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Abstract

We propose a novel data synthesis method to
generate diverse error-corrected sentence pairs
for improving grammatical error correction,
which is based on a pair of machine transla-
tion models (e.g., Chinese—English) of differ-
ent qualities (i.e., poor and good). The poor
translation model can resemble the ESL (En-
glish as a second language) learner and tends
to generate translations of low quality in terms
of fluency and grammaticality, while the good
translation model generally generates fluent
and grammatically correct translations. With
the pair of translation models, we can gen-
erate unlimited numbers of poor—good En-
glish sentence pairs from text in the source lan-
guage (e.g., Chinese) of the translators. Our
approach can generate various error-corrected
patterns and nicely complement the other data
synthesis approaches for GEC. Experimental
results demonstrate the data generated by our
approach can effectively help a GEC model to
improve the performance and approaching the
state-of-the-art single-model performance in
BEA-19 and CoNLL-14 benchmark datasets.

1 Introduction

Recent work on grammatical error correction
(GEC) has proved that synthetic error-corrected
data is helpful for improving GEC models (Ge
et al., 2018; Zhao et al., 2019; Lichtarge et al.,
2019; Zhang et al., 2019). However, the error pat-
terns generated by the existing data synthesis ap-
proaches tend to be limited by either pre-defined
rule sets or the seed error-corrected training data
(e.g., for back-translation). To generate more di-
verse error patterns to further improve GEC train-
ing, we propose a novel data synthesis approach
for GEC, which employs two machine translation
(MT) models of different qualities.

*This work was done during the first author’s internship
at Microsoft Research Asia.
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TR e TR

You have difficulty to go to the police.

Go to the police if you have trouble.

You can turn to the police when having trouble.

Source(Chinese)
Beginner Translator

a Advanced Translator
Reference

Figure 1: Examples of translations generated by the
beginner and advanced translator. The beginner trans-
lator is implemented with a phrase-based SMT model
with the decreased language model weight; while the
advanced translator is a state-of-the-art NMT model.
The beginner translator tends to literally translate its
source language to English, which resembles the way
an English learner writes English sentences; while the
advanced translator is capable of generating fluent and
grammatically correct sentences. By pairing the results
of beginner and advanced translators, we can harvest
unlimited grammatically improved sentence pairs, as
the red dashed arrow shows.

The main idea of our approach is demonstrated
in Figure 1: we use a beginner and an advanced MT
model to translate the same sentence in the source
language (e.g., Chinese) into English, and pair the
poor and good sentence generated by the beginner
and advanced translator as an error-corrected sen-
tence pair. This idea is motivated by the studies in
English language learning theory (Watcharapunya-
wong and Usaha, 2013; Bhela, 1999; Derakhshan
and Karimi, 2015) which find that ESL (English
as a second language) learners tend to compose
an English sentence by literally translating from
their native language with little consideration of
the grammar and the expression custom in English.

In our approach, we develop a phrase-based sta-
tistical machine translation (SMT) model but de-
crease its language model weight to make it act
as the beginner translator. With the decreased lan-
guage model weight, the SMT model becomes less
aware of the grammar and the expression custom
in English, which simulates the behaviors of ESL
learners to produce less fluent translations that may
contain grammatical errors. On the other hand, we
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employ the state-of-the-art neural machine transla-
tion (NMT) model as the advanced translator which
tends to produce fluent and grammatically correct
translations. In this way, we can generate diverse
error patterns without being limited by the pre-
defined rule set and the seed error-corrected data.

We conduct experiments in both the BEA-
19 (Bryant et al., 2019) and the CoNLL-14 (Ng
et al., 2014) datasets to evaluate our approach. Ex-
periments show the poor— good sentence pairs gen-
erated by our approach can effectively help a GEC
model to improve its performance and achieve the
state-of-the-art results in the benchmarks.

Our contributions can be summarized as follows:

e We propose a novel data synthesis method
to generate diverse error-corrected data for
pre-training GEC models based on a pair of
machine translation models.

e We conduct an empirical study of the com-
monly used data synthesis approaches for
GEC and find their shortcomings in terms of
limited error-corrected patterns which can be
well addressed by our proposed method.

e Our proposed approach can effectively help
a GEC model improve its performance and
approach the state-of-the-art results in both
the CoNLL-14 and the BEA-19 benchmarks.

2 Background: SMT vs NMT

In this section, we briefly introduce both SMT and
NMT models and discuss some of their character-
istics that motivate the proposed approach.

The phrase-based SMT model is based on the
noisy channel model. It formulates the translation
probability for translating a foreign sentence f into
English e as:

argmax, P(e|f) = argmax, P(fle)P(e) (1)

where P(e) corresponds to an English language
model and P(f|e) is a separate phrase-based trans-
lation model. In practice, an SMT model combines
the translation model with a language model with
weights tuned through minimum error rate train-
ing (MERT) (Och, 2003) on a validation set. The
role of the language model in SMT models is to
avoid literal (i.e., phrase-by-phrase) translation and
make generated translation more natural and gram-
matically correct. Without the language model, its
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Translation Model
SMT
NMT

BLEU Perplexity
20.3 23.1
27.2 15.7

Table 1: The performance (i.e. BLEU score) and the
fluency of the output sentences (i.e. Perplexity) of the
beginner translator (i.e. SMT model) and the advanced
translator (i.e. NMT model) used in our experiments
on newstest17 Chinese-English translation test set.

produced translation will become less fluent and
more likely to contain grammatical errors.

In contrast, a neural machine translation (NMT)
model based on sequence-to-sequence architec-
ture is optimized by directly maximizing the likeli-
hood of the target sentences given source sentences
P(el|f). It proves effective to generate adequate
and fluent translations, and substantially outper-
forms SMT models in most cases.

Table 1 gives a comparison of SMT and NMT
in newstestl7 Chinese-English news translation
dataset. It can be observed that the SMT model
is inferior to the NMT model in terms of both the
translation quality (reflected by BLEU) and the
fluency (reflected by Perplexity!).

3 Poor—Good Sentence Pair Generation

As discussed above, an SMT model is generally
inferior to an NMT model in terms of both fluency
and translation quality. Motivated by the fact, we
propose to employ an SMT model as a beginner
translator, and an NMT model as an advanced
translator. We use both the translators to translate
the same sentences in the source language of the
MT models into English, obtaining poor— good
English sentence pairs. These fluency-improving
sentence pairs prove helpful in improving the per-
formance of GEC models, according to the previ-
ous work (Ge et al., 2018; Zhang et al., 2019); thus
they can be used as augmented data for pre-training
a GEC model. The overview of our approach is
illustrated in Figure 2.

3.1 Poor Sentence Generation

To generate poor sentences that contain gram-
matical errors, we employ a beginner translator,
which is implemented through a phrase-based SMT
model, to translate sentences from monolingual cor-
pora in the source language (e.g. Chinese) to En-

"The perplexity of output sentences is measured by GPT-
2 (Radford et al., 2019).
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Figure 2: The overview of our approach. Our approach consists of two machine translation models with different
qualities that are trained with bi-lingual parallel corpora. The beginner translator and the advanced translator
generate poor and good translations respectively. We can thus establish error-corrected data using the poor— good
translation pairs of sentences in the source language. (Best viewed in color)

glish. To make the generated sentences less fluent
and poor enough, we propose to decrease the tuned
language model weight of the SMT model. The
resulting beginner translator tends to generate trans-
lations that resemble the sentences composed by
ESL learners: they translate phrase by phrase from
their native (i.e., source) language into English but
combine the phrase translations in an unnatural
way with little awareness of grammar in English.

We present some samples generated by a auto-
matically tuned SMT model and its counterpart
with decreased language model weights respec-
tively in Table 2. We can see the translation gen-
erated by the SMT model with the decreased lan-
guage model weight contains more grammatical
errors than the automatically tuned SMT model.
Such poor sentences can provide more diverse
error-corrected learning signals that benefit training
a GEC model.

3.2 Good Sentence Generation

To generate good counterparts for the poor sen-
tences, we use an advanced translator, which is
implemented with a state-of-the-art NMT model,
to generate good translations from the source sen-
tences. Since both the poor translations and good
translations are translated from the same source
sentences, they tend to express the same mean-
ing but in different ways. As observed in Table 2,

compared with the output sentences from the SMT
models, the NMT model’s outputs are generally
more fluent and native-sounding. Therefore, we
can pair the poor sentences with the good ones to
establish poor—good sentence pairs as potentially
useful training instances for GEC models.

The aforementioned method can be used to gen-
erate poor and good sentences from monolingual
corpora in the source language (e.g., Chinese). It
can be even more easily used when MT parallel cor-
pora (e.g., Chinese-English) are available. For MT
parallel datasets whose source sentences’ ground
truth English translations are available, we can di-
rectly use their ground truth English sentences as
the good sentences without the need to use the
NMT model to get the good translations from the
sources. Since bi-lingual parallel data for MT is
much more than that for GEC, it is also a feasible
solution to collect the poor— good sentence pairs
in this way.

4 Models

4.1 MT Models

We train both the beginner translator and the ad-
vanced translator with the Chinese-English parallel
corpus — UN Corpus (Ziemski et al., 2016), which
contains approximately 15M Chinese-English par-
allel sentence pairs with around 400M tokens.
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PIE S AT & E A RPHF M a.

Source(Chinese)

SMT,,; ginal

Diplomatic rapprochement between the two countries is the common interest of the peoples of the two countries.

SMT;,.,, Diplomatic rapprochement between two countries in the common interest of the two peoples of the two countries .
NMT The resumption of diplomatic relations between the two countries is in the common interest of the two peoples.
Source(Chinese) URMIETRHEL 2 —FH 1.

SMT,iginai Life will be for the rest of their lives better over the years .

SMT;,,, Life will for the their rest of lives better over years .

NMT Life will definitely be better every year.

Table 2: Examples of translation results generated by SMT models with different language model weights and that
generated by the NMT model. The differences between the poor sentences generated by SMT;sginar and SMTiy,
are bolded. We can see that translations generated by SMT with decreased language model weight (i.e., SMTj,.,)
contains more grammatical errors, while the NMT model produces fluent and grammatically correct sentences.

Beginner Translator We use Moses (Koehn
et al., 2007) to implement the phrase-based SMT
model for the beginner translator. Specifically, we
use MGIZA++ (Gao and Vogel, 2008) for word-
alignment, and KenLM (Heafield, 2011) for train-
ing a trigram language model on the target sen-
tences of the Chinese-English parallel data. We
tune the weights of each component in the Moses
system (e.g. phrase table, language model, etc.)
using MERT (Och, 2003) to optimize the system’s
BLEU score (Papineni et al., 2002) on a develop-
ment set that is constructed by randomly sampling
5,000 sentence pairs from the parallel corpus. To
make the SMT’s outputs worse, as Section 3.1 dis-
cusses, we decrease the weight of the language
model by 20%. To distinguish the automatically
tuned SMT model and the one with the decreased
language model weight, we call them SMT,,;.;ginal
and SMT),,, respectively.

Advanced Translator Model We use the
Transformer-based NMT model as the advanced
translator. Specifically, we use the “transformer-
big” architecture (Vaswani et al., 2017). Chinese
sentences are segmented into word-level. After-
ward, both Chinese words and English words are
split into subwords using the byte-pair encoding
technique (Sennrich et al., 2015). The vocabu-
lary size is 32K for both Chinese and English.
We train the advanced translator with Adam op-
timizer (Kingma and Ba, 2014) with the learning
rate 0.0003 and the dropout rate 0.3. We warm-
up the learning rate during the first 4K updates
and then decrease proportionally to the inverse
square root of the number of steps. The result-
ing model yields a BLEU score of 27.2 on new-
stest17 Chinese-English translation test set, which
is competitive to state-of-the-art results. We use
beam search with beam size of 4 when using it to
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generate good translations.

4.2 GEC Model

As for the GEC model, we use the same
“transformer-big” architecture as our GEC model
with tied output layer, decoder embedding, and
encoder embeddings. Both input and output sen-
tences are tokenized with byte-pair encoding with
shared codes consisting of 30,000 token types. Fol-
lowing the previous work (Zhang et al., 2019), we
train the GEC models on 8 Nvidia V100 GPUs, us-
ing Adam optimizer (Kingma and Ba, 2014) with
£1=0.9, £5=0.98. We allow each batch to have at
most 5,120 tokens per GPU. During pre-training,
we set the learning rate to 0.0005 with linear warm-
up for the first 8k updates, and then decrease pro-
portionally to the inverse square root of the number
of steps. For fine-tuning, the learning rate is set
to 0.0001 with warmup over the first 4,000 steps
and inverse square root decay after warmup. The
dropout ratio is set to 0.2 in both pre-training and
fine-tuning stages. We pre-train the model for 200k
steps and fine-tune it up to 50k steps.

We use the synthesized data generated with dif-
ferent data synthesis approaches for pre-training
GEC models. Then, we use the GEC training data
(see Section 5.1) to fine-tune the pre-trained mod-
els. We select the best model checkpoint according
to the perplexity on the BEA-19 validation set for
both the pre-training and fine-tuning. We use beam
search to decode with the beam size of 12.

S Experiments

5.1 Data

Following the previous work (Grundkiewicz
et al., 2019; Choe et al., 2019; Kiyono et al.,
2019) in GEC, the GEC training data we use
is the public Lang-8 (Mizumoto et al., 2011),



Dataset #sent(pairs) Split
SMT-NMT pairs I5M pre-train
SMT-gold pairs I5M pre-train
corruption 60M pre-train
back-translation 60M pre-train
Lang-8 1.04M fine-tune
NUCLE 57.1K fine-tune
FCE 28.4K fine-tune
W&I train 34.3K fine-tune
W&I valid 4,384 valid
W&I test (BEA-19) 4,477 test
CoNLL-14 1,312 test

Table 3: Statistics of the datasets used for pre-training
and fine-tuning.

NUCLE (Dahlmeier et al., 2013), FCE (Yan-
nakoudakis et al., 2011) and W&I+LOCNESS
datasets (Bryant et al., 2019; Granger, 1998).

To generate the poor—good English sentence
pairs that benefit GEC training, we collect mono-
lingual Chinese news corpora — Chinese Giga-
word (Graff and Chen, 2005) and news2016zh (Xu,
2019) — to generate poor and good English transla-
tions using the SMT and NMT model respectively.
After filtering®, we obtain 15M poor— good En-
glish sentence pairs. In addition, we generate 15M
poor English sentences from the Chinese-English
parallel corpus — UN Corpus — by translating the
Chinese sentences with the beginner translator, and
then pair them with their ground truth English trans-
lations as poor—good sentence pairs.

We additionally include 60M sentence pairs ob-
tained by the corruption based approach (Zhao
et al., 2019), 60M pairs from the round-trip transla-
tion approach (Lichtarge et al., 2019), and 60M
pairs by the fluency boost back-translation ap-
proach (Ge et al., 2018) for GEC pre-training.
Specifically, the corruption-based and round-trip
translation data is obtained from the NewsCrawl
dataset; while the back-translated data is harvested
from English Wikipedia with a backward model
trained on the public Lang-8 and NUCLE dataset.

We evaluate the performance of GEC mod-
els on the BEA-19 and the CoNLL-14 bench-
mark datasets. Following the latest work in
GEC (Lichtarge et al., 2019; Zhao et al., 2019;
Grundkiewicz et al., 2019; Kiyono et al., 2019;

2We discard the sentence pairs whose edit rate (i.e., the
edit distance normalized by the source sentence’s length) is
larger than 0.6.
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Method BEA-19 CoNLL-14

Junczys-Dowmunt et al. (2018) - 53.0
Lichtarge et al. (2019) - 56.8
Zhao et al. (2019) - 59.8
Choe et al. (2019) 63.1 60.3
Kiyono et al. (2019) 64.2 61.3
Ours 65.2 62.1

Table 4: The comparison of our single model against
the state-of-the-art single models in the previous work
in the BEA-19 and CoNLL-2014 test set. “-” denotes
that the previous work does not report its single model’s
performance in the test set. It is notable that among the
previous work in this table, the first three do not use
W&I+LOCNESS for training the model. We do not
compare with the work that does not report its single
model’s performance in either of the test sets.

Choe et al., 2019; Zhou et al., 2020; Omelianchuk
et al., 2020), we evaluate the performance of
trained GEC models using Fp 5 on test sets using
official scripts® in both datasets. The data sources
used for pretraining, fine-tuning, and evaluating the
GEC models are summarized in Table 3.

5.2 Results

Table 4 compares the performance of our model
to the previous studies in the same test sets. It is
notable that all the results in Table 4 are the sin-
gle model’s result with beam search decoding. We
do not compare to the results obtained with addi-
tional inference methods like iterative decoding and
reranking with an LM or a right-to-left GEC model,
because they are not related to our contributions.

According to Table 4, our model outperforms the
state-of-the-art single model results in both BEA-
19 and CoNLL-14 test set. The main difference
between our model and the previous state-of-the-art
models is that we additionally use the poor— good
English sentence pairs obtained from the pair of
MT models, accounting for the improvement over
the previous work.

To conduct an in-depth analysis of the improve-
ment by the synthesized data, we compare the
performance of GEC models pre-trained with dif-
ferent data sources. According to Table 5, the
model pre-trained with the 30M synthesized sen-
tence pairs from the beginner and advanced trans-
lator outperforms its counterparts that are pre-
trained with the same amount of data synthesized
from back-translation, round-trip translation, and
corruption-based approaches, demonstrating that

3M2scorer for CONLL-14; Errant for BEA-19.



Method BEA-19 CoNLL-14 Method BEA-19 CoNLL-14
Baseline 57.1 51.5 Pre-training Only
Pre-train with 30M synthesized data & fine-tune Ours(30M) 43.5 31.1
Corr(30M) 59.5 55.7 - w/o SMT-NMT (15M) 40.1 28.8
RT(30M) 58.9 55.2 - w/o SMT-gold (15M) 39.5 28.4
BT@30M) 59.4 55.9 Pre-training + Fine-tuning
Ours(30M) 60.4 56.6 Ours(30M) 60.4 56.6
Pre-train with 60M synthesized data & fine-tune - w/o SMT-NMT (15M) 58.2 55.2
Corr(60M) 59.9 559 - w/o SMT-gold (15M) 57.8 54.8
RT(60M) 59.7 55.8
BT(60M) 60.5 56.5 Table 7: The ablation study for comparing the contribu-
Corr(30M) + RT(30M) 61.2 57.1 tion of the SMT-NMT and SMT-gold pairs to the final
Ours(30M)+Corr(30M) 61.9 57.7 results.
Ours(30M)+BT(30M) 63.1 58.5

Table 5: The performance of GEC models pre-trained
with various synthesized data and fine-tuned with the
GEC training data. Ours denotes the synthesized data
generated with our approach, Corr,RT, and BT de-
notes the synthesized data generated by random corrup-
tion, round-trip translation, and back-translation. Base-
line denotes the GEC model directly trained with the
GEC training data without pre-training.

Method BEA-19 CoNLL-14
Pre-train with 30M synthesized data
Corr(30M) 37.1 27.5
Round-trip(30M) 39.7 29.2
BT(30M) 45.1 33.2
Ours(30M) 43.5 31.1

Pre-train with 60M synthesized data

Corr(60M) 38.7 28.1
RT(60M) 40.2 29.8
BT(60M) 47.4 355
Corr(30M) + RT(30M) 47.2 34.7
Ours(30M)+Corr(30M) 45.6 33.9
Ours(30M)+BT(30M) 49.5 36.2

Table 6: The performance of GEC models pretrained
with different synthesized data without fine-tuning on
GEC training data.

our approach provides more valuable and diverse
error-corrected learning signals for GEC models.
When we increase the amount of the synthesized
data for pre-training to 60M, we observe that
the models pre-trained with a single data source
(i.e., Corr, BT,and RT) improve only a little over
their 30M counterparts, indicating that their gen-
erated error-corrected patterns are limited, which
is consistent with the observation of the previ-
ous studies (Edunov et al., 2018). In contrast, if
combining multiple data sources for pre-training,
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Method BEA-19 CoNLL-14
Pre-training Only
Ours(30M) 43.5 31.1
- w/o decreased LM score 427 30.3
Pre-training + Fine-tuning
Ours(30M) 60.4 56.6
- w/o decreased LM score 59.1 55.8

Table 8: The ablation study to test the effect of de-
creasing the language model weight of the SMT model
in the final results.

the performance will be significantly improved.
Among them, the GEC models pre-trained with the
poor—good sentence pairs yield the best results,
which demonstrates that the error-corrected pat-
terns provided by the poor— good sentence pairs
generated through our approach are different from
those by back-translation and corruption-based ap-
proaches and they can nicely complement each
other to achieve a better result.

Moreover, we test the performance of the pre-
trained models without fine-tuning to see the qual-
ity of the synthesized data. According to Table
6, among the 30M single data sources, the data
generated by back translation yields the best perfor-
mance in both test sets, because back translation in-
troduces informative error-corrected patterns with
much less undesirable noise than the corruption-
based approach and our approach. When we double
the data size for pre-training, we observe the sim-
ilar results to those in Table 5: the combinations
of different sources of the synthesized data lead to
the best results, verifying our assumption that the
error-corrected patterns of different data sources
are different and they are complementary.



Source Sentence

“BATROZ R R 5 R

Ground-truth Translation

“We should stay healthy.”

Translation from NMT

“We should stay healthy.”

Translation from SMT

“We should keep a body healthy.”

Rule-based Corruption

“We _ stays stay healthy.”

Back Translation

“We should _ healthy.”

Round-trip Translation

“We should stay healthy.”

Source Sentence

“TLIR AR, Pt KRR IR R

Ground-truth Translation

“Anyway , I am very satisfied with everyone’s performance .”

Translation from NMT

“Anyway , I am satisfied with everyone’s performance .”

Translation from SMT

“Regardless of whether such to what , I am very satisfied with both the performance of together.”

Rule-based Corruption

“Anyway , I _ very satisfy with with everyone’s _.”

Back Translation

“Anyway , I was satisfied with everyone performance .”

Round-trip Translation

“Anyway , I am very satisfied with everyone’s performance .”

Source Sentence

“TERRFFA T AT BORF B2t

Ground-truth Translation

“This is especially true when the public does not understand Al technology .”

Translation from NMT

“This is particularly true when the public does not understand Al technology .”

Translation from SMT

“Popular understanding of Al technology not at the time is even more true .”

Rule-based Corruption

“This are especially - when _ public not do understand AI Al technology .”

Back Translation

“This is especially true when _ public do not understand the Al technology .”

Round-trip Translation

“This is particularly true when the public does not understand Al technology .”

Table 9: Examples of translations generated by the beginner translator and the advanced translator, together with
synthetic erroneous sentences generated by existing approaches.

5.3 Analysis of the synthesized poor—good
sentence pairs

As mentioned in Section 5.1, among the 30M
synthesized poor—good sentence pairs, 15M
are SMT—NMT pairs, while the others are
SMT— ground-truth translation pairs. We perform
an ablation study to analyze how much they sep-
arately contribute to GEC models. According to
Table 7, the sentence pairs with ground truth trans-
lation as their good sentences yield better results.
The reason is easy to understand: the quality of the
ground truth translations is generally better than
that of the advanced translator. However, given the
fact that bi-lingual parallel data is much less than
the monolingual text data, it is more practical to
use the beginner and advanced translator to gen-
erate the poor—good sentence pairs that will not
be limited by bi-lingual parallel corpora. More-
over, the results in Table 8 show that decreasing the
language model weight leads to more than 1.0 ab-
solute improvement in Fy 5 score in both test sets,
because it can help the SMT model to act more like
a beginner translator, which can also be illustrated
by the examples in Table 2.

We also conduct a qualitative analysis of dif-
ferent data synthesis approaches in Table 9. We
can see that the beginner translator (i.e., SMT)
generates less fluent English sentences by literally
(phrase by phrase) translating the source sentence,
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Method Error Rate % Error in Rules
Real Data 21.3 87.2
Ours 453 68.6
Rule-based Corruption 40.3 100
Round-trip Translation 6.2 61.7
Back-translation 25.7 99.2

Table 10: Error-type analysis of different data sources.
Error in rules represent the ratio of errors that are not
noted as “other” or “unknown” errors by ERRANT.

which resembles how the ESL learners write an
English sentence. The advanced translator (i.e.,
NMT) generates high-quality English sentences
that can be comparable to the ground-truth transla-
tions. Such diverse poor—good sentence pairs are
helpful to teacher a GEC model how to rewrite a
poor sentence into a good one, accounting for the
improved results we achieved. In contrast, existing
data synthesis approaches such as rule-based cor-
ruption and back-translation tends to generate simi-
lar error patterns such as verb/noun forms and word
deletions, while the round-trip translation method
generates limited modifications which are often
paraphrase-like and grammatically correct.

We then conduct an in-depth analysis of the error-
type contrained in the synthetic data generated by
our approach and other data synthesis methods us-
ing ERRANT (Bryant et al., 2017). The result is
in 10. We find that almost all error generated by



rule-based corruption and back-translation are in-
cluded in the pre-defined rules in ERRANT system,
while many errors in the real datasets are beyond
these rules. This mismatch in the distribution of
error types can often severely impact the perfor-
mance of data synthesis techniques for grammar
correction (Felice et al., 2014). In contrast, our
method can generate much more diverse error pat-
terns that are not limited by the pre-defined error
types, which may account for the performance gain.

6 Related Work

Grammatical error correction (GEC) is a well-
established natural language processing (NLP) task
that aims to build systems for automatically cor-
recting errors in written text, particularly in non-
native written text. While recently sequence tag-
ging (Ribeiro et al., 2018; Omelianchuk et al.,
2020) or word substitution with pre-trained lan-
guage model (Zhou et al., 2019; Li et al., 2020)
based GEC models have shown promising results
and improved efficiency, seq2seq-based GEC mod-
els still remain to be the mainstream method for
automated gramamtical error correction. However,
as shown in Table 3, the combination of parallel
GEC corpora only yields less than 1.5M sentence
pairs, which makes it hard to train large neural
models (e.g. transformers) to achieve better results.
Prior studies (Rei et al., 2017; Xie et al., 2018; Ge
et al., 2018; Zhao et al., 2019; Kiyono et al., 2019)
have investigated various approaches to alleviate
the data scarcity problem for training GEC mod-
els by synthesizing pseudo-parallel GEC data for
pretraining GEC models. We introduce the most
commonly used data synthesis approaches for pre-
training GEC models and discuss their pros and
cons in this section.

Rule-based Monolingual Corpora Corruption
A straightforward data synthesis method is to cor-
rupt monolingual corpora with either pre-defined
rules or errors extracted from the seed parallel GEC
data (Foster and Andersen, 2009; Zhao et al., 2019;
Wang et al., 2019). The advantage of this approach
is that it is very simple and efficient for generat-
ing pseudo-parallel GEC data from monolingual
corpora. However, manually designed rules are lim-
ited and only cover a small portion of grammatical
error types written by ESL learners. This makes
the improvement yielded by pretraining exclusively
with synthetic data generated by this approach very
limited, which is demonstrated in our experiments.
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Back-translation based Error Generation
This approach trains an error generation model
by using the existing error-corrected corpora in
the opposite direction and introduces noise into
a clean corpus (Rei et al., 2017; Xie et al., 2018;
Ge et al., 2018). Concretely, an error generation
model is trained to take a correct sentence as input
and outputs an erroneous version of the original
sentence. It is used to synthesize error-corrected
data by taking monolingual corpora as input.
This approach is able to cover more diverse
error types compared with rule-based corruption
method. However, it requires a large amount of
annotated error-corrected data, which is not always
available, to train the error generation model.
In addition, the error patterns generated by this
method are generally limited to that contained in
the GEC parallel data, which makes the effect
of synthetic data generated by back-translation
quickly saturates as the amount of synthetic data
grows, as demonstrated in our experiments.

Data Generation from Wikipedia Revision
This approach is based on revision histories from
Wikipedia (Cahill et al., 2013; Lichtarge et al.,
2019). Specifically, it extracts source-target pairs
from Wikipedia edit histories by taking two con-
secutive snapshots as a single revision to the page
to form the error-corrected sentence pairs. This
method is able to collect human-made revisions
that may better resemble real error-corrected data.
However, the vast majority of extracted revisions
are not grammatical error corrections, which makes
the synthesized data noisy and requires sophis-
ticated filtering before used for pre-training. In
addition, the domain of available revision history
is limited, which makes this method less general
compared to other approaches that can generate
synthetic data using any monolingual corpora.

Data Generation from Round-trip Translations
Round-trip translation (Désilets and Hermet, 2009;
Madnani et al., 2012; Lichtarge et al., 2019) is an
alternative approach to synthesis pseudo-parallel
data for GEC pre-training with monolingual cor-
pora. This approach attempts to introduce noise
via bridge translations. Specifically, it uses two
state-of-the-art NMT models, one from English to
a bridge language and the other from the bridge
language to English. With the MT models, it takes
the original sentences from monolingual corpora
as the target sentences, and takes the outputs of the



round-trip translation as the corresponding source
sentences. However, when good translation models
are employed, as in the case of (Lichtarge et al.,
2019), the resulting source sentences are very likely
to be clean and without grammatical errors; on the
other hand, when poor machine translation models,
such as the SMT models with decreased language
model weight, are employed, it may result in a se-
mantic drift from target sentences because two con-
secutive low quality translation are made, which is
undesirable for training GEC models. In contrast,
the difference between the two machine translation
models employed in our approach ensures that the
source sentences are of low fluency and contain
many grammatical errors.

7 Conclusion and Future Work

We propose a novel method to synthesize
poor—good sentence pairs for pre-training GEC
models based on a pair of MT models of differ-
ent quality. The generated sentence pairs contain
diverse error-corrected patterns that can nicely com-
plement other data augmentation approaches, lead-
ing to a performance approaching the state-of-the-
art single model results in GEC benchmarks. For
future work, we plan to investigate the influence
of different source languages of the MT models in
the performance of GEC, which might be helpful
in building a customized English GEC model for
the people speaking a specific foreign language.
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