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Abstract

Event argument extraction (EAE) aims to iden-
tify the arguments of an event and classify
the roles that those arguments play. Despite
great efforts made in prior work, there remain
many challenges: (1) Data scarcity. (2) Cap-
turing the long-range dependency, specifically,
the connection between an event trigger and a
distant event argument. (3) Integrating event
trigger information into candidate argument
representation. For (1), we explore using un-
labeled data in different ways. For (2), we
propose to use a syntax-attending Transformer
that can utilize dependency parses to guide the
attention mechanism. For (3), we propose a
trigger-aware sequence encoder with several
types of trigger-dependent sequence represen-
tations. We also support argument extraction
either from text annotated with gold entities or
from plain text. Experiments on the English
ACE2005 benchmark show that our approach
achieves a new state-of-the-art.

1 Introduction

Event argument extraction (EAE) aims to identify
the entities that serve as arguments of an event
and to classify the specific roles they play. As
in Fig. 1, “two soldiers” and “yesterday” are ar-
guments, where the event triggers are “attacked”
(with event type being ATTACK') and “injured”
(event type INJURY). For the trigger “attacked”,
“two soldiers” plays the argument role Target while
“yesterday” plays the argument role Attack_Time.
For the event trigger “injured”, “two soldiers” and
“yesterday” play the role Victim and INJURY _Time,
respectively. There has been significant work on
event extraction (EE) (Liao and Grishman, 2010,
Hong et al., 2011; Li et al., 2013), but the EAE

*Indicates Equal Contribution.
"Following ACE https://www.ldc.upenn.edu/
collaborations/past-projects/ace
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Figure 1: Event examples: Green indicates triggers
with their types. Yellow indicates arguments. An arrow
indicates the role played by an argument in a trigger.

task remains a challenge and has become the bot-
tleneck for improving the overall performance of
EE (Wang et al., 2019a).2

Supervised data for EAE is expensive and hence
scarce. One possible solution is to use other avail-
able resources like unlabeled data. For that, (1) We
use BERT (Devlin et al., 2018) as our model en-
coder which leverages a much larger unannotated
corpus where semantic information is captured. Un-
like Yang et al. (2019) who added a final/prediction
layer to BERT for argument extraction, we use
BERT as token embedder and build a sequence of
EAE task-specific components (Sec. 2). (2) We
use (unlabeled) in-domain data to adapt the BERT
model parameters in a subsequent pretraining step
as in (Gururangan et al., 2020). This makes the en-
coder domain-aware. (3) We perform self-training
to construct auto-labeled data (silver data).

A crucial aspect for EAE is to integrate event
trigger information into the learned representations.
This is important because arguments are depen-
dent on triggers, i.e., the same argument span plays
completely different roles toward different triggers.
An example is shown in Fig. 1, where “two sol-
diers” plays the role Target for the event ATTACK
and the role Victim for INJURY. Different from

2EAE has similarities with semantic role labeling. Event
triggers are comparable to predicates in SRL and the roles in
most SRL datasets have a standard convention of interpreting
who did what to whom. EAE has a custom taxonomy of roles
by domain. We also use inspiration from the SRL body of

work (Strubell et al., 2018; Wang et al., 2019b; He et al., 2017,
Marcheggiani and Titov, 2017).
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existing work that relies on regular sequence en-
coders, we design a novel trigger-aware encoder
which simultaneously learns four different types of
trigger-informed sequence representations.

Capturing the long-range dependency is another
important factor, e.g., the connection between an
event trigger and a distant argument. Syntactic in-
formation could be useful in this case, as it could
help bridge the gap from a word to another dis-
tant but highly related word (Sha et al., 2018; Liu
et al., 2018; Strubell et al., 2018). We modify a
Transformer (Devlin et al., 2018) by explicitly in-
corporating syntax via an attention layer driven by
the dependency parse of the sequence.

We design our role-specific argument decoder to
seamlessly accommodate both settings (with and
without the availability of entities). We also tackle
the role overlap problem (Yang et al., 2019) using
a set of classifiers or taggers in our decoder.

Our model achieves the new state-of-the-art on
ACE2005 Events data (Grishman et al., 2005).

2 Event Argument Extraction

2.1 Task Setup

Consider a sequence X = {z1,...x;,...xp} of T
tokens x;. A span x;; ={z;..z;} is a subsequence
in X. An event trigger g is a span x,; indicating
an event of type y4, where y, belongs to a fixed
set of pre-defined trigger types. Given a sequence-
trigger pair (X, g) as input, EAE has two goals:
(1) Identify all argument spans from X and (2)
Classify the role r for each argument. In some
settings, a set of entities is given (each entity is a
span in X) and such entities are used as a candidate
pool for arguments. For example, “two soldiers’
and “yesterday” are candidate entities in Fig. 1.

’

2.2 Modeling Argument Extraction

Fig. 2 presents our model architecture with the
following components: (1) trigger-aware sequence
encoder, (2) syntax-attending Transformer and (3)
role-specific argument decoder.

Trigger-Aware Sequence Encoder: This en-
coder is designed to distinguish candidate argu-
ments conditioned on different triggers. Note a
span may encode different argument information
for two triggers, for example, in Fig. 1, “Two sol-
diers” plays the role of Target for the ATTACK
event and Victim for the INJURY event. In order to
model this, our encoder uses BERT to embed input

tokens, where the BERT embedding of token x is
denoted as b;. A segment (0/1) embedding seg; for
each token z; indicating whether z; belongs to the
trigger or not (Logeswaran et al., 2019, inter-alia) is
used, which is added up with token embedding and
position embedding as input to BERT (Fig.2). The
encoder then concatenates the following learned
representations® for each token: (1) A trigger rep-
resentation h4 by max pooling over BERT embed-
dings of the tokens in trigger g; (2) A trigger type
embedding p,, for y,; (3) A trigger indicator (0/1)
embedding /;, indicating whether x; belongs to the
trigger or not.*(4) A token embedding b;. This re-
sults in a trigger-aware representation c¢; for each
token where ¢; = Concat(bs; py,;li; hy) and C
for the whole sequence with T tokens.

Syntax-Attending Transformer: Dependency
parsing has been used as a feature to improve
EE (Sha et al., 2018; Liu et al., 2018). Inspired
by Strubell et al. (2018), we utilize dependency
parses® by modifying an attention head for each
layer in a Transformer. Note that this Transformer
is different from the BERT component, as this
Transformer aims to capture long-range depen-
dency on top of the trigger-aware representations
learned from our sequence encoder. The output
C from our encoder now will be the input of this
Transformer, which will go through L layers of
the modified syntax-attending Transformers. Each
of these is assumed to have NV self-attention heads.
For each layer [, we modify one of these /N heads to
be a dependency-based attention head (call d-head)
with output H':

H' = Wo((whut=D; A1), (1)

where
Al = Attention(WHQ' Wi K", WiV, (2)

@', K' and V! are query, key, and value represen-
tations, and W, are learning parameters. U’ =
{u}..ul.} is the layer-I output of our Transformer
and U° = C. Eq. 2 uses the scaled-dot product at-
tention (Vaswani et al., 2017). The difference of the

3(2) and (3) are randomly initialized. They will be jointly
learned during model training.

“While both I; and seg; are used for indicating whether a
token x; belongs to a trigger, the difference is that I; is used
to encode such information after obtaining BERT outputs and
segy is used as an input to BERT. They are of different sizes.

SWe use Stanford Parser https://nlp.stanford.
edu/software/lex-parser.shtml
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Figure 2: Model Architecture

d-head compared to other heads is that its keys K
and values V' are constructed differently. For each
token z;, valid keys and values are restricted to all
tokens x; such that z; and x; have an edge between
them® in the dependency parse of the sequence X
This makes every a} € A! a weighted attention
sum over the neighbor’ values vé» of the token x;
in the dependency parse. We then concatenate this
al and the token’s own representation u} projected
linearly. Finally, this is projected back to the same
dimensions as the outputs of the other N — 1 at-
tention heads. By concatenating their outputs, our
model captures both syntax-informed and global-
attending information. The final output from our

Transformer component is UX = uf, ul . .uk.

—

Role-Specific Argument Decoder: We consider
two settings: (1) with and (2) without entities.
When entities are provided, they are used to form
candidates for arguments; when they are not pro-
vided, our model infers arguments from plain text.

For (1), we assume that all arguments are en-
tities but the vice versa is not true. So, we treat
all entity spans, within a fixed sentence window
around the trigger g, as candidate arguments. An
entity representation is formed by pooling u} for
all tokens x; in the entity span. Note that, since
the encoder is trigger-aware, this representation is
already conditioned on (X, g) for role classifica-
tion. Commonly used datasets like ACE2005 have
a 10% role overlap problem (Yang et al., 2019).
Concretely, consider a sentence like “The suicide
bomber died in the blast he set off”’. Here, “sui-

82; may represent a subword unit. We assume all subwords
of a word in the dependency parse inherit the head and children

from the parent word.
"Head and children.

cide bomber” plays two distinct roles Atfacker and
Victim for the same trigger “blast” that denotes an
ATTACK event. Hence, we perform role classifica-
tion for every role independently (as a multi-label
classification problem), using a set of classifiers,
where each classifier handles one particular role,
i.e., role-specific (such as the VICTIM, TARGET or
ORIGIN as orange shown in Fig. 2). We thus call
this decoder role-specific argument decoder.

More specifically, we use one binary classifier
per role permissible for current trigger type on this
entity representation. The outcome of the classifier
for role r determines whether this entity plays the
role r for the current trigger or not.

For (2), in the absence of entities we have no
candidate spans for arguments. Using final layer
output of syntax-attending Transformer, we predict
a sequence of BIO tags with one sequence tagger
per role.® So in this setting the role-specific argu-
ment decoder comprises a set of sequence taggers.

2.3 Training Regimes for Data Scarcity

Domain-adaptive pretraining: An additional
phase of in-domain pretraining has been shown
to be effective for downstream tasks (Gururangan
et al., 2020). Based on this, we perform a second
phase of domain-adaptive pretraining with both
BERT losses before fine-tuning the BERT encoder.

Self-training: For self-training (Chapelle et al.,
2009; Scudder, 1965, inter-alia), we first train our
model based on gold data. Next, we use that model

8Each token is tagged with B, I or O, indicating a token is
at the beginning, inside of, or outside an argument span. Here
we replace the conventional multi-class BIO tagger with a set
of role-wise taggers. So tokens play role r have the tags B and
I from the role-specific tagger for 7.
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to tag unlabeled data and get a much larger but
noisy silver dataset (Sec. 3). We then train a new
version of our model on the silver dataset; the re-
sulting model is later fine-tuned on the gold data.

Auxiliary tasks: Although trigger detection is
not the focus of this work, we model it as an auxil-
iary task to help EAE. We share the BERT encoder
(Sec. 2.2) for both tasks. The trigger detection
task uses the standard sequence tagging decoder
for BERT (Devlin et al., 2018). The intuition here
is to improve (1) the representation of the shared
BERT component and (2) trigger representation,
by performing trigger detection.

3 Experiments

Data and Tools: We use the ACE-2005 English
Event data (Grishman et al., 2005).° For self-
training and domain-adaptive pretraining, we ran-
domly sample 50k documents (626k sentences)
from Gigaword'? to construct silver data. We use
Stanford CoreNLP software!! for tokenization, sen-
tence segmentation and dependency parsing.

Training Setup: We use 50 dimensions for trig-
ger indicator and trigger type embedding. We use
2 (L = 2) layers for the syntax-attending Trans-
former with 2 (N = 2) attention heads, dropout of
0.1. When entities are available, we only consider
entities in the same sentence as the trigger as can-
didates for argument extraction. During training,
We use Adam (Kingma and Ba, 2014) as optimizer
and batch size of 32 for both main task EAE and
the auxiliary task of trigger detection; we alternate
between batches of main task and auxiliary task
with probabilities of 0.9 and 0.1, respectively. We
early stop training if performance on the develop-
ment set does not improve after 20 epochs. All
model parameters are fine-tuned during training.
For BERT pretraining, we use the same setting as
in (Devlin et al., 2018) but with an initial learning
rate of 1e-5. We stop pretraining after 10k steps. In
order to obtain reliably predicted triggers as input
for EAE, we trained a five-model ensemble trigger
detection system following Wadden et al. (2019).!2

°Standard splits (Li et al., 2013): 529 documents (14,385
sentences) are used for training, 30 documents (813 sentences)
for development, and 40 documents (632 sentences) for test.

https://catalog.ldc.upenn.edu/LDC2011T07
https://stanfordnlp.github.io/CoreNLP/

12Since trigger detection is not our main task and improving
it is not the focus of this work, its results are not for compar-
ison and thus excluded from the main result tables. As a

Model Argument Role

Identification (AI) Classification (RC)

P R Fl1 P R F1

(Yubo et al., 2015) 68.8 519 59.1 | 622 469 535
(Nguyen et al., 2016) 614 642 628 | 542 567 554
(Sha et al., 2016) 632 594 612 |54.1 535 538
(Sha et al., 2018) 713 645 677 | 662 528 587
(Yang et al., 2019) 714 60.1 653 | 623 542 580
(Wang et al., 2019a) - - - 622 56.6 59.3
(Liu et al., 2018) 714 65.6 684 | 66.8 549 603
Ours 64.8 637 642 | 61.1 606 60.8

Ours + Pretraining 658 629 643 | 623 60.0 61.1
Ours + Self Training 645 650 647 | 61.1 623 61.7

(Sha et al., 2018)" - - 57.2 - - 50.1
(Zhang et al., 2019) 633 487 551 | 61.6 457 524
(Nguyen and Nguyen, 2019) | 59.9 59.8 59.9 | 52.1 52.1 52.1

(Wadden et al., 2019)f - 55.4 - - 52.5
(Zhang et al., 2020)f - - 545 524 534

Ours 556 579 56.7 | 53.0 557 543

Ours + Pretraining 563 58.1 572|535 558 546

Ours + Self Training 584 569 576 |560 548 553

Table 1: Experimental results. { indicates a model does
not use gold entities. Ours show the mean of 5 random
seeds. P refers to precision and R refers to recall.

Results and Analyses: Table 1 shows the results
in two experimental settings: with and without
entities. In the setting with entities, we use gold
entities as in prior work. We have the following
observations: (1) Our model achieves the best re-
sults ever reported in both experimental settings on
RC (overall F1 scores). (2) Our model does not
achieve the highest scores on Al. It seems however
that our model is able to bridge the gap given that
in order to achieve good results in RC you need Al,
so it couples these two mutually affected sub-tasks
closer to each other. (3) Self-training leads to gains
of 1 F1 point both with and without entities. (4)
Domain-adaptive pretraining shows small improve-
ments on both Al and RC (less that self-training).
There are two possible reasons. First, Gigaword is
news while ACE is not only news; we only adapted
part of the domains. Second, even though we used
a small learning rate during pretraining, 50k unla-
beled documents is a small amount for pretraining.

Ablation Study: We ablate each of the compo-
nents and show results in Table 2. We observe that
(1) All components help. We can see the perfor-
mance gain of each component in the settings of
with and without entities. (2) The overall trigger-
aware sequence encoder leads to ~1.5 F1 points
gain in both settings. (3) The use of the auxiliary
task and the syntax-encoder improve by another
~1 F1 points.

reference, our five-model ensemble achieves 73.88 F1 score
in the trigger classification task on ACE2005 Event test set.
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Model w/ entities | w/o entities
Argument (Single Task) 68.1 62.1
Argument + TI 68.5 62.5
Argument + TI + TT 69.1 63.3
Argument + TI + TT + TE 69.6 63.5
Arg. + Tri. (Auxiliary) 70.2 64.2
Arg. + Tri. (Auxiliary) + Syntax. 70.8 64.6

Table 2: Ablation analysis of our model on develop-
ment set with gold trigger. TT = Trigger Type. TI =
Trigger Indicator. TE = Trigger Embedding. Tri. =
Trigger. Arg. = Argument + TI + TT + TE. Auxiliary
indicates that trigger detection here is an auxiliary task.
w/ and w/o entities mean with and with out entities pro-
vided. Results are the mean over 5 random seeds.

4 Related Work

Event Argument Exaction (EAE) is an important
task in Event Extraction (EE). Early studies de-
signed lexical, contextual or syntactical features
to tackle the EE problem (Ji and Grishman, 2008;
Liao and Grishman, 2010; Hong et al., 2011; Li
et al., 2013). Later on, neural networks (Yubo et al.,
2015; Sha et al., 2016; Nguyen et al., 2016; Sha
et al., 2018; Liu et al., 2018; Yang et al., 2019;
Wang et al., 2019a) demonstrated their effective-
ness in representation learning without manual fea-
ture engineering. Our proposed model belongs to
the latter category.

Here we present and discuss the most related
studies to our work. Yang et al. (2019) used
a pre-trained model with a state-machine based
span boundary detector. They used heuristics to
resolve final span boundaries. Wang et al. (2019a)
also used a pre-trained model together with a hand-
crafted conceptual hierarchy. Our approach does
not need the design of such heuristics or conceptual
hierarchy. In terms of modeling, their approaches
used regular BERT as their encoders, where the
argument representations are not explicitly con-
ditioned on triggers. In contrast, our encoder is
enhanced by providing more trigger-oriented infor-
mation and BERT is only used as one part of it,
which results in a trigger-aware sequence encoder.
This allows us to better model interactions between
arguments and triggers. Liu et al. (2018) added a
GCN layer to integrate the syntactic information
into a neural model. Different from their solution,
we encode the syntax jointly with attention mech-
anism, simplifying the learning, making it more
efficient, and achieving better results. Finally, no
prior work has deeply studied the data scarcity is-

sue in EAE, while we exploit several techniques to
tackle it in this work.

5 Conclusion

We present a new model which provides the best
results in the EAE task. The model can generate
trigger-aware argument representations, incorpo-
rate syntactic information (via dependency parses),
and handle the role overlapping problem with role-
specific argument decoder. We also experiment
with some methods to address the data scarcity is-
sue. Experimental results show the effectiveness of
our proposed approaches.
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