
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 3400–3413
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

3400

On the Importance of Adaptive Data Collection for
Extremely Imbalanced Pairwise Tasks

Stephen Mussmann∗ Robin Jia∗ Percy Liang
Computer Science Department, Stanford University, Stanford, CA

mussmann@stanford.edu {robinjia,pliang}@cs.stanford.edu

Abstract

Many pairwise classification tasks, such as
paraphrase detection and open-domain ques-
tion answering, naturally have extreme label
imbalance (e.g., 99.99% of examples are neg-
atives). In contrast, many recent datasets
heuristically choose examples to ensure la-
bel balance. We show that these heuristics
lead to trained models that generalize poorly:
State-of-the art models trained on QQP and
WikiQA each have only 2.4% average pre-
cision when evaluated on realistically imbal-
anced test data. We instead collect training
data with active learning, using a BERT-based
embedding model to efficiently retrieve uncer-
tain points from a very large pool of unlabeled
utterance pairs. By creating balanced training
data with more informative negative examples,
active learning greatly improves average preci-
sion to 32.5% on QQP and 20.1% on WikiQA.

1 Introduction

For most pairwise classification tasks in NLP, the
most realistic data distribution has extreme label
imbalance (e.g., 99.99% of examples have the same
label). In question deduplication (Iyer et al., 2017),
the vast majority of pairs of questions from an on-
line forum are not duplicates. In open-domain ques-
tion answering (Yang et al., 2015; Lee et al., 2019),
almost any randomly sampled document will not
answer a given question. Random pairs of sen-
tences from a diverse distribution will have no re-
lation between them in natural language inference
(Bowman et al., 2015), as opposed to an entailment
or contradiction relationship.

While past work has recognized the impor-
tance of label imbalance in NLP (Lewis et al.,
2004; Chawla et al., 2004), many recently released
datasets are heuristically collected to ensure label
balance, generally for ease of training. For instance,

∗Authors contributed equally.

Training

Evaluation

Heuristic,
balanced dataset

Query access to
imbalanced

all-pairs dataset

Imbalanced
all-pairs
dataset

Adaptive
Framework

Static
Framework

Heuristic,
balanced dataset

SOTA models
yield poor

performance

Figure 1: Modern benchmarks often use heuristically
balanced data for training and evaluation. We find that
models trained on this data perform poorly on the very
imbalanced all-pairs distribution and develop adaptive
methods to collect training data for this setting.

the Quora Question Pairs (QQP) dataset (Iyer et al.,
2017) was generated by mining non-duplicate ques-
tions that were heuristically determined to be near-
duplicates. The SNLI dataset had crowdworkers
generate inputs to match a specified label distri-
bution (Bowman et al., 2015). In this work, we
show that models trained on heuristically balanced
datasets deal poorly with natural label imbalance at
test time: They have very low average precision on
realistically imbalanced test data created by taking
all pairs of test utterances.

Instead of heuristically producing static training
datasets, we study adaptive data collection meth-
ods. In particular, we apply the pool-based active
learning framework (Settles, 2009) to extremely
imbalanced pairwise tasks. At training time, the
system has query access (i.e., the ability to collect
a limited subset of the labels) to a large unlabeled
dataset formed by taking all utterance pairs from a
set of training utterances. For example, in the ques-
tion deduplication setting, we might have a budget
to annotate pairs of questions as “duplicate” or “not
duplicate,” and wish to train a model on this data
to find new duplicate pairs with high precision.

3401

Data collection for extremely imbalanced pair-
wise tasks is challenging because the pool of unla-
beled examples is very large (as it grows quadrat-
ically in the number of utterances) and very few
of the examples are positive. We collect balanced
training data using uncertainty sampling, an adap-
tive method that queries labels for examples on
which a model trained on previously queried data
has high uncertainty (Lewis and Gale, 1994). To
lower the computational cost of searching for uncer-
tain points, we propose combining active learning
with a BERT embedding model for which uncer-
tain points can be located efficiently using nearest
neighbor search.

In this work, we empirically show that our use
of adaptive data collection yields significant gains
over static heuristics. In order to compare methods
without collecting data separately for each method
and each run, we perform retrospective data collec-
tion with imputed labels to simulate data collection.
Uncertainty sampling with our BERT embedding
model achieves 32.5% and 20.1% average preci-
sion for QQP and WikiQA, respectively. In con-
trast, state-of-the-art models trained on the original
heuristically collected data each have only average
precision of 2.4%.

2 Setting

The pairwise tasks described above fall under a
more general category of binary classification tasks,
those with an input space X and output space
{0, 1}. We assume the label y is a deterministic
function of x, which we write y(x). A classifica-
tion model pθ yields probability estimates pθ(y | x)
where x ∈ X .

Our setting has two aspects: The way training
data is collected via label queries (Section 2.1) and
the way we evaluate the model pθ(y | x) by mea-
suring average precision (Section 2.2). This work
focuses on pairwise tasks (Section 2.3), which en-
ables efficient active learning (Section 4).

2.1 Data collection

In our setting, a system is given an unlabeled
dataset Dtrain

all ⊆ X . The system can query an in-
put x ∈ Dtrain

all and receive the corresponding label
y(x). The system is given a budget of n queries to
build a labeled training dataset of size n.

2.2 Evaluation
Following standard practice for imbalanced tasks,
we evaluate on precision, recall, and average preci-
sion (Lewis, 1995; Manning et al., 2008). A scoring
function S : X → R (e.g., S(x) = pθ(y = 1 | x))
is used to rank examples x, where an ideal S as-
signs all positive examples {x : y(x) = 1} a higher
score than all negative examples {x : y(x) = 0}.
Given a test dataset Dtest

all ⊆ X , define the number
of true positives, false positives, and false negatives
of a scoring function S at a threshold γ as:

TP(S, γ) =
∑
x∈Dtest

all

1[y(x) = 1 ∧ S(x) ≥ γ] (1)

FP(S, γ) =
∑
x∈Dtest

all

1[y(x) = 0 ∧ S(x) ≥ γ] (2)

FN(S, γ) =
∑
x∈Dtest

all

1[y(x) = 1 ∧ S(x) < γ]. (3)

For any threshold γ, define the precision P (S, γ)
and recall R(S, γ) of a scoring function S as:

P(S, γ) =
TP(S, γ)

TP(S, γ) + FP(S, γ)
(4)

R(S, γ) =
TP(S, γ)

TP(S, γ) + FN(S, γ)
. (5)

Let Γ = {S(x) : x ∈ Dtest
all } be the set of scores

of the dataset. By sweeping over all distinct values
Γ in descending order, we trace out the precision-
recall curve. The area under the precision recall
curve or average precision (AP) is defined as:

AP(S) =

|Γ|∑
i=1

(R(S, γi)− R(S, γi−1))P(S, γi),

(6)

where γ0 =∞ and γ1 > γ2 > . . . γ|Γ| and γi ∈ Γ.
Note that high precision requires very high accu-

racy when the task is extremely imbalanced. For
example, if only one in 10, 000 examples in Dtest

all
is positive and 50% precision at some recall is
achieved, that implies 99.99% accuracy.

2.3 Pairwise tasks
In this work, we focus on “pairwise” tasks, mean-
ing that the input space decomposes as X =
X1 ×X2. For instance, X1 could be questions and
X2 could be paragraphs for open-domain question
answering, and X1 = X2 could be questions for

3402

question deduplication. We create the unlabeled
all-pairs training setDtrain

all by taking the cross prod-
uct of a subset from X1 and a subset from X2. We
follow the same procedure to form the all-pairs test
set, Dtest

all . As is standard practice, we ensure that
the train and test all-pairs sets are disjoint.

Many pairwise tasks require high average preci-
sion on all-pairs test data. A question deduplication
system must compare a new question with all pre-
viously asked questions to determine if a duplicate
exists. An open-domain question-answering sys-
tem must search through all available documents
for one that answers the question. In both cases,
the all-pairs distribution is extremely imbalanced,
as the vast majority of pairs are negatives, while
standard datasets are artificially balanced.

3 Results training on heuristic datasets

In this section, we show that state-of-the-art mod-
els trained on two standard pairwise classification
datasets—QQP and WikiQA—do not generalize
well to our extremely imbalanced all-pairs test data,
which we create from an original dataset by im-
puting a negative label for all pairs that are not
marked as positive. Both QQP and WikiQA were
collected using static heuristics that attempt to find
points x ∈ X that are more likely to be positive.
These heuristics are necessary because uniformly
sampling from X is impractical due to the label
imbalance: if the proportion of positives is 10−4,
then random sampling would have to label 10,000
examples on average to find one positive example.
Standard models can achieve high test accuracy on
test data collected with these heuristics, but fare
poorly when evaluated on all-pairs data derived
from the same data source (Section 3.2). Manual
inspection confirms that these models often make
surprising false positive errors (Section 3.3).

3.1 Experimental setup

3.1.1 Evaluation
We evaluate models on both heuristically balanced
test data and our imbalanced all-pairs test data.

Heuristically balanced evaluation. Let Dpos
denote the set of all positive examples, and
Dstatedneg denote the set of stated negative exam-
ples—negative examples in the original heuristi-
cally collected dataset. We define the stated test
dataset Dtest

heur as the pairs in the original balanced
dataset that are also in our defined test dataset:

(Dpos∪Dstatedneg)∩Dtest
all . This is similar to the orig-

inal QQP test data, but with a different train/test
split. We use task-specific evaluation metrics de-
scribed in the next section.

All-pairs evaluation. All-pairs evaluation met-
rics depend on the label of every pair in Dtest

all . We
approximate these labels by imputing (possibly
noisy) labels on all pairs using the available la-
beled data, as described in the next section.1 In
Section 3.3, we manually label examples to con-
firm our results from this automatic evaluation.

Computing the number of false positives
FP(S, γ) requires enumerating all negative exam-
ples in Dtest

all , which is too computationally expen-
sive with our datasets. To get an unbiased estimate
of FP(S, γ), we could randomly subsample Dtest

all ,
but the resulting estimator has high variance. We
instead compute an unbiased estimator that uses
importance sampling. In particular, we combine
counts of errors on a set of “nearby negative” exam-
ples Dtest

near ⊆ Dtest
all , pairs of similar utterances on

which we expect more false positives to occur, and
random negatives Dtest

rand sampled uniformly from
negatives in Dtest

all \Dtest
near. Details are provided in

Appendix A.2.

3.1.2 Datasets
Quora Question Pairs (QQP). The task for
QQP (Iyer et al., 2017) is to determine whether
two questions are paraphrases. The non-paraphrase
pairs in the dataset were chosen heuristically, e.g.,
by finding questions on similar topics. We impute
labels on all question pairs by assuming that two
questions are paraphrases if and only if they are
equivalent under the transitive closure of the equiv-
alence relation defined by the labeled paraphrase
pairs.2 We randomly partition all unique questions
into train, dev, and test splits, ensuring that no two
questions that were paired (either in positive or neg-
ative examples) in the original dataset end up in dif-
ferent splits. Since every question is a paraphrase
of itself, we define Dtrain

all as the set of distinct pairs
of questions from the training questions, and define
Ddev

all and Dtest
all analogously. For heuristically bal-

anced evaluation, we report accuracy and F1 score

1For settings where labels cannot be imputed reliably, pre-
cision can be estimated by labeling predicted positives, and
recall can be estimated with respect to a non-exhaustive set of
known positives (Harman, 1992; Ji et al., 2011).

2Using the transitive closure increases the total number of
positives from 149,263 to 228,548, so this adds many positives
but does not overwhelm the original data.

3403

Split Positives Total
pairs Ratio Stated

Neg.
Nearby

Neg.

QQP
Train 124,625 38B 1:300K 132,796 -
Dev 60,510 8.8B 1:150K 61,645 13.1M
Test 43,413 8.5B 1:190K 60,575 12.8M

WikiQA
Train 1,040 56M 1:53K 19,320 -
Dev 140 7.8M 1:56K 2,593 29,511
Test 293 17M 1:57K 5,872 63,136

Table 1: Statistics of our QQP and WikiQA splits.

on Dtest
heur, as in Wang et al. (2019).

WikiQA. The task for WikiQA (Yang et al.,
2015) is to determine whether a question is an-
swered by a given sentence. The dataset only in-
cludes examples that pair a question with sentences
from a Wikipedia article believed to be relevant
based on click logs. We impute labels by assum-
ing that question-sentence pairs not labeled in the
dataset are negative. We partition the questions into
train, dev, and test, following the original question-
based split of the dataset, and then take the direct
product with the set of all sentences in the original
dataset to form the train, dev, and test sets. For all
WikiQA models, we prepend the title of the source
article to the sentence to give the model informa-
tion about the sentence’s origin, as in Lee et al.
(2019).

For heuristically balanced evaluation, we re-
port two evaluation metrics. Following standard
practice, we report clean mean average preci-
sion (c-MAP), defined as MAP over “clean” test
questions—questions that are involved in both a
positive and negative example in Dtest

heur (Garg et al.,
2020). We also report F1 score across all examples
in Dtest

heur (a-F1), which unlike c-MAP considers the
more realistic setting where questions may not be
answerable given the available article. This intro-
duces more label imbalance, as positives make up
6% of Dtest

heur but 12% of clean examples. The orig-
inal WikiQA paper advocated a-F1 (Yang et al.,
2015), but most subsequent papers do not report it
(Shen et al., 2017; Yoon et al., 2019; Garg et al.,
2020).

Data statistics. Table 1 shows dataset statistics.
Models in this section are trained on the stated
training datasetDtrain

heur , (Dpos∪Dstatedneg)∩Dtrain
all ,

the set of all positives and heuristic negatives in the
train split. For all-pairs evaluation, both QQP and
WikiQA have extreme label imbalance: Positive

QQP Heur. Balanced All pairs
Accuracy F1 P@R20 AP

BERT 82.5% 77.3% 3.0% 2.4%
XLNet 83.0% 77.9% 1.7% 1.4%
RoBERTa 84.4% 80.2% 2.5% 2.0%
ALBERT 79.6% 73.0% 3.5% 1.9%

WikiQA c-MAP a-F1 P@R=20 AP

BERT 79.9% 45.9% 6.5% 2.4%
XLNet 80.5% 46.7% 1.0% 1.0%
RoBERTa 84.6% 53.6% 3.4% 2.3%
ALBERT 78.2% 41.8% 0.7% 0.9%

Table 2: State-of-the-art CONCAT models trained on
heuristically collected data generalize to test data from
the same distribution, but not to all-pairs data.

examples make up between 1 in 50,000 (WikiQA)
and 1 in 200,000 (QQP) of the test examples.

3.1.3 Models
We train four state-of-the-art models that use BERT-
base (Devlin et al., 2019), XLNet-base (Yang
et al., 2019), RoBERTa-base (Liu et al., 2019),
and ALBERT-base-v2 (Lan et al., 2020), respec-
tively. As is standard, all models receive as in-
put the concatenation of x1 and x2 separated by a
special token; we refer to these as concatenation-
based (CONCAT) models. We train on binary cross-
entropy loss for 2 epochs on QQP and 3 epochs
on WikiQA, chosen to maximize dev all-pairs AP
for RoBERTa. We report the average over three
random seeds for training.

3.2 Evaluation results

As shown in Table 2, state-of-the-art models trained
only on stated training data do well on heuristi-
cally balanced test data but poorly on the extremely
imbalanced all-pairs test data. On QQP, the best
model gets 80.2% F1 on heuristically balanced test
examples.3 However, on all-pairs test data, the best
model can only reach 3.5% precision at a modest
20% recall. On WikiQA, our best c-MAP of 84.6%
is higher than the best previously reported c-MAP
without using additional question-answering data,
83.6% (Garg et al., 2020). However, on all-pairs
test data, the best model gets 6.5% precision at
20% recall. All-questions F1 on heuristically bal-
anced data is also quite low, with the best model
only achieving 53.6%. Since a-F1 evaluates on a

3On the GLUE QQP train/dev split, our RoBERTa imple-
mentation gets 91.5% dev accuracy. Our in-domain accuracy
numbers are lower due to our more challenging train/test split,
as discussed in Appendix A.4.

3404

QQP, CONCATBERT trained on Dtrain
heur

x1: “How do I overcome seasonal affective disorder?”
x2 :“How do I solve puberty problem?”

x1: “What will 10000 A.D be like?”
x2 :“Does not introduction of new Rs.2000 notes ease

carrying black money in future?”

x1: “Can a person with no Coding knowledge learn Machine
learning?”

x2: “How do I learn Natural Language Processing?”

WikiQA, CONCATBERT trained on Dtrain
heur

x1: “where does limestone form?”
x2: “Glacier cave . A glacier cave is a cave formed within

the ice of a glacier .”

x1: “what is gravy made of?”
x2: “Amaretto. It is made from a base of apricot pits or

almonds, sometimes both.”

Figure 2: Examples of confident false positives from
the all-pairs test distribution for models trained on ex-
amples from the original QQP and WikiQA datasets.
Bold highlights non-equivalent phrases.

more imbalanced distribution than c-MAP, this fur-
ther demonstrates that state-of-the-art models deal
poorly with test-time label imbalance. Compared
with a-F1, all-pairs evaluation additionally shows
that models make many mistakes when evaluated
on questions paired with less related sentences;
these examples should be easier to identify as neg-
atives, but are missing from Dtrain

heur .

3.3 Manual verification of imputed negatives
Our all-pairs evaluation results are based on au-
tomatically imputed negative labels, rather than
the gold label evaluation metrics. To check the
validity of our results, we manually labeled puta-
tive false positive errors—examples that our model
labeled positively but for which the imputed la-
bel was negative—to more accurately estimate pre-
cision. We focused on the best QQP model and
random seed combination on the development set,
which got 8.2% precision at 20% recall.4 For this
recall threshold, we manually labeled 50 randomly
chosen putative false positives from Ddev

near, and 50
more from Ddev

rand. In 72% and 92% of cases, re-
spectively, the imputed label was correct and the
model was wrong. Extrapolating from these results,
we estimate the true precision of the model to be
9.5%, still close to our original estimate of 8.2%.

4By manual inspection, QQP had more borderline cases
than WikiQA, so we focused on QQP.

See Appendix A.3 for more details. For the remain-
der of the paper, we simply use the imputed labels,
keeping in mind this may underestimate precision.

Figure 2 shows real false positive predictions at
20% recall for the best QQP and WikiQA models.
For QQP, models often make surprising errors on
pairs of unrelated questions (first two examples),
as well as questions that are somewhat related but
distinct (third example). For WikiQA, models of-
ten predict a positive label when something in the
sentence has the same type as the answer to the
question, even if the sentence and question are un-
related. While these pairs seem easy to classify, the
heuristically collected training data lacks coverage
of these pairs, leading to poor generalization.

4 Active learning for pairwise tasks

As shown above, training on heuristically collected
balanced data leads to low average precision on all
pairs. How can we collect training data that leads
to high average precision? We turn to active learn-
ing, in which new data is chosen adaptively based
on previously collected data. Adaptivity allows us
to ignore the vast majority of obvious negatives
(unlike random sampling) and iteratively correct
the errors of our model (unlike static data collec-
tion) by collecting more data around the model’s
decision boundary.

4.1 Active learning
Formally, an active learning method takes in an
unlabeled dataset Dtrain

all ⊆ X . Data is collected in
a series of k > 1 rounds. For the ith round, we
choose a batch Bi ⊆ Dtrain

all of size ni and observe
the outcome as the labels {(x, y(x)) : x ∈ Bi}.
The budget n is the total number of points labeled,
i.e., n =

∑k
i=1 ni. This process is adaptive be-

cause we can choose batch Bi based on the labels
of the previous i− 1 batches. Static data collection
corresponds to setting k = 1.

Uncertainty sampling. The main active learning
algorithm we use is uncertainty sampling (Lewis
and Gale, 1994), which is simple, effective, and
commonly used in practice (Settles, 2009). Uncer-
tainty sampling first uses a static data collection
method to select the seed set B1. For the next k−1
rounds, uncertainty sampling trains a model on all
collected data and chooses Bi to be the ni unla-
beled points in Dtrain

all on which the model is most
uncertain. For binary classification, the most un-
certain points are the points where pθ(y = 1 | x)

3405

is closest to 1
2 . Note that a brute force approach to

finding Bi requires evaluating pθ on every example
in Dtrain

all , which can be prohibitively expensive. In
balanced settings, it suffices to choose the most un-
certain point from a small random subset of Dtrain

all
(Ertekin et al., 2007); however, this strategy works
poorly in extremely imbalanced settings, as a small
random subset of Dtrain

all is unlikely to contain any
uncertain points. In Section 4.2, we address this
computational challenge with a bespoke model ar-
chitecture.

Adaptive retrieval. We also use a related algo-
rithm we call adaptive retrieval, which is like uncer-
tainty sampling but queries the ni unlabeled points
in Dtrain

all with highest pθ(y = 1 | x) (i.e., pairs the
model is most confident are positive). Adaptive
retrieval can be seen as greedily maximizing the
number of positive examples collected.

4.2 Modeling and implementation
We now fully specify our approach by describing
our model, how we find pairs in the unlabeled pool
Dtrain

all to query, and how we choose the seed set B1.
In particular, a key technical challenge is that the
set of training pairs Dtrain

all is too large to enumer-
ate, as it grows quadratically. We therefore require
an efficient way to locate the uncertain points in
Dtrain

all . We solve this problem with a model archi-
tecture COSINEBERT that enables efficient nearest
neighbor search (Gillick et al., 2019).

4.2.1 Model
Given input x = (x1, x2), COSINEBERT embeds
x1 and x2 independently and predicts pθ(y = 1 | x)
based on vector-space similarity. More precisely,

pθ(y = 1 | x) = σ

(
w · eθ(x1) · eθ(x2)

‖eθ(x1)‖‖eθ(x2)‖
+ b

)
,

(7)

where σ is the sigmoid function, w > 0 and b are
learnable parameters, and eθ : X1 ∪ X2 → Rd is a
learnable embedding function. In other words, we
compute the cosine similarity of the embeddings of
x1 and x2, and predict y using a logistic regression
model with cosine similarity as its only feature.
We define eθ as the final layer output of a BERT
model (Devlin et al., 2019) mean-pooled across
all tokens (Reimers and Gurevych, 2019).5 Gillick
et al. (2019) used a similar model for entity linking.

5Although WikiQA involves an asymmetric relationship
between questions and sentences, we use the same encoder for
both. This is still expressive enough for WikiQA, since the set

4.2.2 Finding points to query
Next, we show how to choose the batchBi of points
to query, given a model pθ(y | x) trained on data
from batchesB1, . . . , Bi−1. Recall that uncertainty
sampling chooses the points x for which for which
pθ(y = 1 | x) is closest to 1

2 , and adaptive retrieval
chooses the points x with largest pθ(y = 1 | x).
Since the set of positives is very small compared
to the size of Dtrain

all , the set of uncertain points
can be found by finding points with the largest
pθ(y = 1 | x), thus filtering out the confident
negatives, and then selecting the most uncertain
from those.

To find points with largest pθ(y = 1 | x), we
leverage the structure of our model. Since w > 0,
pθ(y = 1 | x) is increasing in the cosine similar-
ity of eθ(x1) and eθ(x2). Therefore, it suffices to
find pairs (x1, x2) that are nearest neighbors in the
embedding space defined by eθ. In particular, for
each x1 ∈ X1, we use the Faiss library (Johnson
et al., 2017) to retrieve a set N(x1) containing the
m nearest neighbors in X2, and define Dtrain

close to be
the set of all pairs (x1, x2) such that x2 ∈ N(x1).
We then iterate through Dtrain

close to find either the
most uncertain points (for uncertainty sampling)
or points with highest cosine similarity (for adap-
tive retrieval). Note that this method only requires
embedding the number of distinct elements that ap-
pear in the training set, rather than the total number
of pairs, the requirement for jointly embedding all
pairs.

4.2.3 Choosing the seed set
Recall that both of our active learning techniques
require a somewhat representative initial seed set
B1 to start the process. We use the pre-trained
BERT model as the embedding eθ and select the
n1 pairs with largest pθ(y = 1 | x). Recall that
w > 0, so this amounts to choosing the pairs with
highest cosine similarity.

5 Active learning experiments

5.1 Experimental details

We simulate active learning with the imputed la-
bels so that we can compare different algorithms
without performing expensive gold label collection
for each algorithm. We collect n1 = 2048 exam-
ples in the seed set, and use k = 10 rounds of

of questions and set of sentences are disjoint. For asymmetric
tasks like NLI where X1 = X2, we would need to use separate
encoders for the X1 and X2.

3406

Method QQP WikiQA
P@R20 AP P@R20 AP

Random 4.7% 2.8% 1.3% 1.3%
Stated data 29.3% 15.4% 0.7% 2.2%
Static Ret. 49.2% 25.1% 13.9% 8.2%

Adapt. Ret. 59.1% 32.4% 27.1% 15.1%
Uncertainty 60.2% 32.5% 32.4% 20.1%

Table 3: Main results comparing different data collec-
tion strategies on QQP and WikiQA. The two active
learning methods, adaptive retrieval and uncertainty
sampling, greatly outperform other methods.

Positives Found QQP WikiQA

Random sampling 1 1
Static retrieval 16,422 169
Adaptive retrieval 103,181 757
Uncertainty sampling 87,594 742

Total examples collected 232,100 16,640

Table 4: Number of positive points collected by differ-
ent methods. All methods collect the same number of
total examples (last row).

active learning for QQP and k = 4 for WikiQA,
as WikiQA is much smaller. At round i, we query
ni = n1 · (3/2)i−1 new labels. The exponentially
growing ni helps us avoid wasting queries in early
rounds, when the model is worse, and also makes
training faster in the early rounds. These choices
imply a total labeling budget n of 232,100 for QQP
and 16,640 for WikiQA. For both datasets, n is
slightly less than |Dtrain

heur | (257,421 for QQP and
20,360 for WikiQA), thus ensuring a meaningful
comparison with training on heuristic data. We re-
trievem = 1000 nearest neighbors per x1 ∈ X1 for
QQP and m = 100 for WikiQA. We run all active
learning experiments with three different random
seeds and report the mean. Training details are
given in Appendix A.

5.2 Main results

We now compare the two active learning meth-
ods, adaptive retrieval and uncertainty sampling,
with training on Dtrain

heur and two other baselines.
Random sampling queries n pairs uniformly at
random, which creates a very imbalanced dataset.
Static retrieval queries the n most similar pairs us-
ing the pre-trained BERT embedding, similar to
Section 4.2.3. Table 3 shows all-pairs evaluation
for COSINEBERT trained on these datasets. The
two active learning methods greatly outperform
other methods: Uncertainty sampling gets 32.5%

AP on QQP and 20.1% on WikiQA, while the
best static data collection method, static retrieval,
gets only 25.1% AP on QQP and 8.2% AP on
WikiQA. Recall from Table 2 that CONCATBERT
only achieved 2.4% AP on both QQP and WikiQA.
When trained on the same data as CONCATBERT,
COSINEBERT achieves much higher AP on QQP
(15.4%) but slightly lower AP on WikiQA (2.2%).
Uncertainty sampling slightly outperforms adap-
tive retrieval on both datasets.

Achieving high precision across all pairs re-
quires collecting both enough positive examples
and useful negative examples. Compared to ran-
dom sampling and static retrieval, active learning
collects many more positive examples, as shown in
Table 4. Dtrain

heur contains all positive examples, but
models trained on it still have low AP on all pairs.
We conclude that the negative examples in Dtrain

heur
are insufficient for generalization to all pairs, while
active learning chooses more useful negatives.

5.3 Manual verification of imputed negatives
As in Section 3.3, we manually labeled putative
QQP false positives at the threshold where recall
is 20% for COSINEBERT trained on either stated
data or uncertainty sampling data. For each, we
labeled 50 putative false positives from Ddev

near, and
all putative false positives from Ddev

rand (12 for stated
data, 0 for uncertainty sampling).

COSINEBERT trained on Dtrain
heur . 67% (8 of

12) of the putative false positives on Ddev
rand were ac-

tual errors by the model, but only 36% of putative
false positives on Ddev

near were errors. Extrapolating
from these results, we update our estimate of devel-
opment set precision at 20% recall from 28.4% to
41.4%.

Overall, this model makes some more reasonable
mistakes than the CONCATBERT model, though
its precision is still not that high.

COSINEBERT model with uncertainty sam-
pling. Only 32% of putative false positives from
Ddev

near were real errors, significantly less than the
72% for CONCATBERT trained on Dtrain

heur (p =
7 × 10−5, Mann-Whitney U test). Extrapolating
from these results, we update our estimate of devel-
opment set precision at 20% recall from 55.1% to
79.3%, showing that uncertainty sampling yields a
more precise model than our imputed labels indi-
cate. In fact, this model provides a high-precision
way to identify paraphrase pairs not annotated in
the original dataset.

3407

Method QQP WikiQA
P@R20 AP P@R20 AP

Strat. match 35.1% 19.0% 13.2% 8.5%
Strat. all pos. 41.6% 22.2% 13.7% 9.1%

Adapt. Ret. 59.1% 32.4% 27.1% 15.1%
Uncertainty 60.2% 32.5% 32.4% 20.1%

Table 5: Even though stratified sampling has access to
oracle information, active learning performs better by
collecting more informative negative examples.

5.4 Comparison with stratified sampling
Next, we further confirm that having all the posi-
tive examples is not sufficient for high precision.
In Table 5, we compare with two variants of strat-
ified sampling, in which positive and negative ex-
amples are independently subsampled at a desired
ratio (Attenberg and Provost, 2010). First, we ran-
domly sample positive and negative training exam-
ples to match the number of positives and negatives
collected by uncertainty sampling, the best active
learning method for both datasets (“Strat. match”
in Table 5). Second, we trained on all positive ex-
amples and added negatives to match the number
of positives on QQP or match the active learning
total budget on WikiQA (“Strat. all pos.”).6 For
QQP, this yielded a slightly larger dataset than the
first setting. Note that stratified sampling requires
oracle information: It assumes the ability to sample
uniformly from all positives, even though this set is
not known before data collection begins. Nonethe-
less, stratified sampling trails uncertainty sampling
by more than 10 AP points on both datasets. Since
stratified sampling has access to all positives, ac-
tive learning must be choosing more informative
negative examples.

5.5 Training other models on collected data
For QQP, data collected with active learning and
COSINEBERT is useful for training other mod-
els on the same task. Table 6 shows that CON-
CATBERT does better on data collected by ac-
tive learning—using COSINEBERT—compared
to the original dataset or static retrieval. CON-
CATBERT performs best with stratified sampling;
recall that this is not a comparable data collection
strategy in our setting, as it requires oracle knowl-
edge. COSINEBERT outperforms CONCATBERT
in all training conditions; we hypothesize that the
cosine similarity structure helps it generalize more

6This aligns better with the original WikiQA dataset, which
has many more negatives than positives.

QQP Data COSINEBERT CONCATBERT
P@R20 AP P@R20 AP

Stated data 29.3% 15.4% 3.0% 2.4%
Static Ret. 49.2% 25.1% 4.6% 1.9%
Stratified 35.1% 19.0% 29.0% 16.4%
Uncertainty 60.2% 32.5% 23.6% 8.9%

Table 6: Comparison on QQP of COSINEBERT with
CONCATBERT. Data collected by active learning (us-
ing COSINEBERT) is more useful for training CON-
CATBERT than stated data or static retrieval data. Strat-
ified sampling here matches the label balance of the un-
certainty sampling data.

0 50k 100k 150k 200k
Data collected

0

5

10

15

20

25

30

35

Av
er

ag
e

pr
ec

isi
on

 (%
)

AP on QQP dev

Seed with retrieval
Seed with stated data

(a) Average precision

0 50k 100k 150k 200k
Data collected

0

10

20

30

40

50

60

Pe
rc

en
t p

os
iti

ve

Positives collected on QQP
Seed with retrieval
Seed with stated data

(b) Positives collected

Figure 3: Uncertainty sampling on QQP using different
seed sets. (a) Seeding with stated data (one run) does
similarly to seeding with retrieval (mean over three
runs). (b) Seeding with stated data makes the model
poorly calibrated—points it is uncertain about are ini-
tially very unlikely to be positive. However, over time
the model corrects this behavior.

robustly to pairs of unrelated questions. However,
COSINEBERT trained on stated data does not do
as well on WikiQA, as shown in Table 3.

5.6 Data efficiency
Adaptivity is crucial for getting high AP with less
labeled data. Static retrieval, the best static data
collection method, gets 21.9% dev AP on QQP
with the full budget of 232,100 examples. Uncer-
tainty sampling achieves a higher dev AP of 22.6%
after collecting only 16,640 examples, for a 14×
data efficiency improvement. See Appendix B.1
for further analysis.

5.7 Effect of seed set
Our method is robust to choice of the initial seed
set for uncertainty sampling. We consider using
stated data as the seed set, instead of data chosen
via static retrieval. As shown in Figure 3, seeding
with stated data performs about as well as static
retrieval in terms of AP. Since the stated data artifi-
cially overrepresents positive examples, the model

3408

trained on stated data is initially miscalibrated—the
points it is uncertain about are actually almost all
negative points. Therefore, uncertainty sampling
initially collects very few additional positive ex-
amples. Over time, adaptively querying new data
helps correct for this bias.

6 Discussion and related work

In this paper, we have studied how to collect train-
ing data that enables generalization to extremely
imbalanced test data in pairwise tasks. State-of-
the-art models trained on standard, heuristically
collected datasets have very low average precision
when evaluated on imbalanced test data, while ac-
tive learning leads to much better average precision.

Gillick et al. (2019) propose a similar model for
entity linking and mine hard negative examples, an
approach related to adaptive retrieval. However,
they have abundant labeled data, whereas we study
data collection with a limited labeling budget.

Work in information retrieval often attempts to
maximize precision across all pairs of test objects.
Machine learning models are commonly used to
re-rank candidate pairs from an upstream retriever
(Chen et al., 2017; Nogueira and Cho, 2019), while
our method learns embeddings to improve the ini-
tial retrieval step. Distant supervision has been
used to train end-to-end retrieval models for ques-
tion answering (Lee et al., 2019), but does not ex-
tend to other tasks like paraphrase detection. Other
work on duplicate question detection on commu-
nity QA forums trains on labels generated by forum
users (dos Santos et al., 2015). Hoogeveen et al.
(2016) show that these datasets tend to have many
false negatives and suggests additional labeling to
correct this problem; active learning provides one
way to choose informative pairs to label.

Extreme label imbalance is an important chal-
lenge in many non-pairwise NLP tasks, includ-
ing document classification (Lewis et al., 2004)
and relation extraction (Zhang et al., 2017). Most
prior work focuses on sampling a fixed training
dataset (Chawla et al., 2004; Sun et al., 2009; Den-
damrongvit and Kubat, 2009), whereas our work
explores data collection. Attenberg and Provost
(2010) find stratified sampling outperforms active
learning in non-pairwise imbalanced tasks, primar-
ily due to the difficulty of finding a useful seed set.
We find pre-trained embeddings effective for seed
set collection in pairwise tasks.

Zhang et al. (2019) found that the frequency of

questions in QQP leaks information about the la-
bel. Evaluating on all pairs avoids such artifacts, as
every test utterance appears in the same number of
examples. Zhang et al. (2019) re-weight the origi-
nal dataset to avoid these biases, but re-weighting
cannot compensate for the absence of some types
of negative examples, unlike active learning.

Many pairwise datasets are generated by asking
crowdworkers to generate part or all of the input x
(Bowman et al., 2015; Mostafazadeh et al., 2016).
Having crowdworkers generate text increases the
risk of introducing artifacts (Schwartz et al., 2017;
Poliak et al., 2018), while our pool-based approach
considers the entire distribution of utterance pairs.

We use active learning, specifically uncertainty
sampling (Lewis and Gale, 1994), to create a bal-
anced training set that leads to models that general-
ize to the full imbalanced distribution. Ertekin et al.
(2007) argues that active learning is capable of pro-
viding balanced classes to the learning algorithm by
selecting examples close to the decision boundary.
Furthermore, active learning can generalize to the
full distribution, both empirically (Settles, 2009;
Yang and Loog, 2018) and theoretically (Balcan
et al., 2007; Balcan and Long, 2013; Mussmann
and Liang, 2018).

Finally, this paper addresses two central con-
cerns in NLP today: How to construct fair but chal-
lenging tests of generalization (Geiger et al., 2019),
and how to collect training data in a way that im-
proves generalization. Evaluating on extremely im-
balanced all-pairs data has several advantages over
other tests of generalization. Our examples are re-
alistic and natural, unlike adversarial perturbations
(Ebrahimi et al., 2018; Alzantot et al., 2018), and
diverse, unlike hand-crafted tests of specific phe-
nomena (Glockner et al., 2018; Naik et al., 2018;
McCoy et al., 2019). Since we allow querying the
label of any training example, generalization to
our test data is achievable, while out-of-domain
generalization (Levy et al., 2017; Yogatama et al.,
2019; Talmor and Berant, 2019) may be statistically
impossible. Our work thus offers a natural, chal-
lenging, and practically relevant testbed to study
both generalization and data collection.

Reproducibility. Code and data needed to repro-
duce all results can be found on the CodaLab plat-
form at https://bit.ly/2GzJAgM.

https://bit.ly/2GzJAgM

3409

Acknowledgments

This work was supported by a PECASE Award,
NSF Award Grant no. 1805310, and NSF Graduate
Fellowship DGE-1656518. We thank Chris Man-
ning, Michael Xie, Dallas Card, and other members
of the Stanford NLP Group for their helpful com-
ments.

References
M. Alzantot, Y. Sharma, A. Elgohary, B. Ho, M. Srivas-

tava, and K. Chang. 2018. Generating natural lan-
guage adversarial examples. In Empirical Methods
in Natural Language Processing (EMNLP).

J. Attenberg and F. Provost. 2010. Why label when
you can search? alternatives to active learning for ap-
plying human resources to build classification mod-
els under extreme class imbalance. In International
Conference on Knowledge Discovery and Data Min-
ing (KDD).

Maria-Florina Balcan, Andrei Broder, and Tong Zhang.
2007. Margin based active learning. In Interna-
tional Conference on Computational Learning The-
ory, pages 35–50. Springer.

Maria-Florina Balcan and Phil Long. 2013. Active
and passive learning of linear separators under log-
concave distributions. In Conference on Learning
Theory, pages 288–316.

S. Bowman, G. Angeli, C. Potts, and C. D. Manning.
2015. A large annotated corpus for learning natural
language inference. In Empirical Methods in Natu-
ral Language Processing (EMNLP).

N. V. Chawla, N. Japkowicz, and A. R. Kolcz. 2004.
Editorial: Special issue on learning from imbalanced
data sets. ACM SIGKDD Explorations Newsletter,
6(1).

D. Chen, A. Fisch, J. Weston, and A. Bordes. 2017.
Reading Wikipedia to answer open-domain ques-
tions. In Association for Computational Linguistics
(ACL).

S. Dendamrongvit and M. Kubat. 2009. Undersam-
pling approach for imbalanced training sets and
induction from multi-label text-categorization do-
mains. In PAKDD Workshop on New Frontiers in
Applied Data Mining.

J. Devlin, M. Chang, K. Lee, and K. Toutanova. 2019.
BERT: Pre-training of deep bidirectional transform-
ers for language understanding. In Association
for Computational Linguistics (ACL), pages 4171–
4186.

C. dos Santos, L. Barbosa, D. Bogdanova, and
B. Zadrozny. 2015. Learning hybrid representations
to retrieve semantically equivalent questions. In As-
sociation for Computational Linguistics (ACL).

J. Ebrahimi, A. Rao, D. Lowd, and D. Dou. 2018. Hot-
flip: White-box adversarial examples for text classi-
fication. In Association for Computational Linguis-
tics (ACL).

Seyda Ertekin, Jian Huang, Leon Bottou, and Lee Giles.
2007. Learning on the border: active learning in
imbalanced data classification. In Proceedings of
the sixteenth ACM conference on Conference on in-
formation and knowledge management, pages 127–
136.

S. Garg, T. Vu, and A. Moschitti. 2020. TANDA:
Transfer and adapt pre-trained transformer models
for answer sentence selection. In Association for the
Advancement of Artificial Intelligence (AAAI).

A. Geiger, I. Cases, L. Karttunen, and C. Potts. 2019.
Posing fair generalization tasks for natural language
inference. In Empirical Methods in Natural Lan-
guage Processing (EMNLP).

D. Gillick, S. Kulkarni, L. Lansing, A. Presta,
J. Baldridge, E. Ie, and D. Garcia-Olano. 2019.
Learning dense representations for entity retrieval.
In Computational Natural Language Learning
(CoNLL).

M. Glockner, V. Shwartz, and Y. Goldberg. 2018.
Breaking NLI systems with sentences that require
simple lexical inferences. In Association for Com-
putational Linguistics (ACL).

D. K. Harman. 1992. Overview of the first TREC text
retrieval conference. In Text Retrieval Conference.

D. Hoogeveen, Karin M. Verspoor, and Timothy Bald-
win. 2016. Cqadupstack: Gold or silver? In SIGIR
2016 Workshop on Web Question Answering Beyond
Factoids (WebQA 2016).

S. Ioffe and C. Szegedy. 2015. Batch normalization:
Accelerating deep network training by reducing in-
ternal covariate shift. In International Conference
on Machine Learning (ICML), pages 448–456.

Shankar Iyer, Nikhil Dandekar, and Kornél Cser-
nai. 2017. First quora dataset release: Question
pairs. https://www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question-
Pairs.

H. Ji, R. Grishman, and H. Trang Dang. 2011.
Overview of the TAC 2011 knowledge base popu-
lation track. In Text Analytics Conference.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734.

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma,
and R. Soricut. 2020. ALBERT: A lite BERT for
self-supervised learning of language representations.
In International Conference on Learning Represen-
tations (ICLR).

https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs

3410

K. Lee, M. Chang, and K. Toutanova. 2019. Latent re-
trieval for weakly supervised open domain question
answering. In Association for Computational Lin-
guistics (ACL).

O. Levy, M. Seo, E. Choi, and L. Zettlemoyer. 2017.
Zero-shot relation extraction via reading comprehen-
sion. In Computational Natural Language Learning
(CoNLL).

D. D. Lewis. 1995. Evaluating and optimizing au-
tonomous text classification systems. In ACM Spe-
cial Interest Group on Information Retreival (SI-
GIR).

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. 2004.
Rcv1: A new benchmark collection for text catego-
rization research. Journal of Machine Learning Re-
search (JMLR), 5.

David D Lewis and William A Gale. 1994. A sequen-
tial algorithm for training text classifiers. In SI-
GIR’94, pages 3–12. Springer.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi,
D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and
V. Stoyanov. 2019. RoBERTa: A robustly opti-
mized BERT pretraining approach. arXiv preprint
arXiv:1907.11692.

C. Manning, P. Raghavan, and H. Schütze. 2008. In-
troduction to information retrieval, volume 1. Cam-
bridge University Press.

R. T. McCoy, E. Pavlick, and T. Linzen. 2019. Right
for the wrong reasons: Diagnosing syntactic heuris-
tics in natural language inference. In Association for
Computational Linguistics (ACL).

N. Mostafazadeh, N. Chambers, X. He, D. Parikh,
D. Batra, L. Vanderwende, P. Kohli, and J. Allen.
2016. A corpus and cloze evaluation for deeper
understanding of commonsense stories. In North
American Association for Computational Linguistics
(NAACL).

Stephen Mussmann and Percy S Liang. 2018. Uncer-
tainty sampling is preconditioned stochastic gradient
descent on zero-one loss. In Advances in Neural In-
formation Processing Systems, pages 6955–6964.

A. Naik, A. Ravichander, N. Sadeh, C. Rose, and
G. Neubig. 2018. Stress test evaluation for natural
language inference. In International Conference on
Computational Linguistics (COLING), pages 2340–
2353.

R. Nogueira and K. Cho. 2019. Passage re-ranking
with BERT. arXiv preprint arXiv:1901.04085.

A. Poliak, J. Naradowsky, A. Haldar, R. Rudinger,
and B. V. Durme. 2018. Hypothesis only base-
lines in natural language inference. arXiv preprint
arXiv:1805.01042.

N. Reimers and I. Gurevych. 2019. Sentence-
BERT: Sentence embeddings using siamese BERT-
networks. In Empirical Methods in Natural Lan-
guage Processing (EMNLP).

R. Schwartz, M. Sap, Y. Konstas, L. Zilles, Y. Choi,
and N. A. Smith. 2017. The effect of different writ-
ing tasks on linguistic style: A case study of the
ROC story cloze task. In Computational Natural
Language Learning (CoNLL).

Burr Settles. 2009. Active learning literature survey.
Technical report, University of Wisconsin-Madison
Department of Computer Sciences.

G. Shen, Y. Yang, and Z. Deng. 2017. Inter-weighted
alignment network for sentence pair modeling. In
Empirical Methods in Natural Language Processing
(EMNLP).

A. Sun, E. Lim, and ying Liu. 2009. On strategies for
imbalanced text classification using svm: A compar-
ative study. Decision Support Systems, 48(1).

A. Talmor and J. Berant. 2019. MultiQA: An empir-
ical investigation of generalization and transfer in
reading comprehension. In Association for Compu-
tational Linguistics (ACL).

A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and
S. R. Bowman. 2019. Glue: A multi-task bench-
mark and analysis platform for natural language un-
derstanding. In International Conference on Learn-
ing Representations (ICLR).

Y. Yang, W. Yih, and C. Meek. 2015. WikiQA: A chal-
lenge dataset for open-domain question answering.
In Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2013–2018.

Yazhou Yang and Marco Loog. 2018. A benchmark
and comparison of active learning for logistic regres-
sion. Pattern Recognition, 83:401–415.

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdi-
nov, and Q. V. Le. 2019. XLNet: Generalized au-
toregressive pretraining for language understanding.
arXiv preprint arXiv:1906.08237.

D. Yogatama, C. de M. d’Autume, J. Connor, T. Ko-
cisky, M. Chrzanowski, L. Kong, A. Lazaridou,
W. Ling, L. Yu, C. Dyer, et al. 2019. Learning
and evaluating general linguistic intelligence. arXiv
preprint arXiv:1901.11373.

S. Yoon, F. Dernoncourt, D. S. Kim, T. Bui, and
K. Jung. 2019. A compare-aggregate model with
latent clustering for answer selection. In Confer-
ence on Information and Knowledge Management
(CIKM).

G. Zhang, B. Bai, J. Liang, K. Bai, S. Chang, M. Yu,
C. Zhu, and T. Zhao. 2019. Selection bias explo-
rations and debias methods for natural language sen-
tence matching datasets. In Association for Compu-
tational Linguistics (ACL).

3411

Y. Zhang, V. Zhong, D. Chen, G. Angeli, and C. D.
Manning. 2017. Position-aware attention and super-
vised data improve slot filling. In Empirical Meth-
ods in Natural Language Processing (EMNLP).

A Experimental details

A.1 Training details

At each round of active learning, we train for 2
epochs. We train without dropout, as dropout arti-
ficially lowers cosine similarities at training time.
We apply batch normalization (Ioffe and Szegedy,
2015) to the cosine similarity layer to rescale the
cosine similarities, as they often are very close to
1. We initialize w and b so that high cosine similar-
ities correspond to the positive label, and constrain
w to be nonnegative during training. We use a max-
imum sequence length of 128 word piece tokens.
To compensate for BERT’s low learning rate, we in-
creased the learning rate on the w and b parameters
by a factor of 104.

Below in Table 7, we show hyperparameters for
training. Hyperparameters were tuned on the de-
velopment set of QQP; we found these same hy-
perparameters also worked well for WikiQA, and
so we did not tune them separately for WikiQA. In
most cases, we used the default hyperparameters
for BERT.

Hyperparameter Value

Learning rate 2× 10−5

Training epochs 2
Weight decay 0
Optimizer AdamW
AdamW Epsilon 1× 10−6

Batch size 16

Table 7: Hyperparameter choices for QQP and WikiQA

At the end of training, we freeze the embeddings
eθ and train the output layer parameters w and b
to convergence, to improve uncertainty estimates
for uncertainty sampling. This process amounts to
training a two-parameter logistic regression model.
We optimize this using (batch) gradient descent
with learning rate 1 and 10, 000 iterations. When
training this model, we normalize the cosine simi-
larity feature to have zero mean and unit variance
across the training dataset. Training this was very
fast compared to running the embedding model.

Each experiment was conducted with a single
GPU, most commonly a TITAN V or TITAN Xp.

Running one complete uncertainty sampling exper-
iment (i.e., 10 rounds of data collection and model
training for QQP, 4 for WikiQA) on a machine
with one TITAN V GPU takes about 9 hours for
QQP and about 30 minutes for WikiQA. Recall that
COSINEBERT only adds two additional parame-
ters, w and b, on top of a BERT model; we use the
uncased BERT-base pre-trained model which has
110M parameters.

A.2 Evaluation details
To evaluate a given scoring function S at threshold
γ on a test set Dtest

all , we must compute the number
of true positives TP(S, γ), false positives FP(S, γ),
and false negatives FN(S, γ). True positives and
false negatives are computationally easy to com-
pute, as they only require evaluating S(x) on all
the positive inputs x in Dtest

all . However, without
any structural assumptions on S, it is computation-
ally infeasible to exactly compute the number of
false positives, as that would require evaluating S
on every negative example in Dtest

all , which is too
large to enumerate.

Therefore, we devise an approach to compute
an unbiased, low-variance estimate of FP(S, γ).
Recall that this term is defined as

FP(S, γ) =
∑
x∈Dtest

all

1[y(x) = 0 ∧ S(x) > γ] (8)

=
∑
x∈Dtest

neg

1[S(x) > γ] (9)

whereDtest
neg denotes the set of all negative examples

in Dtest
all .

One approach to estimating FP(S, γ) would
be simply to randomly subsample Dtest

neg to some
smaller set R, count the number of false positives
in R, and then multiply the count by |Dtest

neg|/|R|.
This would be an unbiased estimate ofDtest

neg, but has
high variance when the rate of false positive errors
is low. For example, if |Dtest

neg| = 1010, |R| = 106,
and the model makes a false positive error on 1 in
106 examples in Dtest

neg, then FP(S, γ) = 104. How-
ever, with probability(

1− 1

106

)106

≈ 1/e ≈ 0.368,

R will contain no false positives, so we will esti-
mate FP(S, γ) as 0. A similar calculation shows
that the probability of having exactly one false pos-
itive in R is also roughly 1/e, which means that

3412

with probability roughly 1− 2/e ≈ 0.264, we will
have at least two false positives in R, and therefore
overestimate FP(S, γ) by at least a factor of two.

To get a lower variance estimate F̂P(S, γ), we
preferentially sample from likely false positives
and use importance weighting to get an unbiased
estimate of FP(S, γ). In particular, we construct
Dtest

near to be the pairs in Dtest
all with nearby pre-

trained BERT embeddings, analogously to how
we create the seed set in Section 4.2.3. Points with
nearby BERT embeddings are likely to look similar
are therefore more likely to be false positives. Note
that

FP(S, γ) =
∑

x∈Dtest
near

1[S(x) > γ]

+
∑

x∈Dtest
neg\Dtest

near

1[S(x) > γ] (10)

=
∑

x∈Dtest
near

1[S(x) > γ]

+ wrand · Ex∼Unif(Dtest
neg\Dtest

near)
1[S(x) > γ],

(11)

where we define wrand = |Dtest
neg| − |Dtest

near|.
We can compute the first term exactly, since

Dtest
near is small enough to enumerate, and approxi-

mate the second term as

wrand ·
1

|Dtest
rand|

∑
x∈Dtest

rand

1[S(x) > γ], (12)

whereDtest
rand is a uniformly random subset ofDtest

neg\
Dtest

near. Therefore, our final estimate is

F̂P(S, γ) =
∑

x∈Dtest
near

1[S(x) > γ]

+
wrand

|Dtest
rand|

∑
x∈Dtest

rand

1[S(x) > γ]. (13)

A.3 Incorporating manual labels

In Section 3.3, we manually label examples that
were automatically labeled as false positives, and
use this to improve our estimates of the true model
precision. We manually label randomly chosen
putative false positives from both Ddev

near and Ddev
rand,

and use this to estimate the proportion of putative
false positives in each set that are real false pos-
itives. Let p̂near denote the estimated fraction of
putative false positives in Ddev

near that are real false
positives, and p̂rand be the analogous quantity for

Ddev
rand. Our updated estimate F̂Pmanual(S, γ) is then

defined as

F̂Pmanual(S, γ) = p̂near
∑

x∈Dtest
near

1[S(x) > γ]

+
p̂random · wrand

|Dtest
rand|

∑
x∈Dtest

rand

1[S(x) > γ].

(14)

We then compute precision using F̂Pmanual(S, γ)
in place of F̂P(S, γ).

A.4 Comparison with GLUE QQP data

For a few reasons, our QQP in-domain accuracy
numbers are lower than those on the GLUE leader-
board, which has accuracies in the low 90’s. First,
our training set is smaller (257K examples versus
364K). Second, our split is more challenging be-
cause the model does not see the same questions
or even same paraphrase clusters at training time
and test time. Finally, our test set is more bal-
anced (58% negative) than the GLUE QQP dev set
(63% negative; test set balance is unknown). As
a sanity check, we confirmed that our RoBERTa
implementation can achieve 91.5% dev accuracy
when trained and tested on the GLUE train/dev
split, in line with previously reported results (Liu
et al., 2019).

B Additional experimental results

B.1 Learning curves and data efficiency

0 50k 100k 150k 200k
Data collected

0

5

10

15

20

25

30

35

Av
er

ag
e

pr
ec

isi
on

 (%
)

AP on QQP dev

Uncertainty sampling
Static retrieval

(a) Average precision

0 50k 100k 150k 200k
Data collected

0

10

20

30

40

50

60

Pe
rc

en
t p

os
iti

ve

Positives collected on QQP
Uncertainty sampling
Static retrieval

(b) Positives collected

Figure 4: Uncertainty sampling compared with match-
ing amounts of static retrieval data on QQP. (a) Aver-
age precision is higher for uncertainty sampling. (b)
Percent of all collected data that is positive. Adaptivity
helps uncertainty sampling collect more positives.

In Figure 4a, we plot average precision on the
QQP dev set for our model after each round of
uncertainty sampling. For comparison, we show a

3413

model trained on the same amount of data collected
via static retrieval, the best-performing static data
collection method. Uncertainty sampling leads to
higher AP with much less data. For example, un-
certainty sampling only needs to collect 16,640
examples to surpass the average precision of static
retrieval collecting all 232,100 examples, for a 14×
data efficiency improvement. A big factor for the
success of uncertainty sampling is its ability to
collect many more positive examples than static
retrieval, as shown in Figure 4b. Static retrieval
collects fewer positives over time, as it exhausts the
set of positives that are easy to identify. However,
uncertainty sampling collects many more positives,
especially after the first round of training, because
it improves its embeddings over time.

