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Abstract

Unsupervised domain adaptation addresses the
problem of leveraging labeled data in a source
domain to learn a well-performing model in a
target domain where labels are unavailable. In
this paper, we improve upon a recent theoreti-
cal work (Zhang et al., 2019b) and adopt the
Margin Disparity Discrepancy (MDD) unsu-
pervised domain adaptation algorithm to solve
the cross-lingual text labeling problems. Ex-
periments on cross-lingual document classifi-
cation and NER demonstrate the proposed do-
main adaptation approach advances the state-
of-the-art results by a large margin. Specif-
ically, we improve MDD by efficiently opti-
mizing the margin loss on the source domain
via Virtual Adversarial Training (VAT). This
bridges the gap between theory and the loss
function used in the original work Zhang et al.
(2019b), and thereby significantly boosts the
performance. Our numerical results also indi-
cate that VAT can remarkably improve the gen-
eralization performance of both domains for
various domain adaptation approaches.

1 Introduction

Unsupervised domain adaptation provides an ap-
pealing solution to many applications where di-
rect access to a massive amount of labeled data is
prohibitive or very costly (Sun and Saenko, 2014;
Vazquez et al., 2013; Stark et al., 2010; Keung
et al., 2019). For example, we often have suffi-
cient labeled data for English, while very limited or
even no labeled data are available for many other
languages. Successfully transferring knowledge
learned from the English domain to other languages
is of great interest in solving many tasks in natural
language processing.

Many recent successes in unsupervised domain
adaptation have been achieved by learning domain
invariant features that are simultaneously being dis-
criminative to the task in the source domain (Chen

et al., 2018; Ganin and Lempitsky, 2014; Ganin
et al., 2016; Tzeng et al., 2017). Following this line,
Keung et al. (2019) propose a language-adversarial
training approach for cross-lingual document clas-
sification and NER. They leverage the benefit of
contextualized word embeddings by using multi-
lingual BERT (Devlin et al., 2019) as the feature
generator, and adopt the GAN framework (Goodfel-
low et al., 2014) to align the features from the two
domains. Keung et al. (2019) show significant im-
provement over the baseline where the pretrained
multilingual BERT is finetuned on the English data
alone and testing on the same tasks in other lan-
guages. However, Keung et al. (2019), as well as
the works mentioned above, are inspired by the
pioneering work of Ben-David et al. (2010), which
only rigorously studies domain adaptation in the
setting of binary classification; there is a lack of
theoretical guarantees when it comes to multiclass
classification.

In this work, we are instead motivated by a recent
work (Zhang et al., 2019b) that focuses on the the-
oretical analysis of unsupervised domain adaption
for multiclass classification and provides explicit
guidance for algorithm design. Instead of training
a discriminator that predicts if the representations
are from the source domain or the target domain
(Keung et al., 2019; Ganin and Lempitsky, 2014;
Ganin et al., 2016), Zhang et al. (2019b) proposes
to optimize an auxiliary classifier which, together
with the classifier, minimizes the discrepancy be-
tween the two domains via adversarial training. We
apply this approach to cross-lingual text labeling
tasks, which, as demonstrated in Section 4, outper-
forms Keung et al. (2019) by a large margin. To the
best of our knowledge, we are the first to apply the
novel theoretical findings of Zhang et al. (2019b)
for unsupervised domain adaptation in NLP.

Another contribution of our work lies in identi-
fying the gap between theory and the actual loss
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(a) Keung et al. (2019). The source features and target features are only input to the discriminator to calculate the
discriminator loss and the generator loss. For the classification loss, mean pooling is not applied to NER.

(b) Regularized MDD. In MDD, the features from the two domains are input to both the classifier and the auxiliary
classifier to estimate the domain discrepancy. We improve MDD by effectively optimizing the classification margin
loss of the source domain via local consistency regularization, which bridges the gap between theory and the loss
function used in the original work Zhang et al. (2019b). Mean pooling is not applied to NER.

Figure 1: Regularized MDD vs. Keung et al. (2019).

function being used in Zhang et al. (2019b). Specif-
ically, Zhang et al. (2019b) use the cross-entropy
loss as a proxy to optimize the classification mar-
gin loss on the source domain, whereas the cross-
entropy loss often leads to poor margins (Liu et al.,
2016; Elsayed et al., 2018). To tackle this problem,
we augment the cross-entropy loss with Virtual Ad-
versarial Training (VAT) (Miyato et al., 2018). As
shown in Zhang et al. (2019a), the local consistency
regularization introduced by VAT is capable of pro-
moting large classification margin by optimizing
the classification boundary error. This is further
demonstrated in Section 4 that the incorporation of
VAT leads to remarkable improvement over Zhang
et al. (2019b).

Although the pretrained language models (De-
vlin et al., 2019; Peters et al., 2018; Radford et al.,
2019) have provided a good foundation for many
downstream tasks, to leverage them for unsuper-
vised domain adaptation, we need to tackle the
potential overfitting problem, especially when we
only have limited labeled data in the source do-
main but can require many training iterations to
minimize the domain discrepancy. As shown in
Section 4, VAT can efficiently prevent overfitting
in the source domain, and hence significantly im-
prove the generalization in the target domain. This
matches the theoretical insights (Ben-David et al.,
2010; Zhang et al., 2019b) that the generalization of
the target domain can be boosted as a consequence
of the improvement in the source domain.

2 Related Work

Inspired by a pioneering work (Ben-David et al.,
2010), there has been a surge of interest in learning
domain invariant representations (Ganin and Lem-
pitsky, 2014; Ganin et al., 2016; Keung et al., 2019;
Chen et al., 2018; Tzeng et al., 2017) for unsuper-
vised domain adaptation. At a high level, these
methods leverage deep neural networks (DNNs)
to learn rich representations, and adopt adversar-
ial training (Goodfellow et al., 2014) to promote
the emergence of domain invariant representations
that are simultaneously being discriminative to the
predictor learned in the source domain.

In the mostly related work, Keung et al. (2019)
apply such strategy to multilingual document clas-
sification and NER, see Figure 1a. Although Ke-
ung et al. (2019) have achieved remarkable im-
provements over the baseline, the underlying the-
ory (Ben-David et al., 2010) is only applicable to
binary classification with restrictive 0-1 loss. There
is a lack of theoretical understanding of Keung et al.
(2019) when it comes to multiclass classification
with more general loss functions.

In a recent theory work, Zhang et al. (2019b) ex-
tend the previous theories to the multiclass classifi-
cation setting. Instead of training an additional dis-
criminator, Zhang et al. (2019b) proposes to train
an auxiliary classifier that shares the same struc-
ture as the classifier. The discrepancy between the
two domains is optimized by playing the minimax
game between the two classifiers. As illustrated
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in Figure 1b, we improve upon this new strategy
to address two cross-lingual classification tasks,
where the pretrained multilingual BERT is used
as the feature generator followed by two identical
classifiers with different parameters. Numerical
results in Section 4 demonstrate that our proposed
approach outperforms both Keung et al. (2019) and
Zhang et al. (2019b) by a large margin.

Another line of relevant work is the consistency
regularization technique used to force the model
output to remain unchanged under input perturba-
tions. As observed in the literature, it can pro-
mote large classification margin and significantly
improve the performance in semi-supervised learn-
ing (Bachman et al., 2014; Miyato et al., 2018;
Laine and Aila, 2016; Xie et al., 2019; Berthelot
et al., 2019). To effectively optimize the classifica-
tion margin loss proposed by Zhang et al. (2019b),
we augment its original objective with virtual ad-
versarial training (Miyato et al., 2018). By doing
so, we bridge the gap between the theory and the
loss function used in Zhang et al. (2019b), which
in turn yields remarkable improvement on the gen-
eralization performance of both domains.

3 Model

We formalize the unsupervised domain adaptation
as follows. Let X ∈ Rd and Y = {1, . . . ,K}
denote the input and output space of the model,
respectively. We consider two domains S, T ∈
X × Y , which are referred to as the source domain
and the target domain correspondingly. Our ulti-
mate goal is to learn a well-performing classifier on
the target domain, while labels are only available
for the source domain.

Let ψ : Rd → Rh denote the feature extractor,
which we use to transform the minimization of the
domain discrepancy from the data space to the rep-
resentation space. Let f, f ′ : Rh → RK denote
the scoring functions associated with the classi-
fier and the auxiliary classifier, respectively. Note
that, for a scoring function, e.g., f , the outputs of
each dimension indicate the prediction confidence.
Hence, given an input example x, the prediction is
followed as:

ŷ = argmax
k∈Y

f(ψ(x)) . (1)

Let σ denote the softmax function, i.e.,

σj(z) =
ezj∑K
i=1 e

zi
, z ∈ RK and j ∈ Y. (2)

Following Zhang et al. (2019b), we choose the
standard cross-entropy loss for the classification
task in the source domain,

LS := Ex,y∼S [− log [σy (f(ψ(x)))]] . (3)

On par with the classification loss, we need to op-
timize the domain discrepancy between the two
domains. Before that, we first introduce the mea-
surements we used to quantify the discrepancy be-
tween f ′ and f on each domain. Let ŷs, ŷt denote
the predictions given by the classifier f (see Equa-
tion (1)), then

DS(f ′, f) := Exs∼S
[
− log

[
σŷs
(
f ′(ψ(xs))

)]]
DT (f ′, f) := Ext∼T

[
log
[
1− σŷt

(
f ′(ψ(xt))

)]]
As we can see, both DS(f ′, f) and DT (f ′, f) are
increasing functions of the difference between the
auxiliary classifier f ′ and the classifier f , i.e., they
both increase when the output of f ′ at the class
predicted by f has lower confidence. Following
Zhang et al. (2019b), the domain discrepancy is
then approximated as,

max
f ′

[
DT (f ′, f)− γDS(f ′, f)

]
, γ > 1 (4)

In other words, given a specific classifier f , the
domain discrepancy is induced by f ′ as the maxi-
mal difference between the disparities of f and f ′

on the two domains. Here γ is proposed by Zhang
et al. (2019b) to promote convergence of the opti-
mization of the domain discrepancy. Given γ > 1
and no restrictions on f ′, Zhang et al. (2019b)
prove that the global minimum of the discrepancy
defined in (4) is achieved when ψ(S) = ψ(T ).

Intuitively, solving the inner maximization re-
quires finding a f ′ that can maximally differ from
f on the target domain while staying close to f
on the source domain. Minimizing the domain dis-
crepancy naturally induces minimax optimization.
The main objective thereby can be formulated as,

min
f,ψ

[
LS +max

f ′

[
DT (f ′, f)− γDS(f ′, f)

]]
.

(5)

3.1 Promoting better generalization by VAT
The objective function (5) is identical to the loss
function proposed in Zhang et al. (2019b), which,
as demonstrated in Section 4, outperforms Keung
et al. (2019) by a large margin. However, there are
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Algorithm 1 MDD for multilingual document classification.

1: Input: pretrained BERT model ψ, classifier f , auxiliary classifier f ′, and the associated learning
rates ηψ, ηc, ηf ′ . Let θψ, θf , θf ′ denote the parameters of different components and γ be the chosen
hyperparameter value in (8). We use batch size of 1 for the purpose of illustration.

2: while not converged do
3: Solve inner maximization:
4: xs ← BatchIterator(S), xt ← BatchIterator(T )
5: hs = MeanPool(ψ(xs)), ht = MeanPool(ψ(xt))
6: ŷs = argmaxk f(hs), ŷt = argmaxk f(ht)
7: D̂S = − log[σŷS (f ′(hs)], D̂T = log[1− σŷT (f ′(ht)]

8: θf ′ += ηf ′∇θf ′ (D̂T − γD̂S)
9: Solve outer minimization:

10: Repeat steps 4 to 7
11: freeze f ′ and update θψ −= ηψ∇θψ(D̂T − γD̂S)
12: Solve the classification task
13: xs, ys ← BatchIterator(S)
14: hs = MeanPool(ψ(xs))
15: L̂S = − log[σys (f(hs)]

16: (θf , θψ) −= ηc∇θψ ,θf L̂S
17: if use VAT then
18: (θf , θψ) −= ηc∇θψ ,θf R̂eS
19: end while

Figure 2: Illustration of the regularization effect of
VAT. We apply MDD to solve the cross-lingual docu-
ment classification problem on MLDoc (Schwenk and
Li, 2018). The English corpus is the source domain,
and the Italian corpus is the target domain. In each
plot, the results are summarized over 4 runs with the
solid lines representing the means, and the shaded re-
gions indicating the 75% confidence intervals. The red
lines indicate when only MDD is applied, and the blue
lines represent the results when VAT is used as well.

still two hurdles we need to cross. Firstly, Zhang
et al. (2019b) use the cross-entropy loss, i.e., (3),

as a proxy to optimize the classification margin
loss on the source domain, which results in a gap
between its theoretical results and the loss function
being used, especially given that the cross-entropy
loss often leads to poor margins (Liu et al., 2016;
Elsayed et al., 2018). Secondly, we follow the lit-
erature by using a pretrained language model as
the feature generator, which provides a good ini-
tialization for unsupervised domain adaptation.
However, we need to consider the potential overfit-
ting problem, since we usually have limited labels
in the source domain, while requiring many train-
ing iterations to optimize domain discrepancy via
adversarial training. Therefore, the model can over-
fit to the source domain training data during the
training process.

To remedy these two issues, we propose regu-
larizing the source domain classification task via
Virtual Adversarial Training (VAT) (Miyato et al.,
2018), which is defined as the following,

RS (6)

:= max
δ;‖δ‖≤ε

KL [σ(f(ψ(xs)))‖σ(f(ψ(xs + δ)))] .

This term regularizes the predictions being con-
sistent within the ε norm ball of each input. As
indicated in Zhang et al. (2019a), the local consis-
tency regularization described in (6) can effectively
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promote large margin by optimizing the classifica-
tion boundary error. As demonstrated in Miyato
et al. (2018), the maximization in (6) can be well
approximated by a pair of forward- and backward-
propagations.

Note that, the input is discrete for the language
data, hence we apply VAT to the embedding space
and consider the following,

ReS (7)

:= max
δ;‖δ‖≤ε

KL [σ(f(ψ(e[xs])))‖σ(f(ψ(e[xs] + δ)))]

We use e[xs] to denote the embedding of the dis-
crete input xs. In summary, our main objective
followed as

min
f,ψ

(
E(x,y)∼SLS + Ex∼SReS (8)

+max
f ′

[Ex∼T DT − γEx∼SDS ]
)

As illustrated in Figure 2, by imposing the lo-
cal consistency regularization on each data point
during training, VAT can remarkably improve the
generalization of both domains. This improvement
can be explained by the theoretical insights given
by Ben-David et al. (2010); Zhang et al. (2019b),
which state that the generalization error of the tar-
get domain can be upper bounded by the summa-
tion of the source error, the domain discrepancy,
and a constant value. Therefore, the generalization
of the target domain is improved by using VAT to
boost the generalization of the source domain.

3.2 Optimization
The pseudo code of our proposed method can

be found in Algorithm 1. Note that, in the outer
minimization, the domain discrepancy loss is not
differentiable with respect to the parameters of the
classifier, i.e., f . To address this problem, we fol-
low Zhang et al. (2019b) to instead train the feature
exactor ψ to solve the outer minimization of the
domain discrepancy, for which the gradients are
backpropagated through the auxiliary classifier f ′,
i.e., step 11 in Algorithm 1. However, in Zhang
et al. (2019b) the feature extractor ψ is trained
through a gradient reversal layer (Ganin and Lem-
pitsky, 2014), which is often not stable and requires
extra hyperparameter tuning. In contrast, we opti-
mize f ′ and ψ alternately, which we find is more
stable in practice.
4 Numerical Results

We evaluate the performance of the proposed ap-
proach on two different NLP tasks: text classifica-

tion, where we use the MLDoc corpus (Schwenk
and Li, 2018); and named entity recognition, where
we use the CoNLL 2002/2003 NER corpus (Tjong
Kim Sang, 2002; Sang and De Meulder, 2003). We
compare our regularized MDD approach against
both Keung et al. (2019) and the baseline. For the
baseline, we train the model on the English corpus
only, while evaluating on the corpus of the other
languages. We also do an ablation study to demon-
strate VAT can yield remarkable performance boost
for all three approaches evaluated in this section.

We implement all three approaches in PyTorch
(Paszke et al., 2017) with the HuggingFace library
(Wolf et al., 2019). We use the pretrained cased
multilingual BERT (Devlin et al., 2019) as the ini-
tialization for the feature extractor, which is fol-
lowed by a linear classifier of size 768 ×K with
K indicating the number of classes. We train an
additional linear discriminator with size 786 × 2
for Keung et al. (2019), and an auxiliary classi-
fier with the same size of the primary classifier,
i.e., 768 × K, for MDD. We use the Adam opti-
mizer (Kingma and Ba, 2015) with batch size of
24 for all approaches. We use a constant learning
rate ηc =1e-5 for optimizing the classification loss
on the source domain, and use the learning rates
ηψ, ηf ′ and ηd to optimize the feature extractor, the
auxiliary classifier (MDD), and the discriminator
(Keung et al., 2019) correspondingly.

4.1 MLDoc

We first evaluate the performance of our proposed
method on the MLDoc corpus (Schwenk and Li,
2018). For each language in MLDoc, it con-
tains four balanced classes extracted from the
Reuters News RCV1 and RCV2 datasets. Fol-
lowing the same setting of Keung et al. (2019),
we use the labeled english.train.1000 dataset to
optimize the classification loss, while only us-
ing the text portion of english.train.10000 and
target-language.train.10000 to optimize the do-
main discrepancy measured in MDD and Keung
et al. (2019). In this section, we set the perturba-
tion magnitude ε = 0.5 for VAT (see Eq (7)), and
use maximal input length of 80. We set γ = 4,
ηψ =2e-7, ηf ′ =2.5e-4 for MDD, and set ηψ =1e-
7, ηd =2.5e-4 for Keung et al. (2019).

VAT improves the generalization of both do-
mains Table 1 shows that VAT can significantly
boost the generalization performance of the target
domain for all three approaches. As we mentioned
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En De Es Fr It Ja Zh Ru
Baseline 94.3 80.7 71.0 67.6 60.6 70.3 70.8 65.9
Baseline + VAT 95.4 86.1 76.7 70.6 68.8 71.1 78.3 67.3
Keung et al. (2019) - 89.1 76.9 85.2 72.1 75.1 82.9 68.7
Keung et al. (2019) + VAT - 90.8 78.8 86.6 75.9 77.4 86.5 71.9
MDD - 90.6 77.8 87.5 75.6 75.9 85.9 66.7
MDD + VAT - 91.9 87.2 87.9 77.9 77.1 87.5 70.1

Table 1: Classification accuracy of the MLDoc testing data. English is the source domain. We underline the best
results when VAT is not used. As we can see, MDD can outperform Keung et al. (2019) by a large margin on most
target domains, no matter whether VAT is used or not. The reported results are averaged over four runs.

Figure 3: Regularization effect of VAT over different
regularization strengths, i.e., different ε values in Equa-
tion (7). English (En) is the source domain and Italian
(It) is the target domain. The reported testing accuracy
are averaged over 4 runs.

before, one possible explanation is indicated by the
theoretical insights (Ben-David et al., 2010; Zhang
et al., 2019b) that the generalization error of the
target domain can be upper bounded by the sum-
mation of the source error, the domain discrepancy,
and a constant value. Since VAT can effectively
improve the generalization of the source domain
by imposing the local consistency regularization
into the learning objectives, the generalization of
the target domain is boosted as a result.

In Figure 3, we evaluate the effectiveness of VAT
over different regularization strengths. VAT is ca-
pable of enhancing the performance of all three
approaches over a wide range of ε values. On the
other hand, the improvement is diminishing as we
keep increasing the ε values. As shown in Zhang
et al. (2019a), the local consistency regularization
introduced in Eq (6) can effectively promote large
classification margin by optimizing the classifica-
tion boundary error. Thereby, Figure 3 indicates
the trade-off between classification accuracy and
classification margin.

MDD outperforms Keung et al. (2019) In Ta-
ble 1, the comparison between the baseline and

the domain adaption approaches demonstrates the
effectiveness of optimizing domain discrepancy
in successfully transferring knowledge from the
source domain to the target domain. On the other
hand, Table 1 also shows that MDD can outperform
Keung et al. (2019) on most target domains, no mat-
ter whether VAT is used or not. We attributed this to
the fact that MDD is more theoretically validated,
i.e., the underlying theory for MDD directly targets
domain adaptation in multiclass classification with
more general classification loss function. In con-
trast, the underlying theoretical support for Keung
et al. (2019) only applies to binary classification
with the restrict 0-1 loss.

To further compare our regularized MDD ap-
proach against Keung et al. (2019), in Figure 4 we
report the testing accuracy of all seven target do-
mains over different hyperparameter values. As we
can see, the regularized MDD can generally out-
perform Keung et al. (2019) with VAT over a wide
range of hyperparamter values. Moreover, MDD is
comparatively more stable than Keung et al. (2019),
though they both build upon adversarial training
which can cause instability during learning. This
again suggests the advantages of MDD over simply
training a discriminator to predicts if the represen-
tations are from the source domain or the target
domain (Keung et al., 2019).

4.2 NER

In this section, we evaluate the proposed approach
on the CoNLL 2002/2003 NER corpus (Tjong
Kim Sang, 2002; Sang and De Meulder, 2003).
We apply VAT to each input. Given that NER re-
quires token level classification, we need to add
comparatively large perturbation to guarantee suffi-
cient regularization for each token. Hence, we set
ε = 4 for VAT with the maximal input length being
100. We set ηψ =1e-7 for both MDD and Keung
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Figure 4: MDD is more stable than Keung et al. (2019) over different learning rates. For both approaches, we
use VAT with ε = 0.5. For better visualization, we use α, β to indicate the ratios between the learning rates used
for optimizing different components. Specifically, we use β = ηψ/ηc for both approaches; and use α = ηf ′/ηc,
α = ηd/ηc for MDD and Keung et al. (2019), respectively. The results are summarized over 4 runs.

et al. (2019), and set ηf ′ =5e-5 and ηd =5e-5 for
MDD and Keung et al. (2019), respectively.

We summarize the data statistics in Figure 5. As
indicated by the values of y-axes in Figure 5b, this
dataset is highly imbalanced where the “O” label
accounts for more than 80% of the labels of each
domain. We evaluate all approaches using the F1
score, and the results are summarized in Table 2.
Once again, our regularized MDD can generally
achieve the best results on most target domains.
Moreover, without VAT, MDD constantly outper-
forms Keung et al. (2019) on all target domains.

To gain more insights into Table 2, we inves-
tigate the relationship between domain discrep-
ancy and the generalization on the target domain.
In Figure 5a, we plot the statistics of the inputs
and the associated labels. As indicated by Figure
5a (i), regarding the input length, Dutch (Nl) is
most similar to English (En), while Spanish (Es)
shares the least similarity with English. We hy-
pothesize that the comparatively larger similarity
shared by Dutch and English explains why all three
approaches achieve the best F1 score on Dutch in
Table 2. Following this hypothesis, the compara-
tively smaller similarity between Spanish and En-
glish, can also explain why both MDD and Keung
et al. (2019) achieve the least improvement over

the baseline on the target domain. In other words,
the comparatively larger dissimilarity between En-
glish and Spanish makes it hard for both Keung
et al. (2019) and MDD to effectively optimize the
domain discrepancy.

En De Es Nl
Baseline 90.0 69.0 73.0 77.3
Baseline + VAT 90.4 69.9 74.3 78.3
Keung et al. (2019) - 70.7 73.2 78.0
Keung et al. (2019)+VAT - 72.3 74.4 79.3
MDD - 71.6 73.9 78.4
MDD + VAT - 72.1 75.0 79.4

Table 2: F1 scores on the CoNLL2002/2003 testing
data. We underline the best results when VAT is not
used. Again, MDD achieves the best performance on
most target domains. Moreover, without VAT, MDD
outperforms Keung et al. (2019) by a large margin on
all target domains. The results are averaged over 4 runs.

However, Spanish gets a better F1 score than
German (De) does for all three approaches, though
German shares more similarity with English in
terms of the statistics of inputs, as indicated by
Figure 5a. We suspect this is caused by the signif-
icant difference between German and English in
the distribution of labels in the minority group. As
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(a) From left to right (i) length of each input after BERT tokenization, where the mean and the standard deviation of the
input length are En=(21, 13), Nl=(21, 17), De=(28, 16), Es=(44,32) (ii) distribution of the number of the label “O” per
input; and (iii) distribution of the number of the other labels (excluding “O”) per input.

(b) Distribution of the labels in the minority group (excluding label “O”). For the purpose of better visualization, we
exclude label ”O” in each plot, which, as indicated by the values of the y-axes, accounts for more than 80% of the overall
labels of each language.

Figure 5: Data statistics of CoNLL 2002/2003.

shown in Figure 5b, German only has four classes
besides class “O”. In contrast, the other two target
domains spread over all the other eight classes. Fur-
thermore, the four classes of German corresponds
to four comparatively smaller classes in the English
domain.

5 Conclusion

In this paper, we followed the novel theoretical
findings of Zhang et al. (2019b), and applied the
Margin Disparity Discrepancy (MDD) based unsu-
pervised domain adaptation approach to address the
cross-lingual text labeling problems. We demon-
strated that MDD can generally outperform the
current state-of-the-art model (Keung et al., 2019)
by a large margin.

We further improve MDD by identifying the gap
between theory and the actual loss function being
used in the original work (Zhang et al., 2019b). We
resolve the problem by using Virtual Adversarial
Training (VAT) (Miyato et al., 2018), which, as
demonstrated by our numerical results, leads to re-
markable improvement over Zhang et al. (2019b).
We attribute this to the fact that VAT is capable of
promoting large classification margin by optimiz-
ing the classification boundary error Zhang et al.
(2019a). This also explains why VAT can generally

boost the generalization of the source domain for
all three approaches explored in this paper, which
in turn leads to the generalization improvement on
the target domain.

The remarkable improvement achieved by VAT
also motivates us to explore more sophisticated
regularization to further improve the performance
of various unsupervised domain adaptation ap-
proaches. One promising direction is replacing
the VAT with adversarial training, which, as proven
in Zhang et al. (2019a), yields a reliable classifier
that is robust to adversarial attacks in the source
domain. To successfully transferring the robustness
from the source domain to target domain is of great
interest for both theory and practical applications.
We leave this as future work.
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