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Abstract

Recent research demonstrates that word em-
beddings, trained on the human-generated cor-
pus, have strong gender biases in embedding
spaces, and these biases can result in the
discriminative results from the various down-
stream tasks. Whereas the previous methods
project word embeddings into a linear sub-
space for debiasing, we introduce a Latent
Disentanglement method with a siamese auto-
encoder structure with an adapted gradient re-
versal layer. Our structure enables the sepa-
ration of the semantic latent information and
gender latent information of given word into
the disjoint latent dimensions. Afterwards, we
introduce a Counterfactual Generation to con-
vert the gender information of words, so the
original and the modified embeddings can pro-
duce a gender-neutralized word embedding af-
ter geometric alignment regularization, with-
out loss of semantic information. From the
various quantitative and qualitative debiasing
experiments, our method shows to be better
than existing debiasing methods in debiasing
word embeddings. In addition, Our method
shows the ability to preserve semantic infor-
mation during debiasing by minimizing the se-
mantic information losses for extrinsic NLP
downstream tasks.

1 Introduction

Recent researches have disclosed that word embed-
dings contain unexpected bias in their geometry on
the embedding space (Bolukbasi et al., 2016; Zhao
et al., 2019). The bias reflects unwanted stereo-
types such as the correlation between gender' and
occupation words. Bolukbasi et al. (2016) enumer-
ated that the automatically generated analogies of
(she, he) in the Word2Vec (Mikolov et al., 2013b)
show the gender biases in significant level. An

"While we acknowledge a potential and expanded defini-
tion on gender as stated in Larson (2017), we only cover the
gender bias between the male and female in this paper.
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Figure 1: The process view of our method. We can
improve the embedding space from (a) to (b) with a
better-aligned structure between gender word pairs by
the proposed latent disentanglement. Afterwards, (c¢)
we generate the gender-counterfactual embedding of
the gender-biased word while keeping a geometrically
aligned relationship with the gender word pairs to guar-
antee that the pair of word embeddings only differs
from gender information, not hurting semantic infor-
mation. (d) We obtain the gender-neutralized word em-
bedding by interpolating the embedding from the pair
of original-counterfactual word embeddings.

example of the analogies is the relatively closer dis-
tance of she to nurse; and he to doctor. Garg et al.
(2018) demonstrated that the embeddings, from
Word2Vec (Mikolov et al., 2013a) to Glove (Pen-
nington et al., 2014), have strong associations be-
tween value-neutral words and population-segment
words, i.e. a strong association between house-
keeper and Hispanic. This unwanted bias can cause
biased results in the downstream tasks (Caliskan
et al., 2017a; Kiritchenko and Mohammad, 2018;
Bhaskaran and Bhallamudi, 2019) and gender dis-
crimination in NLP systems.

From the various gender debiasing methods for
pre-trained word embeddings, the widely recog-
nized method is a post-processing method, which
projects word embeddings to the space that is or-
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thogonal to the gender direction vector defined by
a set of gender word pairs. However, if the gender
direction vector includes a component of semantic
information?, the semantic information will be lost
through the post-processing projections.

To balance between the gender debiasing and
the semantic information preserving, we propose
an encoder-decoder framework that disentangles a
latent space of a given word embedding into two
encoded latent spaces: the first part is the gender la-
tent space, and the second part is the semantic latent
space that is independent to the gender information.
To disentangle the latent space into two sub-spaces,
we use a gradient reversal layer by prohibiting the
inference on the gender latent information from the
semantic information. Then, we generate a counter-
factual word embedding by converting the encoded
gender latent into the opposite gender. Afterwards,
the original and the counterfactual word embed-
dings are geometrically interpreted to neutralize
the gender information of given word embeddings,
see Figure 1 for the illustration on our debiasing
method.

Our contributions are summarized as follows:

* We propose a method for disentangling the
latent information of the word embedding by
utilizing the siamese auto-encoder structure
with an adapted gradient reversal layer.

* We propose a new gender debiasing method,
which transforms the original word embed-
ding into gender-neutral embedding, with the
gender-counterfactual word embedding.

* We propose a generalized alignment with a
kernel function that enforces the embedding
shift, during the debiasing process, in a direc-
tion that does not damage the semantics of
word embedding.

We evaluated the proposed method and other
baseline methods with several quantitative and qual-
itative debiasing experiments, and we found that
the proposed method shows significant improve-
ments from the existing methods. Additionally, the
results from several NLP downstream tasks show
that our proposed method minimizes performance
degradation than the existing methods.

2Throughout this paper, we define the semantics of words
to be the meanings and functionality of words other than the
gender information by following Shoemark et al. (2019).

2 Gender Debiasing Mechanisms for
Word Embeddings

We can divide existing gender debiasing mecha-
nisms for word embeddings into two categories.
The first mechanism is neutralizing the gender as-
pect of word embeddings in the training procedure.
Zhao et al. (2018) proposed the learning scheme to
generate a gender-neutral version of Glove, called
GN-Glove, which forces preserving the gender in-
formation in pre-specified embedding dimensions
while other embedding dimensions are inferred to
be gender-neutral. However, learning new word
embeddings for large-scale corpus can be difficult
and expensive.

The second mechanism post-processes trained
word embeddings to debias them after the train-
ing. An example of such post-processings is a
linear projection of gender-neutral words toward
a subspace, which is orthogonal to the gender di-
rection vector defined by a set of gender-definition
words (Bolukbasi et al., 2016). Another way of
constructing the gender direction vector is using
common names, €.g. john, mary, etc (Dev and
Phillips, 2019), while the previous approach used
gender pronouns, such as he and she. In addition
to the linear projections, Dev and Phillips (2019)
utilizes other alternatives, such as flipping and sub-
traction, to reduce the gender bias more effectively.
Beyond simple projection methods, Kaneko and
Bollegala (2019) proposed a neural network based
encoder-decoder framework to add a regulariza-
tion on preserving the gender-related information
in feminine and masculine words.

3 Methodology

Our model introduces 1) the siamese network struc-
ture (Bromley et al., 1994; Weston et al., 2012)
with an adapted gradient reversal layer for latent
disentanglement and 2) the counterfactual data aug-
mentation with geometric regularization for gen-
der debiasing. We process the gender word pairs
through the siamese network with auxiliary classi-
fiers to reflect the inference of gender latent dimen-
sions. Afterwards, we debias the gender-neutral
words by locating it to be at the middle between
a reconstructed pair of original gender latent vari-
able and counterfactually generated gender latent
variable.

Same as previous researches (Kaneko and Bolle-
gala, 2019), we divide a whole set of vocabulary V'
into three mutually exclusive categories : feminine
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Figure 2: The framework overview of our proposed model. We characterize specialized regularization and network
parameters with colored dotted lines and boxes with blue color, respectively.

word set V; masculine word set Vy,,; and gender
neutral word set V,,, such that V- =V, UV, UV, .
In most cases, words in Vy and V;;, exist in pairs, so
we denote () as the set of feminine and masculine
word pairs, such that (wy, wy,) € €.

3.1 Overall Model Structure

Figure 2 illustrates the overall structure of our pro-
posed method for pre-trained word embeddings,
which we named Counterfactual-Debiasing, or CF-
Debias. Eq. (1) specifies the entire loss function of
the whole network parameters in Figure 2. The en-
tire loss function is divided into two types of losses:
L4 to be a loss for disentanglement and L.y to be
a loss for counterfactual generation. A can be seen
as a balancing hyper-parameter between two-loss
terms.

L=ALig+(1—=XNL,0<A<1 (1)

Here, we use pre-trained word embeddings
{w;} | € R? for the debiasing mechanism. In
the encoder-decoder framework, we denote the
latent variable of w; to be z; € R!, which is
mapped to the latent space by the encoding func-
tion, &/ : w; — z;; and the decoding function,
D : z; — w,;. After the disentanglement of the
latent space, z; is divided into two parts, such that
zi=[25,2]] : 25 € RI7F is the semantic latent
variable of w;; and 2J € R* is the gender latent
variable of w;, where k is the pre-defined value for

the gender latent dimension.?

3.2 Siamese Auto-Encoder for Latent
Disentanglement

This section provides the construction details of
L;g. Eq. (2) defines the objective function for
latent disentanglement as a linearly-weighted sum
of the losses.

le = )\seLse + )\geLge + )\diLdi + )\reLre (2)

For the disentanglement, our fundamental as-

sumption is maintaining the identical semantic
information in z° for the gender word pairs,
(wg,wm) € 2. Under this assumption, we intro-
duce a latent disentangling method by utilizing the
siamese auto-encoder with gender word pairs. The
data structure of the gender word pairs provide
an opportunity to adapt the siamese auto-encoder
structure because the gender word pairs almost al-
ways have two words in pair®.
Semantic Latent Formulation First, we regular-
ize a pair of semantic latent variables (2%, z7,),
from a gender word pair, (wy,wy,), to be same
by minimizing the squared /5 distance as Eq. (3),
since the semantic information of a gender word
pair should be the same regardless of the gender.

Lge = Z 1z — z;”; (3)

(wg,wm)€ER

3For the simplicity in notations, we skip the word-index 4
in the losses of our proposed method.

“This structure can be expanded as our gender coverage
changes.
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Figure 3: Gradient reversal layer utilized for the la-
tent disentanglement. We follow similar description in
Ganin et al. (2016)

Gender Latent Formulation To formulate the
gender-dependent latent dimensions, we introduce
an auxiliary gender classifier, C, : z9 — [0,1],
given in Eq. (4), and C, is asked to produce one in
masculine words, labeled as g,,, = 1, and to pro-
duce zero in feminine words, gy = 0, respectively.
After training, the output of C,. can be an indicator
of the gender information for each word.’

Lge=— Y gmlogCp(z3,)
Wm €V
- > (1—gplog(1—Cu(2) &
wyeVy

Disentanglement of Semantic and Gender La-
tent The above two regularization terms do not
guarantee the independence between the seman-
tic and the gender latent dimensions. To enforce
the independence between two latent dimensions,
we introduce a Generator with Gradient Reversal
Layer (GRL), C, : z° — z9 (Ganin et al., 2016),
which generates the gender latent dimension with
the semantic latent dimension. We modify the flip-
ping gradient idea of (Ganin et al., 2016) to the
latent disentanglement between the semantic and
the gender latent dimensions. The sufficient gen-
eration of 29 from z° means that z° has enough
information on z9, so the generation should be pro-
hibited to make z9 and z° independent. Hence,
our feedback of the gradient reversal layer is maxi-
mizing the loss of generating z9 from z°®, which is
represented as Lg; in Eq. (5).

Lai = ) ICa(2*) — 2%|3 (5)
weV

In the learning stage, the gradient of the encoder
for z*, which is parameterized as 6, becomes the
>We report the test performances of the gender classifier

for gender-definition words, i.e., he, she, etc.; and gender-
stereotypical words, i.e., doctor, nurse, etc., in Appendix D.

summation of 1) %—sj, which is the gradient for the

loss Ljg, the latent disentanglement losses of the
encoder for z° excluding Lg; ; and 2) —)\a%ﬂ;,
which is the \,-weighted negative gradient of the
loss Lg; which is reversed after passing the GRL,
because we intend to train the encoder for z° by
preventing the generation of z9. Eq. (5) specifies
the loss function for the disentanglement by GRL,
and Eq. (6) specifies the reversed gradient, see

Figure 3.

OLi _ 0L _ OLu; ©

00 00 00

Reconstruction We add the reconstruction loss
given in Eq. (7) for this encoder-decoder frame-
work.

Lye = Z Jw — ﬁ’”% (7

weV

3.3 Gender-Counterfactual Generation

This section provides the construction details of
L.y. Same as L;q, We define the objective function
for the counterfactual generation as the linearly-
weighted sum of the losses, introduced in this sec-
tion, as in Eq. (8).

ch = )\moLma + )\mszz (8)

Unlike the gender word pairs, a word in the gen-
der neutral word set w,, € V,, utilizes a counterfac-
tual generator, Cy : 23, — =23, which converts the
original gender latent, 23, to the opposite gender,
=z}, It should be noted that Cy is only activated
for optimizing the losses in L.y, which assumes
that other parameters learned for the latent disen-
tanglement are freezed.

To switch 27, we utilize a prediction from the
gender classifier, C,., which is trained through the
disentanglement loss. The modification loss, Lo,
originates from indicating the opposite gender with
zy by C,., see Eq. (9). For instance, if C,. returns
0.8 for the original gender latent, 25, then we reg-
ularize the virtually generated gender latent, —z7,
to lead C,. to return 0.2.

Limo = Z 1Cr (—2]) — (1 - CT(Z%))HS 9)
wp€Vn
While Eq. (9) focuses on the gender latent

switch, Eq. (10) emphasizes the minimal change of
the gender latent, 29 . The combination of these two
losses guides to the switched gender latent variable
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that is close to the original gender latent variable
for regularizing the counterfactural generation.

2
> =z =25

wWn€Vy

Luni = (10)

Though we keep the semantic latent variable, z*,

and switch the gender latent variable, 29, to gen-
erate the gender-counterfactual word embedding,
their concatenation during decoding can be vulner-
able to the semantic information changes because
of variances in the individual latent variables. Con-
sequently, we constrain that the reconstructed word
embedding with the counterfactual gender latent,
w.y, differs only in the gender information from
Wy, which is the reconstructed word embedding
with the original gender latent.
Linear Alignment For this purpose, we introduce
the linear alignment, which regularizes w,, — w.
by measuring the alignment to the gender direction
vector v, in Eq. (11), which is an averaged gender
difference vector from the gender word pairs.

1 . .
Vg = |Q‘ Z (wm_wf)

( f’ :YE)GQ

(11)

This regularization suggests that we constrain the
embedding shift of the gender-neutral word to be
the direction of v,. This alignment can be accom-
plished by maximizing the absolute inner product
between w,, —w.s and v, as given in Eq. (12). We
introduce C F-Debias-LA, which adds the below
linear alignment regularization, A\ Ly, t0 L.

Lla: Z

wn€Vn

—|vg - (Wn — wey)| (12)

Kernelized Alignment While the linear alignment
computes the gender direction vector v, as a simple
average, the gender information of word embed-
ding can have a nonlinear structure. Therefore, we
introduce the kernelized alignment, Wthh enables
the nonlinear alignment between 1) w,, — W 7 of
each gender word pair (w?, w W v,) and 2) W, — wes
of gender-neutral words w,,.

We hypothesize a nonlinear mapping function
f, which projects a word embedding w; € R? into
a newly introduced feature space, f(w;) € R™.
We can utilize the kernel trick (Scholkopf et al.,
1998) for computing pairwise operation on the non-
linear space introduced by f . Let k(w,w’) =
f(w) - f(w') be a kernel representing an inner-
product of two vectors in the feature space. Also,

we set ¢ to be k-th eigenvector for the projected
outputs of the given embeddings { f(w;)}Y,. By
following Appendix A, PC' is the k-th principal
component of new word embedding w’ on the intro-
duced feature space: PCy = f(w’) - ¢x. Then, we
find the k-th principal component for embedding
w’ as given in Eq. (15), when a}, is i-th component
of k-th eigenvector of K, which is a N x N kernel
matrix of given data.
PCy, = f(w') - ¢, =2 ap f(w;) - f(w)
=3 al k(w;,w')  (13)

Substituting the inner product in Eq. (12) with
Eq. (14), we design the nonlinear alignment be-
tween the gender difference vector, w,, — w, and
the gender neutral vector, w,, — Wy, by maximiz-
ing the Top-K kernel principal components as Eq.
(14). We introduce C F-Debias-KA, which adds
the kernelized alignment regularization, Agq Ljq, to
L.y. We use Radial Basis Function kernel for our
experiment.

ZZZ

k=1 wp,€Vy (w? whw

— doef)

1 )EQ

aj k (W}, — w'h, Wy, (14)

3.4 Post-Processing by the Word’s Category

After learning the network parameters, we post-
process words by its categories of Vy, V;;,, and
V.. We gender-neutralize the embedding vector
of w, € V,, by relocating the vector to the middle
point of the reconstructed original-counterfactual
pair embeddings, such that w := wcf#m"
We utilize a reconstructed word embedding which
preserves the gender information in embedding
space, w := wy for wy € Vy and w := w,, for
Wy, € Vip. For each w € Vy UV, we can safely
preserve gender information of given word by us-
ing reconstructed embedding such that w := w.

= Wney-

4 Experiments

4.1 Datasets and Experimental Settings

We used the set of gender word pairs created by
Zhao et al. (2018) as V; and V,,, respectively. All
models utilize GloVe on 2017 January dump of En-
glish Wikipedia with 300-dimension embeddings
for 322,636 unique words. Additionally, to investi-
gate the debiasing effect on languages other than
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English (GloVe) Spanish (Fasttext) Korean (Fasttext)
Sembias Sembias subset Sembias Sembias subset Sembias Sembias subset

Embeddings Def Stereo, None| Deft  Stereo] Nonel Deft  Stereol None | Deft  Stereo] None] Deff  Stereol None] Deft Stereo| None |
Original 80.22 1091 8.86 57.5 20.0 225 70.98"  17.38" 11637 s461f  11.86T  3.527  80.38T 748t 1214t 7626 8.87 14.88
Hard-Debias 87.95* 841 3.64* 500 325 175 4176 27.55 3068 2112 3854 4033 4139 1531 4330 89.23* 262"  8.15
GN-Debias or.73™ 136 091" 75.01 15.0 10.0 — — — — — — — — — — — —
ATT-Debias 80.22 1068 9.09 60.0 17.5 225 7523 1302 1174t 83.44F 90t 676" 8298 770t 9.33"  79.59* 887  11.55°
CPT-Debias 73.63 568  20.68 45.0 12.5 45 69.620 18261 12111 8462t 11860 3520 61.31F 1057t 28.12f 3852 1576 4572
AE-Debias 84.09 7.95 7.95 65.01 15.0 200 73197 15567 11267 86.38t 10107 3527 57.667  11.917 3044t 5572 1076 3353
AE-GN-Debias ~ 98.18™ 1147 0.68™  8o.0t* 12,57 75 — — — — — — — — — — — —
GP-Debias 84.09 8.18 773 65.01 15.0 200  72.93" 15870 11.19™ 86371 10.00t 3527 55850 1562 28531 68.00 1619 1581
GP-GN-Debias ~ 98.411*  1.14™*  045M 825t 125 5.0* — — — — — — — — — — — —
CF-Debias 98.18™  0.68™  1.13™  g0.0M 7.5t 125 78.93™ 3.83"™ 17230 96.15™ 0.0 3850 83.02M  244™ 14530 80.98*  0.0"  19.02
CF-Debias-LA  100.00™* 0.00™ 0.00™ 100.0™ 0.0 o0.0™ 6933 905" 2161" 100.0™ 0.0 o0 8507 237 1250 88.04* 0.0™ 1195
CF-Debias-KA ~ 92.04™ 3417 4.55* 62.5 17.5 200 8035 6.73F 12911 100.0™ 0.0" 0.0t sd28™ 2007 13620 82.27¢ 238 1535

Table 1: Percentage of predictions of each category on sembias analogy task, for each language. t and * denote
the statistically significant differences for Hard-Debias and Original embedding, respectively. The best model is
indicated as boldface. We denote ”—” for the skipped cases, whose methods are closely tied to GloVe embedding.

English; we conducted one of the debiasing ex-
periments for Spanish, which is the Subject-Verb-
Object language as English; and Korean, one of
the Subject-Object-Verb language. We used Fast-
text (Bojanowski et al., 2016) for experiments of
Spanish and Korean. Accordingly, we excluded the
baselines, whose methods are closely tied to Glo Ve,
for the experiments of other languages. We specify
the dimensions of z, [, as 300, which is divided into
295 semantic latent dimensions and 5 gender latent
dimensions. Also, we utilize the sequential hyper-
parameter schedule, which updates the weight for
L;; more at the initial step and gradually increases
updating the weight for the L.y, by changing A
in Eq. (1) from 1 to 0. Further information on
experimental settings can be found in Appendix G.

4.2 Baselines

We compare our proposed model with below base-
line models, and we utilize the authors’ imple-
mentations.® Hard-Debias (Bolukbasi et al., 2016)
utilizes linear projection technique for gender-
debiasing. GN-Debias (Zhao et al., 2018) trains
the word embedding from scratch by preserving
the gender information into the specific dimension
and regularizing the other dimensions to be gender-
neutral. CPT-Debias (Karve et al., 2019) introduces
a debiasing mechanism by utilizing the conceptor
matrix. ATT-Debias (Dev and Phillips, 2019) de-
fines gender subspace with common names and pro-
poses the subtraction and the linear projection meth-
ods based on gender subspace.” AE-Debias and
AE-GN-Debias (Kaneko and Bollegala, 2019) uti-
lize the autoencoder structure for debiasing, and uti-
lize the original word embedding and GN-Debias,

SWe provided link of the authors’ implementations in Ap-
pendix H.
"We use the subtraction method as an ATT-Debias.

respectively. Besides, GP-Debias and GP-GN-
Debias adopt additional losses to neutralize gender
bias and preserve gender information for gender-
definition words.

4.3 Quantitative Evaluation for Debiasing
4.3.1 Sembias Analogy Test

We perform the Sembias gender analogy test (Zhao
et al., 2018; Jurgens et al., 2012) to evaluate the
degree of gender bias in embeddings. The Sembias
dataset in English contains 440 instances, and each
instance consists of four-word pairs : 1) a gender-
definition word pair (Def), 2) a gender-stereotype
word pair (Stereo), and 3,4) two none-type word
pairs (None). We test models by calculating the
linear alignment between each word pair difference
vector, a— b ; and he — she, which we refer to
as Gender Direction. This test regards an embed-
ding model to be better debiased if the alignment
is larger for the word pair of Def compared to the
word pairs of None and Stereo. By following the
past practices, we test models with 40 instances
from a subset of Sembias, whose gender word pairs
are not used for training. To investigate the result
of Sembias analogy test in Spanish and Korean,
we translated the words in Sembias into the other
languages with human corrections.

Table 1 shows the percentages of the largest
alignment with Gender Direction for all instances.
For English, CF-Debias-LA selects all the pairs
of Def, which shows the sufficient maintenance
of the gender information for those words. Also,
CF-Debias-LA selects neither stereotype nor none-
type words, so the difference vectors of Stereo and
None always have less alignment to Gender Direc-
tion than the difference vectors of Def. We further
refer to the experimental settings of Spanish and
Korean in Appendix J.
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career vs family math vs art

science vs art

intellect vs appear strong vs weak

Embeddings p-value d p-value d p-value d p-value d p-value d

Original 0.000 1.605 0276 0.494 0.014 1.260 0.009 0.706 0.067 0.640
Hard-Debias 0.100 0.842 0.090 -1.043  0.003 -0.747 0.693 -0.121 0.255 0.400
GN-Debias 0.000 1.635 0.726  -0.169  0.081 1.007 0.037 0.595 0.083 0.620
ATT-Debias 0.612 0.255 0.007  -0.519  0.000 0.843 0.129 0.440 0.211 0.455
CPT-Debias 0.004 1.334 0.058 1.029 0.000 1.417 0.001 0.906 0.654  -0.172
AE-Debias 0.000 1.569 0.019  0.967 0.024 1.267 0.007 0.729 0.027 0.763
AE-GN-Debias  0.001 1.581 0.716  0.317 0.139 0.639 0.006 0.770 0.028 0.585
GP-Debias 0.000 1.567 0.019  0.966 0.027 1.253 0.006 0.733 0.028 0.758
GP-GN-Debias 0.000 1.599 0.932 0.109 0.251 0.591 0.004 0.791 0.098 0.610
CF-Debias 0.210 0.653 0.759 0.261 0.725 —0.363 0.256 -0.328 0.305 0.371
CF-Debias-LA 0.874 -0.089 0.669 -0.125 0.360 0.480 0.678 -0.124 0.970 0.013
CF-Debias-KA 0.196 0.673 0.887 0.083 0.919 -0.235 0.893 -0.039 0.373 0.338

Table 2: WEAT hypothesis test results for five gender-stereotypical word categories. The best and second-best
models are indicated as boldface and underline, respectively. The absolute value of the effect size denotes the
degree of bias. A value of d closer to 0 means that there is no gender bias.

4.3.2 WEAT

We apply the Word Embedding Association Test
(WEAT) (Caliskan et al., 2017b) for debiasing test.
WEAT uses permutation test to compute the ef-
fect size (d) and p-value in Table 2, as a measure-
ment of the bias in word embeddings. The effect
size computes differential association of the sets
of stereotypical target words, i.e. career vs family,
and the gender word pair sets from Chaloner and
Maldonado (2019a). A higher value of effect size
indicates a higher gender bias between the two sets
of target words. The p-value is used to check the
significant level of bias. We provide the detailed
description of WEAT in Appendix C. The varia-
tions of our method show the best performances
for whole categories except math vs art, see Table
2.

Embeddings no gender bias semantic validity
Original 0.447+0.179 0.87540.132
Hard-Debias 0.491+0.142 0.65240.123
ATT-Debias 0.610=£0.136 0.76140.131
CPT-Debias 0.552+0.128 0.827+£0.138
GP-GN-Debias 0.328+£0.241 0.421+£0.149
CF-Debias-LA 0.644+0.124 0.683+0.152
CF-Debias-KA 0.615+0.107 0.744+0.142

Table 3: Human-based evaluation for the gender bias
and semantics of generated analogy, with standard de-
viation. The best model is indicated as boldface.

4.3.3 Analogy Test with Human based
Validation

We conducted a human experiment on the analogy
generated by the debiased embeddings to evaluate
the debiasing efficacy of each embedding. each
embeddings generate a word based on the ques-

tion “a is to b as ¢ is to what?”, when words a, b
are selected from the gender word pairs of Sem-
bias dataset; and c is given as a gender stereo-
typical word, i.e. homemaker, housekeeper, from
Bolukbasi et al. (2016). The answer word from
each question is generated by argmax oy (d -

(?—74—?)). 18 Human subjects were asked to
evaluate the generated analogies from two perspec-
tives; 1) existence of gender bias in the analogy, 2)
semantic validity of the analogy.® Table 3 shows
that our method indicates the least gender bias
while competitively maintaining the semantic va-
lidity.

4.4 Debiasing Qualitative Analysis

To demonstrate the indirect gender bias in the word
embedding, we perform two qualitative analyses
from Gonen and Goldberg (2019). We take the
top 500 male-biased words and the top 500 female-
biased words, which becomes a word collection
of the top 500 and the bottom 500_}nner_£)r0duct
between the word embeddings and he — she. From
the debiasing perspective, these 1,000 word vec-
tors should not be clustered distinctly. Therefore,
we create two clusters with K-means and check
the heterogeneity of the clusters through the clus-
ter majority classification. The left side on Figure
4 shows that CF-Debias-KA generates a gender-
invariant embedding for gender-biased wordsets by
showing the lowest cluster classification accuracy.

Gonen and Goldberg (2019) demonstrates that
the original bias’ has a high correlation with

8We enumerate the embeddings utilized in an experiment
and detailed description of the human experiment in Appendix
L.

°the dot-product bet_w)een the original word embedding

from GloVe and h_é — she
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POS Tagging POS Chunking Named Entity Recognition
Embeddings AF1 A Recall AF1 A Recall AF1 A Recall
Hard-Debias -0.657+0.437 -1.2204+0.938  -0.00740.001  -0.0254+0.003  -0.004+0.001 -0.01540.005
GN-Debias -0.594+0.367 -1.1154+0.821  -0.0034+0.001  -0.01040.003  -0.002+ 0.001  -0.0084-0.002
ATT-Debias -0.689+0.474 -1.2794+1.000  -0.02440.005  -0.09140.019  -0.013+0.003  -0.04640.011
CPT-Debias -0.501+0.277 -0.959+0.674  -0.00440.001  -0.01640.005  -0.002+0.000  -0.00840.001
AE-Debias -2.86241.632 -8.647+5.072  -2.10840.558  -7.753+1.996  -1.669+0.547  -5.895+41.893
AE-GN-Debias  -3.505+1.498  -10.766+4.525 -4.7654+0.402 -16.760+£1.299 -4.4601+0.485  -5.097+1.524
GP-Debias -2.911+1.664 -8.810+5.156  -2.0584+0.555  -7.573+1.988  -1.611+0.542  -5.696+1.877
GP-GN-Debias  -3.560+1.506  -10.943+4.557 -4.7914+0.391 -16.843+1.262 -4.4851+0.468  -5.176+1.471
CF-Debias -0.327+0.248 -0.6214+0.564  0.00040.000 —0.00140.001 0.000+0.000 —0.001+0.001
CF-Debias-LA  -0.287+0.118 -0.506+0.260  -0.0024+0.001  -0.00610.004  -0.002+0.001  -0.00740.005
CF-Debias-KA  —0.123+0.135 —0.18640.208 0.000£0.000 —0.00140.001 0.00040.000 —0.001+0.001

Table 4: Performance degradation percentage with standard deviation for downstream tasks of POS Tagging, POS
Chunking, and NER. The best model is indicated as boldface.

Pearson Correlation Coefficient : 0.46070
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Figure 4: The t-SNE views for 500 male, female-
biased word embeddings from original embedding,
with the cluster-based classification accuracy in paren-
theses. (left) The percentage of male neighbors for
each profession as a function of original bias, with the
Pearson correlation coefficient in parentheses. (right)

the male/female ratio of the gender-biased words
among the nearest neighbors of the word embed-
ding. The right side of Figure 4!° shows each pro-
fession word at (the dot-product, the male/female
ratio). CF-Debias-KA shows the minimal Pearson
correlation coefficient between the two axes.

10Full plots of other baselines for two qualitative analyses
are available in Appendix E and F, respectively.

4.5 Downstream Task of Debiased Word
Embeddings

We compared multiple downstream task perfor-
mances of the original and the debiased word
embeddings, to check the ability to preserve se-
mantic information in debiasing procedures. Fol-
lowing CoNLL 2003 shared task (Sang and Erik,
2002), we selected Part-Of-Speech tagging, Part-
Of-Speech chunking, and Named Entity Resolution
as our tasks. Table 4 shows that there are constant
performance degradation effects for all debiasing
methods from the original embedding. However,
our methods minimized the degradation of perfor-
mances across the baseline models. Especially,
CF-Debias-KA shows the minimal performance
degradations by utilizing the nonlinear alignment

regularization.

*" Original  Hard_Debias CF-Debias_LA

—— original
—— Hard_Debias
—— CF-Debias_LA

o
Gini-index

Explained Percentage of Variance
8

o

0 s 20 25 30
Principal Component

Figure 5: The proportion (Left) and Gini-index (Right)
from the variance vector for top 30 PC's of difference
vectors for gender word pairs

4.6 Analyses on Alignment Regularization

If the difference vectors of gender word pairs are
not linearly aligned, the gender direction vector v,
in Eq. (11) cannot be a pure direction of the gender
information. Hence, we compared the variances ex-
plained by the top 30 principal components (PC)
of difference vectors for gender word pairs, as a
measurement for the linear alignment. The left plot
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in Figure 5 shows the proportion of variances from
each PC'. Our method shows the largest concentra-
tion of the variances on a few components, other
than Hard-Debias and Original embedding. The
right plot in Figure 5 shows Gini-index (Gini, 1912)
for the variance proportion vector from PC's. Our
method shows minimal Gini-index, which indicates
the monopolized proportion of variances.

Also, Figure 6 shows two example plots of a
selected gender word pairs in the original embed-
ding space (Upper) and the CF-Debias-LA embed-
ding space (Lower), by Locally Linear Embedding
(LLE), (Roweis and Saul, 2000). The lower plot
in Figure 6 shows the consistency of the gender
direction, and the plot visually describes the neu-
tralization of housekeeper, statistician by utilizing
the counterfactually augmented word embeddings.

NEPNEW
0.4 lece ® Female
- ow o Male
0.2
widower
0.0 wpmen
fmen
-0.2
—04 ;
policeman
policewoman
-0.6
-02 00 02 04 06
T niece
e Female
® Male Inephew
male_bias
04 female_bias
male_counter
female_counter widow
021 @ male_neutral women P
e female_neutral ) widower
00 statistician . men
statistician policewoman
® statistician
. holisekeeper
0.2 policeman
. hgusekeeper
0.4 hpusekeeper

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Figure 6: LLE projection view of selected gender word
pairs and biased word for original embedding space
(left) and debiased embedding space (right)

5 Conclusions

This work contributes to natural language process-
ing society in two folds. For gender debiasing
application, our model produces the debiased em-
beddings that has the most neutral gender latent
information as well as the efficiently maintained
semantics for the various NLP downstream tasks.
For methodological modeling, CF-Debias suggests
a new method of disentangling the latent informa-
tion of word embeddings with the gradient reversal
layer and creating the counterfactual embeddings

by exploiting the geometry of the embedding space.
It should be noted that these types of latent model-
ing can be applied to diverse natural language tasks
to control expressions on emotions, prejudices, ide-
ologies, etc.
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A The Derivation of Principal
Component on Kernelized Alignment

Let’s assume that we want to align a word embed-
ding w’ to the set of the word embeddings {w; }¥ ;.
Then, we introduce nonlinear mapping function f,
which projects a word embedding w; € R? into
a newly introduced feature space, f(w;) € R™.
If we assume that the mapped outputs from the
word embeddings {f(w;)}¥, are zero-centered,
the covariance matrix can be estimated as follows:

5= - if(w)f(wf
f N % %
=1

Same as the main paper, we set ¢ and \j to be
k-th eigenvector and eigenvalue for the projected
outputs of the given embeddings {f(w;)}Y,, re-
spectively. Then, we can get following equation,
which describes the eigen-decomposition of the
covariance matrix.

N
o = % D Flwy) f(wi) oy
=1

1 N
i=1

From above function, ¢ can be represented as
a linearly-weighted combination of the N mapped
outputs of word embeddings as follows:

1 N

br = Ny &

(f(w;) - o) f(w;)

Then, we multiply f(w;) for j = 1,...,N to
both sides of the equation.

We can replace an inner-product of the two
mapped outputs, (f(w;) - f(w;)), into kernel
k(w;, w;), which represents an inner product of
two vectors in the projected space, for the case
when computing mapped results of given data is
complex or impossible.

N

flwy) - dp =) m(f(wi) - ¢r) k(wi, w;)
i—1

By letting a}, = Nl)\k (f(w;) - ¢r), we get

N
fwj) - ¢ = MeNaj, = af k(wi, w;)
=1

The above equation can be represented as the j-th
component of the k-th eigenvector-decomposition
problem of K, which is a matrix of N x N ker-
nel elements k(w;, w;) fori,5 = 1,...,N. See
the below equation, which is k-th eigenvector-
decomposition problem of K, when a;p =

1 T
lag, ...,a;'] .

)\k.Nak = Kak

This implication means that ai is j-th component
of k-th eigenvector of K and we can compute ai
by solving eigen-decomposition problem of K.

Substituting f(w;) on above equation into
f(w"), which is mapped result of the target word
embedding w’, we get PC), k-th principal compo-
nent of new word embedding w’ on the projected
space as follows:

PCy = f(w') - ¢ =S aj.f(w;) - f(w)
=yN a} K(w;,w') (15)

It should be noted that above derivation is based
on Scholkopf et al. (1998). The proposed Kernel-
ized alignment can be seen as an example which
applies an nonlinear alignment to the word embed-
dings, by utilizing the kernel trick provided from
Scholkopf et al. (1998).
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B Notation table

Notation | Description
wy The embedding of feminine word
Wy, The embedding of masculine word
wy, The embedding of gender neutral word
Vy The feminine word set
Vin The masculine word set
Vo The gender neutral word set
z; The semantic latent variable of wy
z5, The semantic latent variable of w,,
z The semantic latent variable of w,
z? The gender latent variable of wy
29 The gender latent variable of w,,
29 The gender latent variable of w,,
-z The counterfactual-gender latent variable
Wy The reconstructed word embedding of w ¢
Wy, The reconstructed word embedding of w,,
w,, The reconstructed word embedding of w,,
Wy The counterfactually reconstructed word embedding
Whey The gender neutralized word embedding
g5 The output of gender classifier for Z?
Im The output of gender classifier for 2{,
vy The gender direction vector
Q The gender word pairs set
E The encoder of our method
D The decoder of our method
Cy The auxilary gender classifier
Ca The gender latent generator

Table 5: The description of the notations in this paper.

C WEAT Hypothesis test

WEAT hypothesis (Caliskan et al., 2017b) test
quantifies the bias with effect size and p-value. We
can compute the effect size of the two target words
set against two attribute words set. To quantify
the gender bias, we use (Chaloner and Maldon-
ado, 2019b) subset of masculine (A;) and feminine
words(As) as an attribute words, and use career
(T1) and family (7%) related words for target words
set. We compare the effect size and p-value for
different experiment environment by changing the
attribute words, as shown in Table 2 in the paper.

We can compute the association measure s, be-
tween target word ¢ and the attribute word set as
follows:

s(t) = /11\ Z cos(t,ay) — ’1

As|
a1€A, azE€A2

We compute the effect size, the degree of bias,
based on the difference between mean of associa-
tion value as follows:

Meany, e, s(t1) — Meany, e, s(t2)
stdreryur, (1)

Z cos(t, az)

To check the significant level of bias, we need
to compute the test statistics, s(71,7%), and one-
sided p-value. We compute the p-value based on

{Tl(i), TQ(i)}, the all partition of 77 U T5 as follows:

s(T1,To) = Y s(t) — Y s(ta)

ti1€Ty o€l
pvalue = P{|s(T\" T4")| > |s(T1, T2)[}

If the word embedding has a conventional gender
bias, effective size can have a positive value, and
negative value, otherwise. To measure the gender
bias properly, we need to consider both of conven-
tional gender bias, and anti-conventional gender
bias. We compute the p-value based on the absolu-
tion value of test statistics to measure gender bias

properly.

D Performance Test Result for Gender
Classifier C,

To test gender indicating the ability of the gender
classifier C, : 29 — [0, 1], we tested indicating
accuracy of the gender-definition words, i.e., he,
she, etc.; and gender-stereotypical words, i.e.,
doctor, nurse, etc. We utilized 53 gender word
pairs as test word pairs from entire gender word
pairs, utilizing the remaining words for training.
We selected well known gender-biased occupation
words for examples of gender-stereotypical words,
10 for each gender case as follows:

[doctor, programmer, boss, maestro, warrior
, john, politician, statistician, athlete, nurse,
homemaker, cook, cosmetics, dancer, mary,
violinist, housekeeper, secretary].

The test accuracy for gender-definition words
are 0.8490, 0.8867 for masculine and feminine
words, respectively. For gender-stereotypical
words, C, indicates correct gender biases for all
male-biased words except the word athlete and all
female-biased words. Figure 7 shows the visual
separation of gender latent variables for masculine
words and feminine words.

Figure 7: The t-SNE projection view of gender latent
variables of the test gender word pairs
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E Full Plots for the Clustering Analysis
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Figure 8: The t-SNE projection views for embeddings of 500 male-biased words and 500 female-biased words
according to the original Glove, the cluster majority based classification accuracy is added in parenthesis.
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F Full Plots for Correlation Analysis between Original Bias and Nearest Neighbors
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Figure 9: The percentage of male neighbors for each profession as a function of original bias for whole embeddings,
we show only a limited number of professions on the plot to make it readable. The pearson correlation coefficient
is added in parenthesis.
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G Experimental Setup for Our Method

We implement the encoder E' and the decoder D
with one hidden layer and hyperbolic tangent func-
tion as an activation function. The generators C|,
and C, are implemented as feed-forward neural
network with one hidden layer, followed by the hy-
perbolic tangent function as an activation function.
The gender classifier C,. is similarly implemented
as the feed-forward neural network with one hidden
layer, followed by sigmoid activation function for
the output layer. The whole training was performed
using the Adam optimizer with learning rate 10~°.
We trained our model using a single Titan-RTX
GPU. Each run takes approximately 2 hours includ-
ing the time for saving the post-processed word
embeddings.

As described in Appendix D, to test classification
accuracy of the gender classifier C). : 29 — [0, 1]
for gender-definition words and gender stereotyp-
ical words, we only used 143 gender word pairs
from entire gender word pairs on the training pro-
cedure. The remaining 53 gender word pairs were
utilized for gender classification test in Appendix
D.

H The Link of Implementation for Each

Baseline
Hard-GloVe : https://github.com/tolga-b/
debiaswe.
GN-GloVe : nttps://github.com/uclanlp/gn_
glove.
CPT-GloVe https://github.com/jsedoc/
ConceptorDebias.
ATT-GloVe https://github.com/sunipa/

Attenuating-Bias-in-Word-Vec.
AE-GloVe, AE-GN, GP-GloVe and GP-GN :
https://github.com/kanekomasahiro/gp_

debias.

I The Experimental Setting of Human
Experiment

We conducted an human validation test on
the linear analogies generated by the debiased
embeddings to evaluate debiasing efficacy of each
embedding. For the question a is to b as c is to
7’, words a,b were selected from gender word
pairs of Sembias dataset and ¢ was sampled from
gender stereotypical words, i.e. homemaker, given
by Bolukbasi et al. (2016).

The question word is

chosen from

argmaxdev(j . (?—7%—7)) In order to
enable human subjects to efficiently compare
generated words of each debiased word embedding,
We compared only 5 baseline methods; Original
GloVe embedding, Hard-Debias, ATT-Debias,
CPT-Debias, GP-GN-Debias with our methods;
CF-Debias-LA and CF-Debias-KA. As stated in
section 4.4 of main paper, 18 Human subjects were
asked to evaluate the 84 generated analogies from
two perspectives; 1) the existence of gender bias
on generated analogy, 2) the semantic validity of
analogy. The semantic validity in our experiment
equals to the question, “Is it possible to infer
semantic relationship from generated analogy?”.
The representative examples of the analogy
questions are given as follows: “man is to woman
as boss is to 77, ” female is to male as weak is
to 77

J The Experimental Settings for Other
Languages; Spanish and Korean

We used Fasttext (Bojanowski et al., 2016) pre-
trained on CommonCrawl and Wikipedia, with
300 dimensional embeddings for 2,000,000 unique
words for the experiments of Spanish. Also, we
used Fasttext (Bojanowski et al., 2016) pre-trained
on Wikipedia, with 300 dimensional embeddings
for 879,125 unique words for the experiments of
Korean. For the gender word pairs required for gen-
der debiasing, the query words used in the English
version were translated into Spanish and Korean. In
this procedure, some words, which are not present
in the given corpus, were excluded.
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