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Abstract

Dialogue policy learning for Task-oriented
Dialogue Systems (TDSs) has enjoyed great
progress recently mostly through employing
Reinforcement Learning (RL) methods. How-
ever, these approaches have become very so-
phisticated. It is time to re-evaluate it. Are
we really making progress developing dia-
logue agents only based on RL? We demon-
strate how (1) traditional supervised learning
together with (2) a simulator-free adversarial
learning method can be used to achieve perfor-
mance comparable to state-of-the-art (SOTA)
RL-based methods. First, we introduce a sim-
ple dialogue action decoder to predict the ap-
propriate actions. Then, the traditional multi-
label classification solution for dialogue pol-
icy learning is extended by adding dense lay-
ers to improve the dialogue agent performance.
Finally, we employ the Gumbel-Softmax esti-
mator to alternatively train the dialogue agent
and the dialogue reward model without using
RL. Based on our extensive experimentation,
we can conclude the proposed methods can
achieve more stable and higher performance
with fewer efforts, such as the domain knowl-
edge required to design a user simulator and
the intractable parameter tuning in reinforce-
ment learning. Our main goal is not to beat RL
with supervised learning, but to demonstrate
the value of rethinking the role of RL and su-
pervised learning in optimizing TDSs.

1 Introduction

The aim of dialogue policies in Task-oriented Dia-
logue System (TDS) is to select appropriate actions
at each time step according to the current context
of the conversation and user feedback (Chen et al.,
2017). In early work, dialogue policies were manu-
ally designed as a set of rules that map the dialogue
context to a corresponding system action (Weizen-
baum, 1966). The ability of rule-based solutions is
limited by the domain complexity and task scalabil-

ity. Moreover, the design and maintenance of these
rules require a lot of effort and domain knowledge.

Due to recent advantages in deep learning and
the availability of labeled conversational datasets,
supervised learning can be employed for dialogue
policy training to overcome the disadvantages of
rule-based systems. The downside of the super-
vised learning approach is that the dialogues ob-
served in the datasets are unlikely to represent all
possible conversation scenarios; in some extreme
cases, the required conversational dataset cannot
be collected or acquiring it might cost-prohibitive.

The success of RL in other areas holds promises
for dialogue Policy Learning (PL) (Williams and
Young, 2007). Using RL techniques, we can train
dialogue policies and optimize automatically, from
scratch and utilizing interactions with users (Gašić
and Young, 2014; Su et al., 2017). In RL-based
solutions, the dialogue system takes actions that
are controlled by the dialogue policy, and user feed-
back (the reward signal), which is provided when
the dialogue is finished, is utilized to adjust the
initial policy (Peng et al., 2018b; Williams et al.,
2017; Dhingra et al., 2016). In practice, reward sig-
nals are not always available and may be inconsis-
tent (Su et al., 2016). As it is not practical to ask for
explicit user feedback for each dialogue during pol-
icy training, different strategies have been proposed
to design a rule-based user simulator along with
a reward function that can approximate the real
reward function which exists only in each user’s
mind. Designing an appropriate user simulator and
accurate reward function requires strong domain
knowledge. This process has the same disadvan-
tages as rule-based dialog systems (Walker et al.,
1997). The difference is that rule-based approaches
to system design meet this problem at the dialogue
agent side while rule-based user simulators need to
solve it at the environment side.

If the task is simple and easy to solve, why not
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just build a rule-based system rather than a user-
simulator that is then used with RL techniques to
train the dialogue system, where more uncontrol-
lable factors are involved? And if the task domain
is complex and hard to solve, is it easier to design
and maintain a complicated rule-based user sim-
ulator than to build a rule-based dialogue agent?
Supervised learning methods do not suffer from
these issues but require labeled conversational data;
in some exceptional cases, if the data cannot be
collected for privacy reasons, RL is the solution.
However, collecting labeled data is feasible for
many applications (Williams et al., 2014; Weston
et al., 2015; Budzianowski et al., 2018). Therefore
in this work seek to answer the following research
question: Are we really making progress in TDSs
focusing purely on advancing RL-based methods?

To address this question, we introduce three di-
alogue PL methods which do not require a user
simulator. The proposed methods can achieve com-
parable or even higher performance compared to
SOTA RL methods. The first method utilizes an ac-
tion decoder to predict dialogue combinations. The
second method regards the dialogue PL task as a
multi-label classification problem. Unlike previous
work, we assign a dense layer to each action label
in the action space. Based on the second method,
we propose an adversarial learning method for di-
alogue PL without utilizing RL. To backpropa-
gate the loss from the reward model to the policy
model, we utilize the Gumbel-Softmax to connect
the policy model and the reward model in our third
method. We compare our methods with RL and
adversarial RL based dialogue training solutions to
show how we can achieve comparable performance
without a utilizing costly user simulator.

To summarize, our contributions are:
• A dialogue action decoder to learn the dialogue

policy with supervised learning.
• A multi-label classification solution to learn the

dialogue policy.
• A simulation-free adversarial learning method to

improve the performance of dialogue agents.
• Achieving SOTA performance in dialogue PL

with fewer efforts and costs compare to existing
RL-based solutions.

2 Related Work

A number of RL methods, including Q-
learning (Peng et al., 2017; Lipton et al.,
2018; Li et al., 2017; Su et al., 2018; Li et al.,

2020) and policy gradient methods (Dhingra et al.,
2016; Williams et al., 2017), have been applied
to optimize dialogue policies by interacting with
real users or user simulators. RL methods help
the dialogue agent is able to explore contexts that
may not exist in previously observed data. A key
component in RL is the quality of the reward signal
used to update the agent policy. Most existing
RL-based methods require access to a reward
signal based on user feedback or a pre-defined
one if feedback loop is not possible. Besides,
designing a good reward function and a realistic
user simulator is not easy as it typically requires
strong domain knowledge, which is similar to
the problem that rule-base methods meet. Peng
et al. (2018a) propose to utilize adversarial loss
as an extra critic in addition to the main reward
function based on task completion. Inspired by the
success of adversarial training in other NLP tasks,
Liu and Lane (2018) propose to learn dialogue
rewards directly from dialogue samples, where a
dialogue agent and a dialogue discriminator are
trained jointly. Following the success of inverse
reinforcement learning (IRL) in different domains,
Takanobu et al. (2019) employ adversarial IRL
to train the dialogue agent. They replace the
discriminator in GAIL (Ho and Ermon, 2016)
with a reward function with a specific architecture.
The learned reward function can provide a stable
reward signal and adversarial training can benefit
from high quality feedback.

Compared to existing RL based methods, we pro-
pose strategy that can eliminate designing a user
simulator and sensitive parameter-tuning process
while bringing a significant performance improve-
ment with respect to a number of metrics. The
absence of user simulators involved will largely
reduce the required domain knowledge and su-
pervised learning can lead to robust agent perfor-
mance.

3 Multi-Domain Dialogue Agent

Dialogue State Tracker (DST) In a standard TDS
pipeline, the rule-based DST is deployed to keep
track of information emerging in interactions be-
tween users and the dialogue agent. The output
from the Natural Language Understanding (NLU)
module is fed to the DST to extract information, in-
cluding informable slots about the constraints from
users and requestable slots that indicate what users
inquire about. In our setup, the dialogue agents and
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Figure 1: Architecture to approximate a dialogue pol-
icy with an action decoder2.
user-simulators are interacting through predefined
dialogue actions therefore no NLU is involved. Be-
sides, a belief vector is maintained and updated for
each slot in every domain.
Dialogue state We formulate a structured state rep-
resentation st according to the information result-
ing from the DST at time step t. There are 4 main
types of information in the final representation:
(1) corresponding to the embedded results of re-
turned entities for a query, (2) the last user action,
(3) the last system action, and (4) the belief state
from the rule-based state tracker. The final state
representation s is a vector of 553 bits.
Dialogue action We regard the dialogue response
problem as a multi-label prediction task, where in
the same dialogue turn, several atomic dialogue
actions can be covered and combined at the same
moment. In the action space, each action is a con-
catenation of domain name, action type and slot
name, e.g. ‘attraction-inform-address’, which we
call an atomic action1. Lee et al. (2019) proposes
that the action space covers both the atomic action
space and the top-k most frequent atomic action
combinations in the dataset and then the dialogue
PL task can be regarded as a single label classifi-
cation task. However, the expressive power of the
dialogue agent is limited and it is beneficial if the
agent can learn the action structure from the data
and this could lead to more flexible and powerful
system responses.

4 Dialogue Policy Learning (PL)

4.1 PL as a sequential decision process

Different atomic dialogue actions contained in the
same response are usually related to each other.
To fully make use of information contained in co-
occurrence dependencies, we decompose the multi-
label classification task in dialogue PL as follows.
Assuming the system response consists of two
atomic actions, ‘hotel-inform-address’ and ‘hotel-

1there are 166 atomic actions in total in the action space

inform-phone’, the model takes the dialogue state
as input and predict the atomic actions sequentially.
The path could be described as either ‘hotel-inform-
address’→ ‘hotel-inform-phone’ or ‘hotel-inform-
phone’→ ‘hotel-inform-address’. Before the train-
ing stage, the relative order of all the atomic actions
will be predefined and fixed. Following this solu-
tion, we apply a GRU-based (Cho et al., 2014)
decoder to model the conditional dependency be-
tween the actions in one single turn as shown in
Figure 1.

The proposed model first extracts state features
vs by feeding the raw state input s to an Multilayer
Perceptron (MLP). In the next state, the state rep-
resentation vs will be used as the initial hidden
state h0 of action decoder GRU . To avoid informa-
tion loss during decoding, the input to the action
decoder is:

inputt = embedding(at−1)⊕ vs. (1)

The starting input input0 is the concatenation of
starting action SOA and state representation vs.
at−1 denotes the dialogue action in the prediction
path at time step t − 1 and embedding(a) returns
the action embedding of the given action a. In the
next steps, actions will be generated consecutively
according to:

ot, ht = GRU(inputt, ht−1), (2)

where ot is the output of the action decoder. We use
cross-entropy to train the action decoder together
with the MLP for feature extracting. We use beam-
search to find the most appropriate action path.

4.2 PL with adversarial learning
Next, we introduce an adversarial learning solu-
tion, DiaAdv, to train the dialogue policy without
a user simulator along with a dialogue discrimina-
tor. Feedback from the discriminator is used as a
reward signal to push the policy model to interact
with users in a way that is indistinguishable from
how a human agent completes the task. However,
since the output of the dialogue policy is a set of
discrete dialogue actions, it is difficult to pass the
gradient update from the discriminator to the pol-
icy model. To cross this barrier, we propose to
utilize the Gumbel-Softmax function (Jang et al.,
2016) to link the discriminator to the generator.
Next, we will give a brief introduction about the
dialogue policy model and the dialogue discrimina-
tor. Afterwards, we will show how we can utilize
Gumbel-Softmax to backpropagate the gradient.
Dialogue policy To generate dialogue actions, we
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employ an MLP as the action generator Gensa
followed by a set of Gumbel-Softmax functions,
where each function corresponds to a specific ac-
tion in the atomic action space (Figure 2) and the
output of each function has two dimensions. We
first introduce how it works when there is only one
Gumbel-Softmax function in the setting and then
extend it to multiple function. The Gumbel-Max
trick (Gumbel, 1954) is commonly used to draw
samples u from a categorical distribution with class
probabilities p. The process of Genθ can be formu-
lated as follows:

p = MLP(s) (3)

u = one hot(argmax
i

[gi + log pi]), (4)

where gi is independently sampled from Gumbel
(0,1). However, the argmax operation is not differ-
entiable, thus no gradient can be backpropagated
through u. Instead, we can employ the soft-argmax
approximation (Jang et al., 2016) as a continuous
and differentiable approximation to argmax and
to generate k-dimensional sample vectors below:

yi =
exp((log(pi) + gi)/τ)∑k
j=1 exp((log(pj) + gj)/τ)

(5)

for i = 1, . . . , k. In practice, τ should be se-
lected to balance the approximation bias and the
magnitude of gradient variance. In our case, p
corresponds to the dialogue action status distri-
bution p(ail|s) where l ∈ {0, . . . , k − 1} and
i ∈ {1, . . . ,m}. In our setting, k is set to 2 and
each dimension denotes one specific action status,
which could be 1 if selected or 0 if not selected. m
is set to the size of in the action space – 166. By
taking into account the multiple actions, we rewrite
the sampled vector y as yil where l and i denote
the corresponding dialogue action status and the
ith atomic action in the action space respectively.
The final combined action is:3

afake = y10 ⊕ y11 ⊕ . . .⊕ y1660 ⊕ y1661 . (6)

Next, the generated action afake is fed to the re-
ward model Dω along with the corresponding state
s. The dialogue policy Genθ aims to get a higher
reward signal from the discriminator D; the train-
ing loss function for the generator Genθ is:

LG(θ) = −Es,afake∼Gen(Dω(s, afake)) (7)

Dialogue reward As to the dialogue discrimina-
tor, we build a reward model Dω that takes as
input the state-action pair (s, a) and outputs the
reward D(s, a). Instead of using a discriminator to

3Dim(afake) = 166 ∗ 2.
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Figure 2: Architecture to approximate the dialogue pol-
icy with adversarial learning. The dialogue policy di-
alogue discriminator is linked to the dialogue policy
through a set of Gumbel-Softmax functions4.

predict the probability of a generated state-action
pair as being real or fake, inspired by Wasserstein
GANs (Arjovsky et al., 2017), we replace the dis-
criminator model with a reward model that scores
a given pair (s, a). Since the reward model’s goal
assigns a higher reward to the real data and a lower
value to fake data, the objective can be given as the
average reward it assigns to the correct classifica-
tion. Given an equal mixture of real data samples
and generated samples from the dialogue policy
Genθ, the loss function for the reward model Dω

is:

LD(ω) =− Es,afake∼Genθ(Dω(s, afake)) (8)

+ Es,a∼data(Dω(s, a))). (9)

During training, the policy network and the reward
model are be updated alternatively.

4.3 PL as multi-label classification with dense
layers

We introduced DiaAdv, which can bridge the policy
network and the reward model together utilizing
Gumbel-Softmax functions. A by-product of this
framework is the policy network with dense layers
and a set of Gumbel-Softmax functions. If we dis-
card the Gumbel-Softmax functions but keep the
dense layers, we obtain a new model, DiaMulti-
Dense, to solve the multi-label classification prob-
lem. Each dense layer corresponds to a specific di-
alogue action and the output of the dense layer has
two dimensions denoting the two possible values
for action status, selected and not selected. We ex-
pect the dense layers can extract informative infor-
mation particularly for their corresponding actions
and discard noisy information. During inference,
the two possible values for the status of an action
will be compared and the higher one will be the la-
bel for the current dialogue action. DiaMultiDense
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can be regarded as a simple but efficient state de-
noising method for dialogue PL with multi-label
classification.

5 Experimental Setup

MultiWOZ Datasset (Budzianowski et al., 2018)
is a multi-domain dialogue dataset with 7 distinct
domains5, and 10, 438 dialogues. The main used
scenario is a dialogue agent is trying to satisfy the
tourists’ demands such as booking a restaurant or
recommending a hotel with specific requirements.
Each dialogue trajectory is decomposed into a set
of state-action pairs with the same TDS that is used
for training. In total, we have 56, 700 dialogue
state-action pairs in the training set, with 7, 300 in
the validation set, and 7, 300 in the test set.

Baselines Three types of baselines are explored:
(B1): Supervised Learning, where the dialogue
action selection task is regarded as a multi-label
classification problem.
(B2): Reinforcement Learning (RL), where the re-
ward function is handcrafted and defined as follows:
at the end of a dialogue, if the dialogue agent ac-
complishes the task within T turns, it will receive
T ∗2 as a reward; otherwise, it will receive−T as a
penalty. T is the maximum number of turns in each
dialogue; we set it to 40 in all experiments. Further-
more, the dialogue agent will receive −1 as an in-
termediate reward during the dialogue to encourage
shorter interactions. In our experiments, we used
three methods, including: GP-MBCM (Gašić et al.,
2015), ACER (Wang et al., 2016), PPO (Schulman
et al., 2017).
(B3): Adversarial learning, where dialogue agent
is trained with a user simulator, we conduct com-
parisons with two methods: GAIL (Ho and Er-
mon, 2016) and GDPL (Takanobu et al., 2019).
The dialogue agents in GAIL and GDPL are both
PPO agents while these two methods have differ-
ent reward models. We report the performance of
ALDM (Liu and Lane, 2018) for completeness.

5.1 Training setup

DiaSeq With respect to DiaSeq, we use a two-layer
MLP to extract features from the raw state repre-
sentation. First, we sort the action order according
to the action frequency in the training set. All ac-
tion combinations in the dataset will be transferred

5Attraction, Hospital, Police, Hotel, Restaurant, Taxi,
Train

to an action path based on the action order. Three
special actions – PAD, SOA, EOA, corresponding to
padding, start of action decoding and end of action
decoding – are added to the action space for action
decoder training. We use beam search to predict
the action combinations and beam size is set to 6.
The action embedding size is set to 30; the hidden
size of the GRU is 50.
DiaAdv For the policy network of DiaAdv, a two-
layer MLP is used to extract state features fol-
lowed by 166 dense layers and Gumbel-Softmax
functions consecutively. To sample a discrete ac-
tion representation, we implemented the “Straight-
Through” Gumbel-Softmax Estimator (Jang et al.,
2016); the temperature τ for each function is set to
0.005. As to the discriminator, a three-layer MLP
takes as input the concatenation of dialogue state
and action, and outputs a real value as the reward
for the state-action pair.
DiaMultiDense We reuse the policy network from
DiaAdv except the Gumbel-Softmax functions.
GDPL (Takanobu et al., 2019) is reused. The
policy network and value network are three-layer
MLPs.
PPO The policy network in PPO shares the same
architecture as GDPL. The difference is that the
reward model is replaced with a handcrafted one.
GAIL GAIL shares the same policy network as
GDPL. The discriminator is a two-layer MLP tak-
ing as input the state-action pair.
DiaMultiClass The policy network is a three-layer
MLP and trained with cross entropy. It has the
same architecture as the policy network in GDPL.
We reuse the reported performance of GP-MBCM,
ACER, and ALDM from (Takanobu et al., 2019)
since we share the same TDS and user simulator.
The methods based on RL or adversarial learning
are pre-trained with real human dialogues6.

5.2 Evaluation metrics

Before a conversation starts, a user goal will
be randomly sampled. The sampled user goal
mainly contain two parts of information. The
first part is about the constraints of differ-
ent domain slots or booking requirements, e.g.

‘restaurant-inform-food’=‘Thai’, ‘restaurant-infor-
area’=‘east’, ‘restaurant-book-people’=4 which
means the user wants to book a table for 4 per-
sons to have Thai food in the east area. The in-

6The code of our work: https://github.com/
cszmli/Rethink-RL-Sup

https://github.com/cszmli/Rethink-RL-Sup
https://github.com/cszmli/Rethink-RL-Sup
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Dialogue agent Turn Match Rec F1 Success rate

GP-MBCM 2.99 0.44 – 0.19 28.9
ACER 10.49 0.62 – 0.78 50.8
PPO (human) 15.56 0.60 0.72 0.77 57.4
ALDM 12.47 0.69 – 0.81 61.2
GDPL 7.80 0.81 0.89 0.87 81.7
GAIL 7.96 0.81 0.87 0.86 80.5

DiaMultiClass 12.66 0.58 0.71 0.79 57.2

DiaMultiDense 9.33 0.85 0.94 0.87 86.3∗

DiaSeq 9.03 0.81 0.88 0.85 81.6
DiaAdv 8.80 0.85 0.94 0.85 87.4∗

Table 1: The performance of different dialogue agents,
which is calculated based on the average results by run-
ning each method 5 times. * indicates statistically sig-
nificant improvements (p < 0.005) using a paired t-test
over the GDPL success rate and the proposed methods.

formation contained in the second part is about
the slot values that the user is looking for, such as
restaurant-request-phone=?, ‘restaurant-request-
address’=?, which means the user wants to know
the phone and address of the recommended restau-
rant. We use Match, Recall, F1 score to check if all
the slot constraints and requested slot information
have been satisfied. F1 score evaluates whether all
the requested information has been provided while
Match evaluates whether the booked entities match
the indicated constraints. We use Average Turn and
Success rate to evaluate the efficiency and level of
task completion of dialogue agents. If an agent has
provided all the requested information and made a
booking according to the requirements, the agent
completes the task successfully.

6 Results and Discussion

6.1 Performance of different dialogue agents
Tab. 1 shows the performance of different dialogue
agents. With respect to success rate, DiaAdv man-
ages to achieve the highest performance by 6%
compared to the second highest method GDPL.
However, DiaAdv is not able to beat GDPL in terms
of average turns. A possible reason is that GDPL
can generate more informative and denser dialogue
action combinations. With a user simulator in the
training loop, the dialogue agent can explore more
unseen dialogue states in the dataset. Furthermore,
the same user simulator will be used to test the dia-
logue agent and the dialogue agent will definitely
benefit from what he has explored in the training
stage. However, more informative and denser re-
sponses will not guarantee all the users’ require-
ments will be satisfied and this will lead to a lower
Match score as shown in Tab. 1.

As to DiaSeq, it can achieve almost the same

Dialogue agent DiaSeq DiaMultiClass DiaMultiDense

#Parameters 251,000 184,000 133,000

Table 2: Total number of parameters for supervised
learning models.

performance as GDPL from different perspectives
while GDPL has a slightly higher F1 score. How-
ever, the potential cost benefits of DiaSeq are huge
since it does not require a user simulator in the train-
ing loop. The training of DiaSeq is well-understood
and we can get rid of tuning the sensitive parame-
ters in RL and Adversarial Learning. To sum up,
DiaSeq is far more cost-efficient solution.

Another supervised learning method, DiaMulti-
Dense achieves remarkable performance with re-
spect to different metrics. Compared to the tra-
ditional solution DiaMultiClass, joining of dense
layers as in DiaMultiDense brings a huge perfor-
mance gain; it manages to beat DiaMultiClass on
all the metrics. And it achieves higher F1 score
than DiaAdv. Since the only difference between
DiaMultiDense and DiaMultiClass is that we re-
place the last layer of DiaMultiClass with a stack
of dense layers, the change in the number of param-
eters may lead to the performance gap. We report
the number of parameters of three supervised learn-
ing methods in Tab. 2. DiaMultiDense achieves
the highest performance among these three meth-
ods while using the fewest parameters. We believe
the dense layers have been trained to filter noisy
information from the previous module and the fi-
nal classification can benefit from the high-quality
information flow.

6.2 User experience evaluation
Automatic metrics can only capture part of the per-
formance difference between different dialogue
agents. For example, we use success rate to re-
flect the level of task completion and use turn num-
ber to represent the efficiency of dialogue agents.
However, the final goal of a TDS is to assist real
users to complete tasks. To fully evaluate system
performance while interacting with real users, we
launch an evaluation task on Amazon Mturk to
rate the user experience with the proposed dialogue
systems. For each evaluation task, we will first
present an Mturk worker with a randomly sampled
user goal, which contains the constraints about spe-
cific domain slots and some slot information that
the user is looking for. In the next step, accord-
ing to the sampled goal, two generated dialogues
from two different dialogue agents are shown to
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Dataset
Agent DiaMultiClass DiaSeq DiaMultiDense GDPL DiaAdv

Turn Success rate Turn Success rate Turn Success rate Turn Success rate Turn Success rate

MultiWOZ (0.1) 17.14 31.7 10.77 70.4 18.36 27.0 9.21 21.2 16.80 37.2
MultiWOZ (0.4) 12.56 59.0 9.99 75.5 10.76 79.4 8.49 68.0 9.90 81.6
MultiWOZ (0.7) 13.1 53.6 9.35 77.2 10.02 85.1 8.10 73.3 9.30 87.0

Table 3: The performance of different dialogue agents with different amounts of expert dialogues. We only report
Average Turn and Success rate here due to limited space.

Dialogue pair Win Loose Tie

DiaMultiDense vs. GDPL 42 50 8
DiaSeq vs. GDPL 50 44 6
DiaAdv vs. GDPL 39 51 10

Table 4: Human evaluation results.

the worker. The worker needs to pick up the dia-
logue agent that provides a better user experience.
Different factors will be taken into account, such
as response quality, response naturalness, how sim-
ilar it is compared to a real human assistant. If
the worker thinks two dialogue agents perform
equally good/bad or it’s hard to distinguish which
one is better, the option ‘Neutral’ can be selected.
Four dialogue agents are evaluated: GDPL, DiaSeq,
DiaMultiDense and DiaAdv, and there are three
comparison pairs DiaMultiDense-GDPL, DiaSeq-
GDPL, DiaAdv-GDPL since GDPL is regarded as
the SOTA method. Each comparison pair has 100
dialogue goals sampled and 200 corresponding dia-
logues from two different dialogue agents. All the
dialogue actions in the dialogue turns are translated
into human readable utterances with the language
generation module from ConvLab (Lee et al., 2019).
Each dialogue pair is annotated by three Mturk
workers. The final results are shown in Tab. 4.

The method DiaAdv can be regarded as an ex-
tension of DiaMultiDense by adding a classifier to
provide a stronger training signal. According to
the results from Section 6.1, these two methods do
improve the success rate of dialogue agents. How-
ever, as shown in Tab. 4, while the success rate
improves, the user experience degrades. Accord-
ing to Tab. 1, GDPL and DiaAdv have similar F1
scores but the DiaAdv has a higher Recall value;
this means that DiaAdv achieves a lower Precision.
The unnecessary information mixed in the system
response annoys users and results in a lower user
experience. Given the relatively large difference
in terms of success rate, the trade-off between suc-
cess rate and user experience should be carefully
examined. From another perspective, it is under-
standable that GDPL can provide a better user ex-
perience because a pre-designed user simulator is
involved and the discriminator will encounter more

diverse state-action combinations that are not seen
in the training data. In contrast, the discriminator
in DiaAdv only has access to the training data and
this limits its judging ability. This does not imply
that having a user simulator in the loop is essential
to provide high quality user experience: DiaSeq,
which is a completely supervised learning method,
outperforms GDPL.

6.3 Discussion

How many expert dialogues are enough to train
a dialogue agent with supervised learning? One
motivation for dropping supervised learning and
employing RL methods in TDS is that building
high-quality conversational datasets is expensive
and time-consuming. In contrast, training dialogue
agents with a user-simulator is cheaper and afford-
able in many cases. Since we have no control on
how much domain knowledge should be involved
to build a user-simulator, we are not able to mea-
sure the expense of a reliable user-simulator. How-
ever, we can conduct an experiment to show how
many real human dialogues are required to train a
high-quality dialogue agent.

Based on the original MultiWoZ dataset, we
build three smaller subsets: MultiWoZ(0.1), Mul-
tiWoZ(0.4), MultiWoZ(0.7) by only keeping 10%,
40%, and 70% dialogue pairs from the original
dataset, respectively. We retrain DiaMultiClass,
GDPL, DiaAdv, DiaMultiDense, DiaSeq and re-
port the performance in Tab. 3. With respect to
supervised learning agents, with only 10% expert
dialogue pairs, DiaMultiClass gets half the suc-
cess rate compared to the original performance
(Tab. 1). By adding 30% more dialogue pairs to the
training set, DiaMultiClass can achieve the same
performance 59% with the original success rate
57.2%. Beyond this, DiaMultiClass does not bene-
fit from the increase in expert dialogues and starts
to fluctuate between 55% and 59%. In contrast, Di-
aSeq can achieve higher performance when there
are only 10% expert dialogue pairs and the suc-
cess rate increases with the number of available
expert dialogues. DiaMultiDense achieves the best
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performance with the same amount of expert dia-
logues compared to the other two supervised learn-
ing methods. The performance difference among
the three supervised learning methods shows that
the method itself is the main factor to influence the
performance rather than the number of available
expert dialogues in the given dialogue environment.
To some extent, traditional DiaMultiClass does not
exert the potential of a given dataset to the fullest
in dialogue PL.
Can adversarial learning eliminate expert dia-
logues? As can be concluded from Tab. 3, GDPL
and DiaAdv managed to improve the performance
with the increasing number of expert dialogues.
GDPL and DiaAdv have the reward models that are
supposed to distinguish real dialogue pairs from
the machine-generated ones. By observing more
expert dialogues, the reward model can provide a
dialogue policy with more reliable and consistent
updating signals. Figure 3 shows the success rate
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Figure 3: The performance gain between the pre-
trained and their corresponding adversarial learning
models with different amounts of expert dialogues.

gain by applying adversarial learning methods to
the corresponding pre-trained models 7. When the
success rates of DiaMultiClass with MultiWoZ(0.4)
and MultiWoZ(1.0) are both around 60%, deploy-
ing GDPL manages to bring 10% performance gain.
The performance difference can be caused by the
improved quality of the reward model. Conversely,
if the reward model has no access to sufficient
amount of expert behaviors, it has little clue how
the expert dialogues should look like. This can
lead to poor reward signals for the policy network.
We can see it in the case of GDPL that the success
rate drops to 21% while the pre-trained model can
achieve 31% success rate on MultiWoZ(0.1). The
performance gain between DiaMultiDense and Di-
aAdv is not so remarkable with respect to success
rate compared to the gain between DiaMultiClass

7DiaAdv is the adversarial extension of DiaMultiDense
while GDPL is the adversarial extension of DiaMultiClass.

and DiaAdv. However, DiaAdv does help to reduce
the dialogue turns while improving the success rate
as shown in Tab. 3. We can regard DiaAdv as a
promising method to fine-tune the DiaMultiDense
to explore more potential dialogue states.
How sensitive are adversarial learning to pre-
trained dialogue policy? We explore how pre-
trained dialogue policies affect the final perfor-
mance of adversarial learning based dialogue
agents. We first use supervised learning to pre-train
the dialogue policies of GDPL and DiaAdv respec-
tively with different training epochs. As shown in
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Figure 4: The performance gain between the pre-
trained and their corresponding adversarial learning
models with different amounts of pre-taining epochs.

Figure 4, the performance gain between the pre-
trained dialogue policy and the corresponding ad-
versarial are limited. With respect to GDPL, it
even degenerates the original performance of the
pre-trained policy when the starting points are rela-
tively low. In other words, the main contributions
to the adversarial dialogue agents come from the
supervised learning stage; it is challenging for the
dialogue agents to achieve the same performance
without a promising pre-trained dialogue policy.

7 Conclusion

In this work, we proposed two supervised learning
approaches and one adversarial learning method to
train the dialogue policy for TDSs without building
user simulators. The proposed methods can achieve
state-of-the-art performance suggested by existing
approaches based on Reinforcement Learning (RL)
and adversarial learning. However, we have demon-
strated that our methods require fewer training ef-
forts, namely the domain knowledge needed to de-
sign a user simulator and the intractable parameter
tuning for RL or adversarial learning. Our find-
ings have questioned if the full potential of super-
vised learning for dialogue Policy Learning (PL)
has been exerted and if RL methods have been used
in the appropriate TDS scenarios.
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