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Abstract

Predicting missing facts in a knowledge graph
(KG) is a crucial task in knowledge base con-
struction and reasoning, and it has been the
subject of much research in recent works us-
ing KG embeddings. While existing KG em-
bedding approaches mainly learn and predict
facts within a single KG, a more plausible so-
lution would benefit from the knowledge in
multiple language-specific KGs, considering
that different KGs have their own strengths
and limitations on data quality and coverage.
This is quite challenging, since the transfer
of knowledge among multiple independently
maintained KGs is often hindered by the in-
sufficiency of alignment information and the
inconsistency of described facts. In this pa-
per, we propose KEnS, a novel framework
for embedding learning and ensemble knowl-
edge transfer across a number of language-
specific KGs. KEnS embeds all KGs in a
shared embedding space, where the associ-
ation of entities is captured based on self-
learning. Then, KEnS performs ensemble in-
ference to combine prediction results from em-
beddings of multiple language-specific KGs,
for which multiple ensemble techniques are
investigated. Experiments on five real-world
language-specific KGs show that KEnS con-
sistently improves state-of-the-art methods on
KG completion, via effectively identifying and
leveraging complementary knowledge.

1 Introduction

Knowledge graphs (KGs) store structured repre-
sentations of real-world entities and relations, con-
stituting actionable knowledge that is crucial to
various knowledge-driven applications (Koncel-
Kedziorski et al., 2019; Chen et al., 2018a; Bordes
et al., 2014). Recently, extensive efforts have been
invested in KG embedding models, which encode

∗ This work was done when this author was visiting
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entities as low-dimensional vectors and capture re-
lations as algebraic operations on entity vectors.
These models provide a beneficial tool to complete
KGs by discovering previously unknown knowl-
edge from latent representations of observed facts.
Representative models including translational mod-
els (Bordes et al., 2013; Wang et al., 2014) and
bilinear models (Yang et al., 2015; Trouillon et al.,
2016) have achieved satisfactory performance in
predicting missing facts.

Existing methods mainly investigate KG comple-
tion within a single monolingual KG. As different
language-specific KGs have their own strengths
and limitations on data quality and coverage, we
investigate a more natural solution, which seeks to
combine embedding models of multiple KGs in an
ensemble-like manner. This approach offers several
potential benefits. First, embedding models of well-
populated KGs (e.g. English KGs) are expected
to capture richer knowledge because of better data
quality and denser graph structures. Therefore, they
would provide ampler signals to facilitate inferring
missing facts on sparser KGs. Second, combining
the embeddings allows exchanging complementary
knowledge across different language-specific KGs.
This provides a versatile way of leveraging specific
knowledge that is better known in some KGs than
the others. For example, consider the facts about
the oldest Japanese novel The Tale of Genji. En-
glish DBpedia (Lehmann et al., 2015) only records
its genre as Monogatari (story), whereas Japanese
DBpedia identifies more genres, including Love
Story, Royal Family Related Story, Monogatari and
Literature-Novel. Similarly, it is reasonable to ex-
pect a Japanese KG embedding model to offer sig-
nificant advantages in inferring knowledge about
other Japanese cultural entities such as Nintendo
and Mount Fuji. Moreover, ensemble inference
provides a mechanism to assess the credibility of
different knowledge sources and thus leads to a
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Figure 1: A depiction of the ensemble inference process answering the query (The Tale of Genji, genre, ?t) with multiple
language-specific KG embeddings. Ground truth answers are markedMonogatari is a traditional Japanese literary form.

more accurate final prediction.

Despite the potential benefits, combining predic-
tions from multiple KG embeddings represents a
non-trivial technical challenge. On the one hand,
knowledge transfer across different embeddings is
hindered by the lack of reliable alignment infor-
mation that bridges different KGs. Recent works
on multilingual KG embeddings provide support
for automated entity matching (Chen et al., 2017,
2018b; Sun et al., 2018, 2020a). However, the
performance of the state-of-the-art (SOTA) entity
matching methods is still far from perfect (Sun
et al., 2020a), which may cause erroneous knowl-
edge transfer between two KGs. On the other hand,
independently extracted and maintained language-
specific KGs may inconsistently describe some
facts, therefore causing different KG embeddings
to give inconsistent predictions and raising a chal-
lenge to identifying the trustable sources. For in-
stance, while the English DBpedia strictly distin-
guishes the network of a TV series (e.g. BBC)
from its channel (e.g. BBC One) with two sepa-
rate relations, i.e., network and channel, the
Greek DBpedia only uses channel to represent
all of those. Another example of inconsistent in-
formation is that Chinese DBpedia labels the birth
place of the ancient Chinese poet Li Bai as Sichuan,
China, which is mistakenly recorded as Chuy, Kyr-
gyz in English DBpedia. Due to the rather inde-
pendent extraction process of each KG, such in-
consistencies are inevitable, calling upon a reliable
approach to identify credible knowledge among

various sources.
In this paper, we propose KEnS (Knowledge

Ensemble), which, to the best of our knowledge,
is the first ensemble framework of KG embedding
models. Fig. 1 gives a depiction showing the en-
semble inference process of KEnS. KEnS seeks to
improve KG completion in a multilingual setting,
by combining predictions from embedding models
of multiple language-specific KGs and identifying
the most probable answers from those prediction
results that are not necessarily consistent. Exper-
iments on five real-world language-specific KGs
show that KEnS significantly improves SOTA fact
prediction methods that solely rely on a single KG
embedding. We also provide detailed case studies
to interpret how a sparse, low-resource KG can
benefit from embeddings of other KGs, and how
exclusive knowledge in one KG can be broadcasted
to others.

2 Related Work

We hereby discuss three lines of work that are
closely related to this topic.
Monolingual KG Embeddings. Monolingual KG
embedding models embed entities and relations in
a low-dimensional vector space and measure triple
plausibility using these vectors. Translational mod-
els assess the plausibility of a triple (h, r, t) by
the distance between two entity vectors h and t,
after applying a relation-specific translation vec-
tor r. The representative models include TransE
(Bordes et al., 2013) and its extensions TransD (Ji
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et al., 2015). Despite their simplicity, translational
models achieve satisfactory performance on KG
completion and are robust against the sparsity of
data (Hao et al., 2019). RotatE (Sun et al., 2019b)
employs a complex embedding space and models
the relation r as the rotation instead of translation
of the complex vector h toward t, which leads to
the SOTA performance on KG embedding. There
are also various methods falling into the groups of
Bilinear models such as RESCAL (Nickel et al.,
2011) and DistMult (Yang et al., 2015), as well as
neural models like HolE (Nickel et al., 2016) and
ConvE (Dettmers et al., 2018). Due to the large
body of work in this line of research, we only pro-
vide a highly selective summary here. Interested
readers are referred to recent surveys (Wang et al.,
2017; Ji et al., 2020) for more information.

Multilingual KG Embeddings. Recent studies
have extended embedding models to bridge multi-
ple KGs, typically for KGs of multiple languages.
MTransE (Chen et al., 2017) jointly learns a trans-
formation across two separate translational embed-
ding spaces along with the KG structures. BootEA
(Sun et al., 2018) introduces a bootstrapping ap-
proach to iteratively propose new alignment labels
to enhance the performance. MuGNN (Cao et al.,
2019) encodes KGs via multi-channel Graph Neu-
ral Network to reconcile the structural differences.
Some others also leverage side information to en-
hance the alignment performance, including en-
tity descriptions (Chen et al., 2018b; Zhang et al.,
2019), attributes (Trsedya et al., 2019; Sun et al.,
2017; Yang et al., 2019), neighborhood information
(Wang et al., 2018; Yang et al., 2015; Li et al., 2019;
Sun et al., 2019a, 2020a) and degree centrality mea-
sures (Pei et al., 2019). A systematic summary of
relevant approaches is given in a recent survey by
Sun et al. (2020b). Although these approaches fo-
cus on the KG alignment that is different from the
problem we tackle here, such techniques can be
leveraged to support entity matching between KGs,
which is a key component of our framework.

Ensemble methods. Ensemble learning has been
widely used to improve machine learning results
by combining multiple models on the same task.
Representative approaches include voting, bagging
(Breiman, 1996), stacking (Wolpert, 1992) and
boosting (Freund and Schapire, 1997). Boosting
methods seek to combine multiple weak models
into a single strong model, particularly by learn-
ing model weights from the sample distribution.

Representative methods include AdaBoost (Fre-
und and Schapire, 1997) and RankBoost (Freund
et al., 2004), which target at classification and rank-
ing respectively. AdaBoost starts with a pool of
weak classifiers and iteratively selects the best one
based on the sample weights in that iteration. The
final classifier is a linear combination of the se-
lected weak classifiers, where each classifier is
weighted by its performance. In each iteration,
sample weights are updated according to the se-
lected classifier so that the subsequent classifiers
will focus more on the hard samples. RankBoost
seeks to extend AdaBoost to ranking model com-
bination. The model weights are learned from the
ranking performance in a boosting manner. In this
paper, we extend RankBoost to combine ranking
results from multiple KG embedding models. This
technique addresses KG completion by combining
knowledge from multiple sources and effectively
compensates for the inherent errors in any entity
matching processes.

3 Method

In this section, we introduce KEnS, an embedding-
based ensemble inference framework for multilin-
gual KG completion.
KEnS conducts two processes, i.e. embedding

learning and ensemble inference. The embedding
learning process trains the knowledge model that en-
codes entities and relations of every KG in a shared
embedding space, as well as the alignment model
that seizes the correspondence in different KGs
and enables the projection of queries and answers
across different KG embeddings. The ensemble
inference process combines the predictions from
multiple KG embeddings to improve fact predic-
tion. Particularly, to assess the confidence of pre-
dictions from each source, we introduce a boosting
method to learn entity-specific weights for knowl-
edge models.

3.1 Preliminaries

A KG G consists of a set of (relational) facts
{(h, r, t)}, where h and t are the head and tail enti-
ties of the fact (h, r, t), and r is a relation. Specifi-
cally, h, t ∈ E (the set of entities in G), and r ∈ R
(the set of relations). To cope with KG completion,
the fact prediction task seeks to fill in the right en-
tity for the missing head or tail of an unseen triple.
Without loss of generality, we hereafter discuss the
case of predicting missing tails. We refer to a triple
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with a missing tail as a query q = (h, r, ?t). The
answer set Ω(q) consists of all the right entities
that fulfill q. For example, we may have a query
(The Tale of Genji, genre, ?t), and its answer set
will include Monogatari, Love Story, etc.

Given KGs in M languages G1, G2, . . . , GM

(|Ei| ≤ |Ej |, i < j), we seek to perform fact pre-
diction on each of those by transferring knowledge
from the others. We consider fact prediction as a
ranking task in the KG embedding space, which is
to transfer the query to external KGs and to com-
bine predictions from multiple embedding models
into a final ranking list. Particularly, given the
existing situation of the major KGs, we use the
following settings: (i) entity alignment information
is available between any two KGs, though limited;
and (ii) relations in different language-specific KGs
are represented with a unified schema. The reason
for the assumption is that unifying relations is usu-
ally feasible, since the number of relations is often
much smaller compared to the enormous number
of entities in KGs. This has been de facto achieved
in a number of influential knowledge bases, in-
cluding DBpedia (Lehmann et al., 2015), Wikidata
(Vrandečić and Krötzsch, 2014) and YAGO (Re-
bele et al., 2016). In contrast, KGs often consist of
numerous entities that cannot be easily aligned, and
entity alignment is available only in small amounts.

3.2 Embedding Learning

The embedding learning process jointly trains the
knowledge model and the alignment model follow-
ing Chen et al. (2017), while self-learning is added
to improve the alignment learning. The details are
described below.
Knowledge model. A knowledge model seeks to
encode the facts of a KG in the embedding space.
For each language-specific KG, it characterizes
the plausibility of its facts. Notation-wise, we use
boldfaced h, r, t as embedding vectors for head h,
relation r and tail t respectively. The learning ob-
jective is to minimize the following margin ranking
loss:

J G
K =

∑
(h,r,t)∈G,

(h′,r,t′)/∈G

[f(h′, r, t′)− f(h, r, t) + γ]+

(1)
where [·]+ = max(·, 0), and f is a model-specific
triple scoring function. The higher score indicates
the higher likelihood that the fact is true. γ is a hy-
perparameter, and (h′, r, t′) is a negative sampled

triple obtained by randomly corrupting either head
or tail of a true triple (h, r, t).

We here consider two representative triple scor-
ing techniques: TransE (Bordes et al., 2013) and
RotatE (Sun et al., 2019b). TransE models rela-
tions as translations between head entities and tail
entities in a Euclidean space, while RotatE models
relations as rotations in a complex space. The triple
scoring functions are defined as follows.

fTransE(h, r, t) = −‖h + r − t‖2 (2)

fRotatE(h, r, t) = −‖h ◦ r − t‖2 (3)

where ◦ : Cd × Cd → Cd denotes Hadamard prod-
uct for complex vectors, and ‖·‖2 denotes L2 norm.
Alignment model. An alignment model is trained
to match entity counterparts between two KGs on
the basis of a small amount of seed entity alignment.
We embed all KGs in one vector space and make
each pair of aligned entities embedded closely.
Given two KGs Gi and Gj with |Ei| ≤ |Ej |, the
alignment model loss is defined as:

J Gi↔Gj

A =
∑

(ei,ej)∈ΓGi↔Gj

‖ei − ej‖2 (4)

where ei ∈ Ei, ej ∈ Ej and ΓGi↔Gj is the set
of seed entity alignment between Gj and Gi. As-
suming the potential inaccuracy of alignment, we
do not directly assign the same vector to aligned
entities of different language-specific KGs.

Particularly, as the seed entity alignment is pro-
vided in small amounts, the alignment process con-
ducts self-learning, where training iterations incre-
mentally propose more training data on unaligned
entities to guide subsequent iterations. At each iter-
ation, if a pair of unaligned entities in two KGs are
mutual nearest neighbors according to the CSLS
measure (Conneau et al., 2018), KEnS adds this
highly confident alignment to the training data.
Learning objective. We conduct joint training of
knowledge models for multiple KGs and alignment
models between each pair of them via minimizing
the following loss function:

J =

M∑
m=1

J Gm
K + λ

M∑
i=1

M∑
j=i+1

J Gi↔Gj

A (5)

where J Gm
K is the loss of the knowledge model on

Gm as defined in Eq (1), J Gi↔Gj

A is the alignment
loss between Gi and Gj . λ is a positive hyperpa-
rameter that weights the two model components.
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Following Chen et al. (2017), instead of directly
optimizing J in Eq. (5), our implementation op-
timizes each J G

K and each λJ Gi↔Gj

A alternately
in separate batches. In addition, we enforce L2-
regularization to prevent overfitting.

3.3 Ensemble Inference
We hereby introduce how KEnS performs fact pre-
diction on multiple KGs via ensemble inference.
Cross-lingual query and knowledge transfer.
To facilitate the process of completing KG Gi with
the knowledge from another KG Gj , KEnS first
predicts the alignment for entities between Gi and
Gj . Then, it uses the alignment to transfer queries
fromGi toGj , and transfer the results back. Specif-
ically, alignment prediction is done by performing
an kNN search in the embedding space for each
entity in the smaller KG (i.e. the one with fewer
entities) and find the closest counterpart from the
larger KG. Inevitably, some entities in the larger
KG will not be matched with a counterpart due
to the 1-to-1 constraint. In this case, we do not
transfer queries and answers for that entity.
Weighted ensemble inference. We denote the em-
bedding models ofG1, . . . , GM as f1, . . . , fM . On
the target KG where we seek to make predictions,
given each query, the entity candidates are ranked
by the weighted voting score of the models:

s(e) =
M∑
i=1

wi(e)Ni(e) (6)

where e is an entity on the target KG, and wi(e) is
an entity-specific model weight, Ni(e) is 1 if e is
ranked among top K by fi, otherwise 0.

We propose three variants of KEnS that differ in
the computing of wi(e), namely KEnSb , KEnSv
and KEnSm. Specifically, KEnSb learns an entity-
specific weight wi(e) for each entity in a boosting
manner, KEnSv fixes wi(e) = 1 for all fi and e
(i.e. majority voting), and KEnSm adopts mean
reciprocal rank (MRR) of fi on the validation set
of the target KG as wi(e). We first present the
technical details of the boosting-based KEnSb.

3.3.1 Boosting Based Weight Learning
KEnSb seeks to learn model weights for ranking
combination, which aims at reinforcing correct be-
liefs and compensating for alignment error. An
embedding model that makes more accurate pre-
dictions should receive a higher weight. Inspired
by RankBoost (Freund et al., 2004), we reduce

the ranking combination problem to a classifier en-
semble problem. KEnSb therefore learns model
weights in a similar manner as AdaBoost.
Validation queries and critical entity pairs. To
compute entity-specific weightswi(e), KEnSb eval-
uates the performance of fi on a set of validation
queries related to e. These queries are converted
from all the triples in the validation set that mention
e. An example of validation queries for the entity
The Tale of Genji is given as below.
Example 3.1. Examples of triples and validation
queries for the entity The Tale of Genji.

Triples:
{(The Tale of Genji, country, Japan)

(The Tale of Genji, genre, Monogatari)

(The Tale of Genji, genre, Love Story)}
Queries:
Q = {q1 = (The Tale of Genji, country, ?t)

q2 = (The Tale of Genji, genre, ?t)}

Similar to RankBoost (Freund et al., 2004), given a
query q, KEnSb evaluates the ranking performance
of a model by checking if each of the critical entity
pairs {(e, e′)} is ranked in correct order, where e
is a ground truth tail and e′ is an incorrect one. An
example of critical entity pairs is given as below:
Example 3.2. Critical entity pairs for the query
(The Tale of Genji, genre, ?t). Ground truth tails
are boldfaced. Pairs with x-marks indicate wrong
prediction orders.

Correct ranking :

Monogatari, Love Story, Modernist, Science Fiction
Predicted ranking:

Modernist, Monogatari, Love Story, Science Fiction
Critical pair ranking results:

(Monogatari, Modernist) 7, (Love Story, Modernist) 7

(Monogatari, Science Fiction) X,

(Love Story, Science Fiction) X
Uncritical pairs:

(Monogatari, Love Story), (Modernist, Science Fiction)

Ranking loss. The overall objective of KEnSb is to
minimize the sum of ranks of all correct answers in
the combined ranking list

∑
q

∑
e∈Ω(q) r(e), where

Ω(q) is the answer set of query q and r(e) is the
rank of entity e in the combined ranking list of
the ensemble inference. Essentially, the above ob-
jective is minimizing the number of mis-ordered
critical entity pairs in the combined ranking list.
Let the set of all the critical entity pairs from all the
validation queries of an entity as P . Freund et al.
(2004) have proved that, when using RankBoost,
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this ranking loss is bounded as follows:

|{p : p ∈ P, p is mis-ordered}| ≤ |P |
M∏

m=1

Zm

where M is the number of KGs and therefore the
maximum number of rounds in boosting. Zm is
the weighted ranking loss of the m-th round:

Zm =
∑
p∈P

Dm(p)e−w
mJpKm (7)

where JpKm = 1 if the critical entity pair p is
ranked in correct order by the selected embedding
model in the m-th round, otherwise JpKm = −1,
Dm(p) is the weight of the critical entity pair p
in the m-th round, and wm is the weight of the
chosen model in that round. Now the ranking com-
bination problem is reduced to a common classifier
ensemble problem.
Boosting procedure. The boosting process alter-
nately repeats two steps: (i) Evaluate the ranking
performance of the embedding models and choose
the best one fm according to the entity pair weight
distribution in that round; (ii) Update entity pair
weights to put more emphasis on the pairs which
fm ranks incorrectly.

Entity pair weights are initialized uniformly over
P as D1(p) = 1

|P | , p ∈ P . In the m-th round
(m = 1, 2, ...,M), KEnSb chooses an embedding
model fm and sets its weight wm, seeking to min-
imize the weighted ranking loss Zm defined in
Eq.(7). By simple calculus, when choosing the em-
bedding model fi as the model of the m-th round,
wm
i should be set as follows to minimize Zm:

wm
i =

1

2
ln(

∑
p∈P,JpK=1D

m(p)∑
p∈P,JpK=−1D

m(p)
) (8)

As we can see from Eq. (8), the higher wm
i in-

dicates the better performance of fi under the
current entity pair weight distribution Dm. We
select the best embedding model in the m-th
round fm based on the maximum weight wm =
max{wm

1 , ..., w
m
M}.

After choosing the best model fm at this itera-
tion, we update the entity pair weight distribution
to put more emphasis on what fm ranked wrong.
The new weight distribution Dm+1 is updated as:

Dm+1(p) =
1

Zm
Dm(p)e−w

mJpKm (9)

where Zm works as a normalization factor.
KEnSb decreases the weight ofD(p) if the selected

Lang. EN FR ES JA EL
#Ent. 13,996 13,176 12,382 11,805 5,231
#Rel. 831 178 144 128 111

#Triples 80,167 49,015 54,066 28,774 13,839

Table 1: Statistics of DBP-5Ldataset. Ent. and Rel. stand for
entities and relations respectively.

model ranks the entity pair in correct order and in-
creases the weight otherwise. Thus, D(p) will tend
to concentrate on the pairs whose relative ranking
is hardest to determine.

For queries related to a specific entity, this pro-
cess is able to recognize the embedding models
that perform well on answering those queries and
rectify the mistakes made in the previous iteration.

3.3.2 Other Ensemble Techniques
We also investigate two other model variants with
simpler ensemble techniques.
Majority vote (KEnSv): A straightforward ensem-
ble method is to re-rank entities by their nomi-
nation counts in the prediction of all knowledge
models, which substitutes the voting score (Eq. 6)
with s(e) =

∑M
i=1Ni(e), where Ni(e) is 1 if e is

ranked among the top K by the knowledge model
fi, otherwise 0. When there is a tie, we order by
the MRR given by the models on the validation set.
MRR weighting (KEnSm): MRR is a widely-used
metric for evaluating the ranking performance of
a model (Bordes et al., 2013; Yang et al., 2015;
Trouillon et al., 2016), which may also serve as
a weight metric for estimating the prediction con-
fidence of each language-specific embedding in
ensemble inference (Shen et al., 2017). Let the
MRR of fi be ui on the validation set, the entities
are ranked according to the weighted voting score
s(e) =

∑M
i=1 uiNi(e).

4 Experiments

In this section, we conduct the experiment of fact
prediction by comparing KEnS variants with var-
ious KG embeddings. We also provide a detailed
case study to help understand the principle of en-
semble knowledge transfer.

4.1 Experiment Settings
To the best of our knowledge, existing datasets
for fact prediction contain only one monolingual
KG or bilingual KGs. Hence, we prepared a new
dataset DBP-5L, which contains five language-
specific KGs extracted from English (EN), French
(FR), Spanish (ES) and Japanese (JA) and Greek
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KG Greek Japanese Spanish French English
Hits@k (%) 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10

TransD 2.8 16.9 29.8 4.2 16.3 28.8 2.12 20.4 11.5 3.3 14.4 25.7 2.9 15.4 27.4
DistMult 8.9 13.0 11.3 9.3 18.4 27.5 7.4 15.0 22.4 6.1 14.3 23.8 8.8 19.4 30.0

HolE 4.2 9.5 18.3 25.5 29.5 32.8 20.1 26.8 29.4 22.4 24.4 28.9 12.3 20.4 25.4
TransE 13.1 23.4 43.7 21.1 34.4 48.5 13.5 29.4 45.0 17.5 33.1 48.8 7.3 16.4 29.3

KEnSv(TransE) 23.1 36.7 64.7 22.6 35.2 52.5 15.0 28.3 49.0 18.7 29.4 52.0 10.8 20.4 39.4
KEnSm(TransE) 26.3 42.1 65.8 26.1 37.7 55.3 16.8 32.9 48.6 20.5 35.6 52.8 11.4 21.2 31.3
KEnSb(TransE) 26.4 42.4 66.1 26.7 39.8 56.4 17.4 32.6 48.3 20.8 35.9 53.1 11.7 21.8 32.0

RotatE 14.5 18.8 36.2 26.4 36.2 60.2 21.2 31.6 53.9 23.2 29.4 55.5 12.3 25.4 30.4
RotatE+PARIS - - - - - - 20.8 39.4 59.1 22.8 32.4 60.8 12.4 22.7 31.5
KEnSv(RotatE) 20.5 34.3 50.1 31.9 50.0 65.0 20.8 41.0 59.9 23.7 42.7 61.9 13.4 23.6 34.2
KEnSm(RotatE) 22.0 35.0 51.4 32.0 49.9 65.0 21.2 41.6 60.0 24.5 44.8 62.5 12.1 24.5 34.3
KEnSb(RotatE) 27.5 40.6 56.5 32.9 49.9 64.8 22.3 42.4 60.6 25.2 44.5 62.6 14.4 27.0 39.6

Table 2: Fact prediction results on DBP-5L. The overall best results are under-scored.

(EL) DBpedia (Lehmann et al., 2015). Table 1
lists the statistics of the contributed dataset DBP-
5L. The relations of the five KGs are represented
in a unified schema, which is consistent with the
problem definition in Section 3.1. The English KG
is the most populated one among the five. To pro-
duce KGs with a relatively consistent set of entities,
we induce the subgraphs by starting from a set of
seed entities where we have alignment among all
language-specific KGs and then incrementally col-
lecting triples that involve other entities. Eventually
between any two KGs, the alignment information
covers around 40% of entities. Based on the same
set of seed entities, the Greek KG ends up with a
notably smaller vocabulary and fewer triples than
the other four. We split the facts in each KG into
three parts: 60% for training, 30% for validation
and weight learning, and 10% for testing.
Experimental setup. We use the Adam (Kingma
and Ba, 2014) as the optimizer and fine-tune
the hyper-parameters by grid search based on
Hits@1 on the validation set. We select among
the following sets of hyper-parameter values:
learning rate lr ∈ {0.01, 0.001, 0.0001}, di-
mension d ∈ {64, 128, 200, 300}, batch size
b ∈ {256, 512, 1024}, and TransE margin γ ∈
{0.3, 0.5, 0.8}. The best setting is {lr = 0.001,
d = 300, b = 256} for KEnS(TransE) and {lr =
0.01, d = 200, b = 512} for KEnS(RotatE). The
margin for TransE is 0.3. The L2 regularization
coefficient is fixed as 0.0001.
Evaluation protocol. For each test case (h, r, t),
we consider it as a query (h, r, ?t) and retrieve top
K prediction results for ?t. We compare the propor-

tion of queries with correct answers ranked within
top K retrieved entities. We report three metrics
with K as 1, 3, 10. Hits@1 is equivalent to accu-
racy. All three metrics are preferred to be higher.
Although another common metric, Mean Recipro-
cal Rank (MRR), has been used in previous works
(Bordes et al., 2013), it is not applicable to the
evaluation of our framework because our ensem-
ble framework combines the top entity candidates
from multiple knowledge models and yields top K
final results without making any claims for entities
out of this scope. Following previous works, we
use the “filtered” setting with the premise that the
candidate space has excluded the triples that have
been seen in the training set (Wang et al., 2014).

Competitive methods. We compare six variants
of KEnS, which are generated by combining two
knowledge models and three ensemble inference
techniques introduced in in Section 3. For base-
line methods, besides the single-embedding TransE
(Bordes et al., 2013) and RotatE (Sun et al., 2019b),
we also include DistMult (Yang et al., 2015),
TransD (Ji et al., 2015), and HolE (Nickel et al.,
2016). After extensive hyperparameter tuning,
the baselines are set to their best configurations.
We also include a baseline named RotatE+PARIS,
which trains RotatE on 5 KGs and uses the rep-
resentative non-embedding symbolic entity align-
ment tool PARIS (Suchanek et al., 2011) for entity
matching. PARIS delivered entity matching predic-
tions for 58%-62% entities in the English, French,
and Spanish KG, but almost no matches are de-
livered for entities in the Greek and Japanese KG,
since PARIS mainly relies on entity label similarity.
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Figure 2: Average model weights learned by KEnSb(TransE).

Figure 3: Examples of language-specific model weights learned by KEnSb(TransE). Percentages have been rounded.

The results on the Greek and Japanese KG are thus
omitted for RotatE+PARIS.

4.2 Main Results

The results are reported in Table 2. As shown,
the ensemble methods by KEnS lead to consistent
improvement in fact prediction. Overall, the en-
semble inference leads to 1.1%-13.0% of improve-
ment in Hits@1 over the best baseline methods.
The improved accuracy shows that it is effective
to leverage complementary knowledge from ex-
ternal KGs for KG completion. We also observe
that KEnS brings larger gains on sparser KGs than
on the well-populated ones. Particularly, on the
low-resource Greek KG, KEnSb(RotatE) improves
Hits@1 by as much as 13.0% over its single-KG
counterpart. This finding corroborates our intuition
that the KG with lower knowledge coverage and
sparser graph structure benefits more from comple-
mentary knowledge.

Among the variants of ensemble methods,
KEnSm offers better performance than KEnSv, and
KEnSb outperforms the other two in general. For
example, on the Japanese KG, KEnSv(TransE)
improves Hits@1 by 3.5% from the single-KG

TransE, while KEnSm leads to a 5.0% increase,
and KEnSb further provides a 5.6% of improve-
ment. The results suggest that MRR is an effective
measure of the trustworthiness of knowledge mod-
els during ensemble inference. Besides, KEnSb is
able to assess trustworthiness at a finer level of gran-
ularity by learning entity-specific model weights
and can thus further improve the performance.

In summary, the promising results by KEnS
variants show the effectiveness of transferring and
leveraging cross-lingual knowledge for KG comple-
tion. Among the ensemble techniques, the boosting
technique represents the most suitable one for com-
bining the prediction results from different models.

4.3 Case Studies

In this section, we provide case studies to show how
KEnS is able to transfer cross-lingual knowledge
to populate different KGs.
Model weights. The key to the significantly en-
hanced performance of KEnSb is the effective com-
bination of multilingual knowledge from multiple
sources. Fig 2 shows the average model weight
learnt by KEnSb(TransE), which depicts how exter-
nal knowledge from cross-lingual KGs contributes
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Model Top 3 Predicted Tails
English Television, Publishing, Information technology
Japanese Video game, Anime, Consumer electronics
Spanish Music, Telecommunication, Retail
French Retail, Television, Video game,
Greek Nintendo, Music, Wii
KEnSv [Video game, Television](tie), Music
KEnSm Television, Video game, Music
KEnSb Video game, Television, Consumer electronics

Table 3: An example of fact prediction on the English KG
by the English knowledge model, four supporter knowledge
models, and KEnS(TransE) variants. Top 3 predicted tails
for the query (Nintendo, industry, ?t) are listed.
Ground truths are boldfaced.

to target KG completion in general. The model
weights imply that sparser KGs benefit more from
the knowledge transferred from others. Particularly,
when predicting for the Greek KG, the weights of
other languages sums up to 81%. This observation
indicates that the significant boost received on the
Greek KG comes with the fact that it has accepted
the most complementary knowledge from others.
In contrast, when predicting on the most populated
English KG, the other language-specific models
give a lesser total weight of 57%.

Among the three KEns variants, the superior-
ity of KEnSb is attributed to identification of more
credible knowledge sources, thus making more ac-
curate predictions. For language-specific KGs, the
higher level of credibility often stems from the cul-
tural advantage the KG has over the entity. Fig 3
presents the model weights for 6 culture-related
entities learned by KEnSb(TransE). It shows that
KEns can locate the language-specific knowledge
model that has a cultural advantage and assign it
with a higher weight, which is the basis of an accu-
rate ensemble prediction.
Ensemble inference. To help understand how
the combination of multiple KGs improves KG
completion and show the effectiveness of lever-
aging complementary culture-specific knowledge
, we present a case study about predicting the
fact (Nintendo, industry, ?t) for En-
glish KG. Table 3 lists the top 3 predicted tails
yielded by the KEnS(TransE) variants, along with
those by the English knowledge model and sup-
porter knowledge models before ensemble. The
predictions made by the Japanese KG are the clos-
est to the ground truths. The reason may be that
Japanese KG has documented much richer knowl-
edge about this Japanese video game company, in-
cluding many of the video games that this com-

pany has released. Among the three KEnS variants,
KEnSb correctly identifies Japanese as the most
credible source and yields the best ranking.

5 Conclusion

In this paper, we have proposed a new ensemble
prediction framework aiming at collaboratively pre-
dicting unseen facts using embeddings of different
language-specific KGs. In the embedding space,
our approach jointly captures both the structured
knowledge of each KG and the entity alignment
that bridges the KGs. The significant performance
improvements delivered by our model on the task
of KG completion were demonstrated by extensive
experiments. This work also suggests promising
directions of future research. One is to exploit
the potential of KEnS on completing low-resource
KGs, and the other is to extend the ensemble trans-
fer mechanism to population sparse domain knowl-
edge in biological (Hao et al., 2020) and medical
knowledge bases (Zhang et al., 2020). Pariticularly,
we also seek to ensure the global logical consis-
tency of predicted facts in the ensemble process by
incorporating probabilistic constraints (Chen et al.,
2019).
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