|p, prk) =
exp(λScore(p, prk, ki))∑
exp(λScore(p, prk, ki)

(7)

calculating the probability of each ki given the post
p and prks. ki ∈ {rrk1;neg1, neg2, . . . , negm}
are shown in the response processing unit in Fig-
ure 2, where neg1, . . . , negm are m negative sam-
ples. λ is a smoothing factor of the softmax func-
tion and is a trainable parameter (Huang et al.,
2013). We maximise the difference between the
positive sample and the negative samples scores.

Loss =
∑(

−log(P (rrk1|p) +
∑
j

log(negj |p))

)
(8)

where P (rrk1|p) is the positive score, P (negj |p)
stands for the j-th negative score, where 1 ≤ j ≤
m. m is the number of negative samples. During
training, all of the trainable parameters, including
the post word embedding, Transformer architecture,
auto-pointer and the knowledge word embedding,
are updated by mini-batch gradient descent (the
setup is in §5.2).

4.2 TPPA Test Phase

During the test phase, each new post p and corre-
spondingKp is processed using the Post Processing
Unit and Response Processing Units, with parame-
ter obtained during the training phase. Each knowl-
edge ki and its corresponding post are scored using
the Score(p, prk, ki) (Eq. 6) and TPPA returns the
final rank of the knowledge candidates.
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5 Experiments

Our approach for knowledge injection separates
the knowledge selection from the response genera-
tion models. We, thus, evaluate TPPA in terms of
(1) precision in selecting relevant knowledge for
a given post, judged by whether the rrk1 can be
ranked within top n position, and (2) effectiveness
of the retrieved knowledge when injected into a
response generation model.

5.1 Data

We experiment with two publicly available data
sets: Wizard of Wikipedia (Wiz) (Dinan et al.,
2019) comprises controlled human-to-human dia-
logue interactions where the participant can assume
the role of a teacher or a student and take turns
to discuss a topic. A teacher answers a student’s
post based on pre-retrieved knowledge that is re-
lated to the current topic and the dialogue context.
The Wiz data set consists of 22,311 dialogues with
201,999 turns. Each post-response pair is assigned
the related-knowledge, i.e., manually selected rele-
vant sentences or paragraphs from Wikipedia.
Holl-E (Moghe et al., 2018) comprises dialogues
between two Amazon Mturk workers2 about a se-
lected movie, supported by selected sources of
background knowledge: movie plots, reviews, com-
ments, and the fact tables related to the movie. A
response to a post is either copied or suitably modi-
fied from the provided grounded knowledge, mixed
from the four knowledge sources. Holl-E data con-
tains 9,071 conversations, covering 921 movies.

5.2 Baselines, Setup and Metrics

Baselines In our experiments we compare TPPA
knowledge selection on the retrieval performance
with three baseline models: BM25 (Robertson and
Walker, 1994) is an unsupervised probabilistic re-
trieval algorithm, which is robust for short docu-
ment (sentence) retrieval. DrQA (Chen et al., 2017)
uses bigram hashing and TF-IDF matching with a
multi-layer recurrent neural network model. CNN-
DSSM (Shen et al., 2014) uses CNN for semantic
matching of queries and documents.

In order to evaluate the effectiveness of the
selected knowledge for response generation, we
compare TPPA output with three models: WSeq
(Tian et al., 2017) uses weighted sum and con-
catenation of the post and its contextual utter-

2Amazon Mturk is a crowd-sourcing marketplace that can
employ workers to annotate corpus, https://www.mturk.com/.

ances, and obtain representations through an RNN.
MemNet (Ghazvininejad et al., 2018) leverages
a multi-task learning framework to jointly train
‘post-to-response’, ‘knowledge-to-response’ and
‘knowledge-to-knowledge’ tasks for response gen-
eration. TED (Zheng and Zhou, 2019) adopts
Transformer as the backbone framework to inject
knowledge by assigning weights to the knowledge
from multiple sources.

Finally, we consider two methods that jointly
train knowledge selection model and dialogue gen-
eration model, and use them in both sets of exper-
iments: Post-KS (Lian et al., 2019) approximates
posterior-distribution of knowledge, i.e., p(k|p, r)
using prior-distribution p(k|p) and jointly train a
knowledge selection model and a dialogue gener-
ation model. SKT (Kim et al., 2020) takes into a
account context from multi-turn dialogues (current
action and 2 prior turns) and considers knowledge
selection as a sequential decision process.
Experimental Setup In our experiments, the di-
mension of word embedding is 300, and the multi-
head number of Transformer is 4. The vocabulary
is obtained by ranking the training data by word fre-
quency, with the size of 50,000 top frequent terms
selected. The minimum post length is set to 8 to-
kens. Each knowledge item is represented by a sen-
tence. During model training, we use mini-batch
size 64. Adam optimiser is used for optimisation.
The initial learning rate is set to 0.001 and halved
when reaching the plateau (decreasing patience is
set to 2 epochs). All the experiments are run on a
single TITAN V GPU. The TPPA model requires 2
hours to train on the Wiz data set.
Metrics Quality of the generated responses is eval-
uated using five standard metrics: BLEU (Papineni
et al., 2002), Meteor (Banerjee and Lavie, 2005),
and Bert-Score (BS) (Zhang et al., 2019) that are
based on co-occurrence of n-grams between the
system response and the ground-truth, calculating
the token similarity using contextual embeddings.
In this work, the BS version we used is roberta-
large L17 idf version=0.3.3(hug trans=2.8.0)3;
Diversity scores (Div-2) (Li et al., 2015) calculates
the proportion of distinct bi-grams out of all the
distinct words.

For knowledge selection, we use P@n that cal-
culates the precision at a given rank n, measuring
whether the ground truth (rrk1) exists within the
top n retrieved knowledge.

3https://github.com/Tiiiger/bert score



3587

Exp Model Wizard of Wikipedia (%)
P@1 P@5 P@10

BM25 4.9† 18.6† 31.1†
DrQA 4.1† 13.6*† 21.7*†
CNN-DSSM 8.2*† 31.3*† 48.8*†
Post-KS 6.2*† - -
SKT 9.01* - -

TPPA

1rrk-1neg-10prk 8.9*† 33.0*† 49.2*†
1rrk-4neg-10prk 10.0* 36.5*† 54.5*
1rrk-10neg-10prk 9.8* 36.4*† 54.2*†
1rrk-20neg-10prk 10.1* 37.8* 55.0*
1rrk-30neg-10prk 10.1* 38.0* 55.1*
1rrk-40neg-10prk 8.2*† 31.3*† 48.2*†

TPPA

1rrk-30neg-1prk 10.2* 38.4* 55.1*
1rrk-30neg-10prk 10.1* 38.0* 55.1*
1rrk-30neg-20prk 10.0* 37.3*† 55.1*
1rrk-30neg-30prk 9.7* 35.2*† 52.4*†

Exp Model Holl-E (%)
P@1 P@5 P@10

BM25 10.5† 33.4† 48.5†
DrQA 13.3*† 29.4*† 35.4*†
CNN-DSSM 15.2*† 34.9*† 50.0†
Post-KS 5.5*† - -
SKT 11.6*† - -

TPPA

1rrk-1neg-10prk 13.6*† 37.0*† 51.3*†
1rrk-4neg-10prk 15.5*† 38.3*† 52.7*†
1rrk-10neg-10prk 16.6* 40.4* 54.5*
1rrk-20neg-10prk 14.8*† 36.9*† 51.1†
1rrk-30neg-10prk 15.7*† 39.1*† 53.2†
1rrk-40neg-10prk 16.2* 39.5* 53.2

TPPA

1rrk-10neg-1prk 16.3* 39.0*† 52.7*†
1rrk-10neg-10prk 16.6* 40.4* 54.5*
1rrk-10neg-20prk 16.6* 39.0* 52.9*†
1rrk-10neg-30prk 15.4*† 38.6* 52.7*†

Table 3: Retrieval precision on the Wiz and Holl-E data
sets. ‘*’ means t-test p < 0.05 compared with the base-
line BM25; ‘†’ is the p < 0.05 compared with the best
performing group. Bold indicates the best performance
group when changing the number of negative samples.
Underline indicates the best group among all methods.

6 Experimental Results

Knowledge Selection Evaluation. For the TPPA
method, the quality of the selected knowledge is
determined by the embedding parameters obtained
during the training phase. They are, in turn, re-
lated to the knowledge resources used for training
(Response Processing Unit) and the quality of the
transformer representation of p and prk (Post Pro-
cessing Unit), shown in Figure 2. The resources
are constructed from individual knowledge sets
Kp, where p is the post in the training set. For
each training sample, it consists of a post p, a rrk1
(i.e. the top 1 ranked response-retrieved knowl-
edge), n prks (i.e. the top n ranked post-retrieved
knowledge) and m negs (i.e. randomly chosen m
sentences). Thus, 1rrk-1neg-10prk indicates that
we selected the rrk1, 1 random knowledge item
and top 10 prks for each p. In the test experiments,
we monitor whether, for a new post p in the test set,
different retrieval models rank its corresponding
ground truth, i.e., rrk1 for p within the top 1, 5, or
10 ranked items.

Results in Table 3 show that: (1) TPPA provides

Exp Model Wizard of Wikipedia (%)
BLEU-4 METEOR Div-2 BS

MemNet 1.24 6.39 2.24 81.5
WSeq 2.13 7.17 13.29 82.86
Post-KS 1.35 5.96 22.32 81.3
SKT 3.14 7.29 27.8 83.4
TED 3.91 8.82 18.16 82.9

Exp Model Holl-E (%)
BLEU-4 METEOR Div-2 BS

MemNet 5.59 7.63 0.18 84.6
WSeq 5.9 7.94 3.63 83.71
Post-KS 3.79 5.98 2.41 81.3
SKT 9.16 8.48 22.9 82.9
TED 12.66 10.37 17.95 84.1

Table 4: Performance of generative models MemNet,
WSeq and TED with the best TPPA knowledge selec-
tion. Post-KS and SKT rely on their jointly trained
models. BS refers to Bert-Score.

at least one model that outperforms all other models
on the Wiz and Holl-E data sets, on all three met-
rics P@1, P@5, and P@10. (2) The composition
of the knowledge base affects the TPPA knowledge
selection: for the Wiz data set and fixed number
of 10prk, increasing the number of neg items im-
proves the performance until reaching its plateau
at 1rrk-30neg-10prk; for the Holl-E data set, the
best combination is 1rrk-10neg-10prk. (3) For a
fixed number of neg we vary the number of prks
items and find that: (i) for Wiz and n=30, the op-
timal prk number is 1; and (ii) for Holl-E and
neg=10 the optimal prk number is 10.

Based on these findings we use 1rrk-30neg-
1prk for Wiz and 1rrk-10neg-10prk for Holl-E
as sets for TPPA to select knowledge for use with
MemNet, WSeq and TED models on response gen-
eration.
Response Generation Evaluation. We conduct
the initial set of experiments to assess the robust-
ness of the generative models (Table 4) and find
that: (i) SKT and TED models outperform oth-
ers, (ii) MemNet has unstable performance and
constantly under-performs on Div-2. Furthermore,
since SKT and Post-KS cannot inject multiple
knowledge items, for further discussion, we choose
experiments with WSeq and TED. We combine
them with knowledge selection from (i) BM25, (ii)
SKT (single knowledge item), (iii) CNN-DSSM
(supervised search algorithm on post only), (iv)
TPPA using both post and post-retrieved knowl-
edge items, and (v) rrki (i means top i ranked
response-retrieved knowledge, it is set to 1, 5 and
10 in our setting), to determine the upper bound
when responses are known). The comparisons for
the two data sets are shown in Table 5 and Table 6.

We observe that: (1) Injecting knowledge from
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TED+Top 1 BLEU-4 METEOR Div-2 BS
BM25 3.35 8.45 16.2 82.7
SKT 4.05* 8.82* 18.8* 82.8*
CNN-DSSM 3.5 8.62 20.08* 82.8
TPPA 3.91* 8.82* 18.16 82.9
rrk1 8.14* 11.36* 24.63* 84.3*
TED+Top 5 BLEU-4 METEOR Div-2 BS
BM25 3.17 7.81 18.33 82.99
CNN-DSSM 3.81 8.82 16.98 83.16
TPPA 3.88* 8.97* 17.22* 83.23
rrk5 4.99* 10.49* 19.04* 83.7*
TED + Top 10 BLEU-4 METEOR Div-2 BS
BM25 3.01 7.98 15.7 83.2
CNN-DSSM 3.59* 8.98* 14.8* 83.38
TPPA 3.53* 9.09* 14.66* 83.4*
rrk10 4.05* 9.56* 15.87* 83.6*
WSeq+Top 1 BLEU-4 METEOR Div-2 BS
BM25 1.94 6.98 12.96 82.76
SKT 2.0 7.02 13.73 82.8
CNN-DSSM 2.04 7.07 13.25 82.81
TPPA 2.13 7.17* 13.29 82.86
rrk1 2.23* 7.35* 13.23 83.0*
WSeq+Top 5 BLEU-4 METEOR Div-2 BS
BM25 2.05 7.18 17.59 82.85
CNN-DSSM 2.07 7.37 18.32 83.03*
TPPA 2.15* 7.57* 18.55* 83.1*
rrk5 2.61* 8.0* 18.75* 83.3*
WSeq + Top 10 BLEU-4 METEOR Div-2 BS
BM25 2.31 7.44 19.48 83.0
CNN-DSSM 2.44 7.88* 20.19 83.3*
TPPA 2.59 7.97 19.72 83.35
rrk10 3.01* 8.67* 21.07 83.66*

Table 5: Knowledge-injection results on the Wizard of
Wikipedia data set. The values are percentages (%). ‘*’
means the t-test p < 0.05 compared with the BM25
algorithm. ‘Top 1’, ‘Top 5’ ‘Top 10’ denotes injecting
top 1 or 5 or 10 ranking knowledge. BS is Bert-Score.
Bold indicates the best score apart from the rrki group.

SKT, CNN-DSSM and TPPA generally outper-
forms the post only selection using BM25 (Table 5
and 6) on both the Wiz and Holl-E data sets in terms
of the BLEU-4, METEOR and Bert-Score. TED
performance suffers from increased knowledge in-
jection. Indeed, for TED + rrki, i.e., using ‘perfect
knowledge’ the performance decreases with the in-
creasing number of knowledge items. Zheng and
Zhou (2019) claim that TED lacks a noise-filtering
mechanism and thus underperforms with too much
data. (2) Not surprisingly, knowledge selection
methods with better retrieval performance achieve
better response generation metrics. We consider
Table 5 and 6 and the corresponding retrieval per-
formance in Table 3. For the Wiz data set, the TPPA
with 1rrk-30neg-1prk achieves the best retrieval
performance and better results (Table 5) on both
generative models (TED and WSeq) across differ-
ent settings. This is confirmed on the Holl-E data
set (Table 6) where TPPA outperforms other mod-
els, including Post-KS and SKT. This confirms our
conjecture that improving retrieval for knowledge
injection should improve the response generation.

Upper-bound Analysis. The upper bound for

TED+Top 1 BLEU-4 METEOR Div-2 BS
BM25 9.87 9.09 26.21 83.6
SKT 9.01 8.56 19.86* 83.4*
CNN-DSSM 11.56* 9.84* 23.51* 83.9
TPPA 12.66* 10.37* 17.95* 84.1*
rrk1 45.94* 30.61* 29.03* 89.6*
TED+Top 5 BLEU-4 METEOR Div-2 BS
BM25 11.4 10.22 24.16 83.9
CNN-DSSM 12.02 10.4 23.71 84.0
TPPA 12.92* 11.12* 17.87* 84.2
rrk5 21.81* 17.15* 24.96* 85.9*
TED + Top 10 BLEU-4 METEOR Div-2 BS
BM25 5.5 8.36 2.45 83.5
CNN-DSSM 5.39 8.24 2.6* 83.6
TPPA 5.6 8.24 2.53* 83.6
rrk10 6.53* 9.88* 2.75* 84.0*
WSeq+Top 1 BLEU-4 METEOR Div-2 BS
BM25 4.58 7.25 4.33 83.68
SKT 5.81* 7.77* 3.09 83.6*
CNN-DSSM 5.6* 7.62* 4.48* 83.5*
TPPA 5.9* 7.94* 3.63* 83.71
rrk1 6.5* 8.95* 4.6* 83.97*
WSeq+Top 5 BLEU-4 METEOR Div-2 BS
BM25 5.15 7.51 8.65 83.43
CNN-DSSM 5.53* 7.69 9.78* 83.17*
TPPA 5.96* 7.74* 7.82* 83.59*
rrk5 7.22* 9.55* 9.39* 83.85*
WSeq + Top 10 BLEU-4 METEOR Div-2 BS
BM25 5.28 7.15 13.85 83.43
CNN-DSSM 5.88* 7.35* 16.26* 83.3*
TPPA 5.89* 7.43* 12.43* 83.7*
rrk10 8.19* 10.41* 15.73* 84.3*

Table 6: Knowledge-injection results on the Holl-E
data set. The values are percentages (%). ‘*’ means
the t-test p < 0.05 compared with the BM25 algorithm.
‘Top 1’, ‘Top 5’, ‘Top 10’ denotes injecting top 1 or
5, or 10 ranking knowledge. BS is Bert-Score. Bold
indicates the best score apart from the rrki group.

knowledge selection is the rrki group. We ob-
serve how all of the retrieval models perform in
combination with TED and WSeq (Table 5 and
6). For the sake of concreteness we focus on the
BLEU-4 metric. Table 5 and 6 show that low levels
of knowledge-injection, e.g., a single knowledge
item (Top 1), leads to large differences between
TPPA and RRK in BLEU-4: 4.23% (8.14%-3.91%)
for Wiz and 33.28% (45.94%-12.66%) for Holl-E
data set. Despite that, TPPA manages to better ap-
proximate RRK than other models and improves
response generation.

Analysis of Added Useful Words. In order to an-
alyze the properties of the generated responses,
we define two metrics to quantify: useful word
and useful word overlapping rate (UWOR). If a
word appears in the response but not in the post, it
is useful. UWOR measures the coincidence ratio
of two sequences and is defined as: UWOR(p, r)
= overlap(p, r) / distinct(r) for post p and re-
sponse r. The overlap(·) is the number of distinct
overlapping useful words between two sequences.
distinct(·) is a distinct number of words. We re-
move the stop words of the two sequences before
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Exp Name Wizard of Wikipedia Holl-E
UWOR(p, r) 14.6 7.52

UWOR(k − p, r)

BM25 4.11 9.42
SKT 9.0 9.52

CNN-DSSM 9.32 14.92
TPPA 10.25 15.98
rrk1 34.52 67.84

Table 7: The useful word overlapping rate results of
Wiz and Holl-E data sets. All values are shown as per-
centages (%).

calculating UWOR.
We further test whether the retrieved knowl-

edge brings additional useful words. We calculate
UWOR(k − p, r), where k − p is a set of words in
the knowledge (k ∈ Kp) but not in the associated
post p, i.e., {w|w ∈ k ∩ w /∈ p}, w is the word of
a sequence.

The results are shown in Table 7. For each exper-
iment group in Table 7, we select the top 1 ranked
sentence for calculation. UWOR(p, r) values for
the Wiz and Holl-E data sets are just 14.6% and
7.52%, respectively. Considering the TPPA, for
Wiz the number of additionally added useful words
are comparable to what the post brings (10.25% vs.
14.6%); for the Holl-E, the retrieved knowledge
brings more than double the useful words than the
post (15.98% vs. 7.52%). This demonstrates the
effectiveness of TPPA that can expand additional
useful words from knowledge.

7 Conclusions and Discussions

Our investigations of the knowledge associated
with post-response pairs lead us valuable insights
into how well selected response-retrieved knowl-
edge RRK can improve the performance of the gen-
erative models. Considering that response is not
observable in the test phase, we developed a TPPA
method that selects knowledge items by the careful
embedding of the knowledge and optimized repre-
sentation of the post and post-related knowledge
PRK. We empirically demonstrate the superiority
of TPPA, and being separated from the generative
models. This provides flexibility to explore alterna-
tive components and models.

Despite its effectiveness, we now discuss one
potential limitation of our TPPA model.We find
that the quality of the knowledge base has a huge
impact on the effectiveness of TPPA. The Wiz and
Holl-E we experiment with are two data sets from
which candidate knowledge items are of high qual-
ity and manually selected. As shown in Figure 1 for
the Wiz dataset, rrk1 group contains on average

Figure 3: Common words count distribution between
each source and the target response on the Reddit train-
ing set. The dashed lines are the average count of com-
mon words of each group (after removing stop words).

more than two common words than prk1 group that
would help to constitute the ground truth response.
The same trend also holds for the Holl-E data set.

However, when looking at the Reddit data set4,
as shown in Figure 3, we find that rrk1 group and
prk1 group almost contain the same number of
common words, compared to the ground-truth re-
sponse. This is not surprising given the nature of
this dataset: Reddit is an online forum where each
post is typically initiated with a URL to a web
page (grounding) that defines the topic of the post,
provided by the author. However, the repliers of
the post might not read that information at all and
respond according to their own knowledge. Em-
pirically, we find TPPA can not benefit from the
knowledge under this circumstance and perform
worse than the baselines. This implies that when
knowledge is potential of low quality, using PRK
as the source of evidence for pseudo relevance feed-
back can result in potential topic drift.

In future work, we would like to (1) make TPPA
more robust irrespective of the quality of provided
knowledge; (2) develop an end-to-end model that
directly model response generation with the help
of response-related knowledge.

Acknowledgments

This work is partly supported by Engineering and
Physical Sciences Research Council (EPSRC Grant
No. EP/S515528/1, 2102871). The Titan V used
for this research was donated by the NVIDIA Cor-
poration. All content represents the opinion of
the authors, which is not necessarily shared or en-
dorsed by their respective employers and/or spon-
sors.

4https://github.com/mgalley/DSTC7-End-to-End-
Conversation-Modeling



3590

References
Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An

automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

Guihong Cao, Jian-Yun Nie, Jianfeng Gao, and
Stephen Robertson. 2008. Selecting good expansion
terms for pseudo-relevance feedback. In Proceed-
ings of the 31st annual international ACM SIGIR
conference on Research and development in infor-
mation retrieval, pages 243–250.

Danqi Chen, Adam Fisch, Jason Weston, and An-
toine Bordes. 2017. Reading wikipedia to an-
swer open-domain questions. arXiv preprint
arXiv:1704.00051.

Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn,
Jaap Kamps, and W Bruce Croft. 2017. Neural rank-
ing models with weak supervision. In Proceedings
of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 65–74. ACM.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela
Fan, Michael Auli, and Jason Weston. 2019. Wizard
of wikipedia: Knowledge-powered conversational
agents. In International Conference on Learning
Representations.

Marjan Ghazvininejad, Chris Brockett, Ming-Wei
Chang, Bill Dolan, Jianfeng Gao, Wen-tau Yih, and
Michel Galley. 2018. A knowledge-grounded neural
conversation model. In Thirty-Second AAAI Confer-
ence on Artificial Intelligence.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM
international conference on Information & Knowl-
edge Management, pages 2333–2338. ACM.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categor-
ical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144.

Byeongchang Kim, Jaewoo Ahn, and Gunhee Kim.
2020. Sequential latent knowledge selection for
knowledge-grounded dialogue. arXiv preprint
arXiv:2002.07510.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2015. A diversity-promoting objec-
tive function for neural conversation models. arXiv
preprint arXiv:1510.03055.

Rongzhong Lian, Min Xie, Fan Wang, Jinhua Peng,
and Hua Wu. 2019. Learning to select knowledge
for response generation in dialog systems. arXiv
preprint arXiv:1902.04911.

Bhaskar Mitra, Fernando Diaz, and Nick Craswell.
2017. Learning to match using local and distributed
representations of text for web search. In Proceed-
ings of the 26th International Conference on World
Wide Web, pages 1291–1299. International World
Wide Web Conferences Steering Committee.

Nikita Moghe, Siddhartha Arora, Suman Banerjee, and
Mitesh M Khapra. 2018. Towards exploiting back-
ground knowledge for building conversation sys-
tems. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2322–2332.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Stephen Robertson, Hugo Zaragoza, and Michael Tay-
lor. 2004. Simple bm25 extension to multiple
weighted fields. In Proceedings of the thirteenth
ACM international conference on Information and
knowledge management, pages 42–49.

Stephen E Robertson and Steve Walker. 1994. Some
simple effective approximations to the 2-poisson
model for probabilistic weighted retrieval. In SI-
GIR’94, pages 232–241. Springer.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng,
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