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Abstract

We consider problems of making sequences of
decisions to accomplish tasks, interacting via
the medium of language. These problems are
often tackled with reinforcement learning ap-
proaches. We find that these models do not
generalize well when applied to novel task do-
mains. However, the large amount of computa-
tion necessary to adequately train and explore
the search space of sequential decision mak-
ing, under a reinforcement learning paradigm,
precludes the inclusion of large contextualized
language models, which might otherwise en-
able the desired generalization ability. We
introduce a teacher-student imitation learning
methodology and a means of converting a re-
inforcement learning model into a natural lan-
guage understanding model. Together, these
methodologies enable the introduction of con-
textualized language models into the sequen-
tial decision making problem space. We show
that models can learn faster and generalize
more, leveraging both the imitation learning
and the reformulation. Our models exceed
teacher performance on various held-out deci-
sion problems, by up to 7% on in-domain prob-
lems and 24% on out-of-domain problems.

1 Introduction

We make many decisions as we interact with the
world. When we are rewarded (respectively, pun-
ished), we learn to modify not only the proximal
cause of the stimulus but the chain of decisions
leading up to it, to encourage (respectively, discour-
age) future similar results. This process naturally
is the paradigm of Reinforcement Learning (RL).
Policy-based learning seeks to find good estimates
for Q(s, a), a function that returns the expected cu-
mulative reward (known as a Q-value) if action a is
chosen at state s. A desirable property of method-
ologies to learn Q is their ability to generalize such

that an appropriate action can be taken when en-
countering a previously unseen state.

Recent advances have shown strong evidence of
generalization in spatiotemporal modalities such as
robotic manipulation (Xu et al., 2018), video games
(Tessler et al., 2017), and autonomous navigation
(Zhu et al., 2017). However, in the modality of lan-
guage, there is less work applying generalization
approaches to decision making. Useful applica-
tions of sequential decision making language mod-
els are personal assistants that proactively antici-
pate client needs; anti-phishing mediation agents
that waste a would-be thief’s time with relevant but
non-helpful responses; and investigative journal-
ist assistants that determine what to read, whom
to contact, and what questions to ask to create a
revelatory news report.

Neural reinforcement learning (RL) training ap-
proaches, such as those used to play action video
games (Mnih et al., 2013), have potential appli-
cability in language-based decision making due
to their ability to learn to navigate adversarial or
exploratory scenarios. Naturally, the generaliza-
tion and background knowledge capability afforded
by large contextualized language models such as
BERT (Devlin et al., 2019) may be applicable as
well. A useful virtual world proxy in which to
explore these approaches’ applicability is that of
text adventure game playing. In a text adventure
game, a player is immersed in an environment by
reading textual descriptions of a scene and issu-
ing natural language commands to navigate inside
the scene. The player discovers and interacts with
entities and accomplishes goals, while receiving
explicit rewards for doing so.

Learning to play text games is a useful pursuit
because it is a convenient proxy for the real world
cases cited above. Unlike these, plentiful data for
numerous games exist, an endless supply of games
can be constructed, and text games have built-in re-
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ward functions, making them suitable for RL. This
class of problems is also useful because it is chal-
lenging: after exposure to a family of games that
explore the same topic and have similar gameplay
(e.g., games involving cooking a specified recipe),
human players perform nearly perfectly on addi-
tional games, but computer models struggle.

Why is this? Humans quickly understand the
situation they are placed in and can make rational
decisions based on trial-and-error and life experi-
ence, which we can call commonsense knowledge.
Knowing a priori that, e.g., a closed door should
be open or that it is helpful to light a lamp
in a dark dungeon allows (human) players to
learn faster. Even though these games have the
complexity of finite-state machines, computer mod-
els cannot learn to play them well. The problem
appears to be due to a lack of generalization caused
by a lack of commonsense. To a computer model,
considering whether to fry using a fridge is no
more ludicrous than considering whether to fry us-
ing a plate (which, to an untrained human cook,
may be plausible, though is certainly not a good
idea). Both actions can be discouraged by neg-
ative reinforcement, but a human only needs to
learn not to do the latter. Furthermore, a computer
player learning that one can chop carrotswith
a knife may not generalize that one can chop
celery the same way, but a human surely will.

There is existing work in learning to play text
games with RL (Narasimhan et al., 2015; Yuan
et al., 2018; Kim, 2014; Zahavy et al., 2018; Yin
and May, 2019a; Tessler et al., 2019) but the stan-
dard pattern of incorporating large language mod-
els such as BERT (Devlin et al., 2019) has not yet
been seen in current literature. It turns out that
this integration is not trivial. Most models that use
BERT and its ilk predominantly apply their results
to supervised learning tasks that have training data
with ground truth (Zellers et al., 2018; Wang et al.,
2018) or at least, in the case of generation-based
tasks like dialogue and translation, a corpus of de-
sirable output to mimic (Wolf et al., 2019; Imamura
and Sumita, 2019). For tasks suited to RL such as
the exploration of and interaction with a world,
there is no true target or even, initially, a corpus,
and thus learning can only proceed iteratively via,
e.g., exploration-exploitation (Mnih et al., 2013),
which requires millions of training iterations to
converge (Yin and May, 2019a; Narasimhan et al.,
2017; Mnih et al., 2013). Integrating this process
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Figure 1: Comparison of the training process between
DQN (left) and teacher-student DQN (right). In reg-
ular DQN training, the agent plays games to collect
partial game-playing into memory, for later sampling
and training. In the teacher-student training method,
the teacher—a well-trained agent—generates a partial
play curriculum. Student agents use that curriculum
only to train their models.

with the additional overhead of fine-tuning a large
model like BERT leads to an impractical slowdown:
for the experiments considered in this work, the
baseline models that use CNN require a little more
than three weeks to train on an Nvidia P100 GPU-
equipped machine. Using the same models on the
same tasks run for the same number of iterations
on the same hardware while fine-tuning a 12-layer
BERT model would take more than two years.

In this work, we compare different previously
used representation models for deep RL through an
imitation learning method that first trains a light-
weight teacher using exploration-exploitation, and
then uses that trained model to train a more heavy-
weight student model. This dramatically decreases
the amount of training time needed to learn. More-
over, we devise a means of casting an RL problem
into a supervised learning paradigm, allowing bet-
ter exploitation of large contextualized language
models. In so doing, we show that agents can ben-
efit from both the imitation learning and the refor-
mulation, converging faster than other models, and
exceeding teacher performance by 7% and 24% on
both in- and out-of-domain problems, despite the
limited search space.

The novel contributions of this work are:
• We develop a teacher-student model train-

ing method for sequential text-based decision
making problems, enabling the efficient incor-
poration of heavy-weight external information
models.
• We develop a method for casting student RL
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model training in the same form as a super-
vised Natural Language Understanding task,
enabling solutions to those tasks to be applied
to sequential decision making.
• We evaluate our methods on in-domain and

out-of-domain text game data sets, extrinsi-
cally and intrinsically demonstrating the ef-
fect of external commonsense knowledge and
generalization at improving model abilities.
• We release our data, models, and code for

documentation, replicability, and to enable
subsequent improvements.1

2 Background: Reinforcement Learning
for Text Games

The core approach of Deep Q-Networks (DQN) as
described by Mnih et al. (2015) is to build a replay
memory of partial games with associated scores,
and use this to learn a function fDQN : (S,A)→
R, where fDQN (s, a) is the Q-value obtained by
choosing action a ∈ A when in state s ∈ S; from
s, choosing argmaxã∈A fDQN (s, ã) affords the
optimal action policy and this is generally used at
inference time.2

The DQN, which predicts Q given a (state, ac-
tion) pair, is trained in an exploration-exploitation
method known as ε-greedy (Mnih et al., 2015): first,
the agent plays the game stochastically, generally
guided by fDQN , but with probability ε choosing a
random action instead. The hyperparameter ε usu-
ally decays from 1 to 0 during the training process.
As the agent plays, it collects partial play samples
(s, a, r, s′), denoting taking action a at the game
state s, and the immediate reward r plus the next
state s′ reached for doing so, into a replay memory.
The DQN is then improved by sampling from the
replay memory, and reducing loss between fDQN

and the true Q, which is estimated as

Q(s, a) = r + λmax
a′

fDQN (s′, a′). (1)

Square error loss is minimized to improve fDQN

along the gradient:

ldqn = ‖fDQN (s, a)−Q(s, a)‖2. (2)

1https://github.com/yinxusen/learning_
to_generalize

2There are various methods to choose actions according
to policies, but for exposition, the greedy method is the most
representative and straightforward one. See Section 4.2 for
details.

The improved DQN is used to collect more replay
data as the process iterates, as depicted in Figure 1
(left).

Equation 1 shows that at every step, for every
sampled state, we can only estimate loss for a sin-
gle state-action pair; we do not have the r or s′

for actions other than a. The models eventually
converge, but only after millions of training steps
(Mnih et al., 2013; Yin and May, 2019a).

3 Teacher-Student DQN Training

After running DQN training as described in Sec-
tion 2 for some time, our well-trained agent, which
we call the teacher, can provide Q-values for a set
of actions A at every step. We can then collect lots
of (state s, action set A, Q-table Q) game-play tu-
ple data into a curriculum pool by repeatedly play-
ing the game and obtaining fDQN−teacher(s, a)
for all a ∈ A. We now use that data to train a new
agent fDQN−student (the student), using the same
DQN approach described in Section 2. However,
unlike in the previous DQN scenario, the curricu-
lum pool now contains Q-values for all ofA at each
state.3 We can train all actions at one step for each
trajectory since we have Q-values for all actions.
Thus the loss is

lse =
∑
a∈A
‖fDQN (s, a)−Q(s, a)‖2/‖A‖, (3)

and the learning procedure is as depicted on the
right side of Figure 1.

The main disadvantage of teacher-student learn-
ing is that in the student phase, the search space
is bounded by that of the curriculum pool gener-
ated by the teacher agent. While a student model
can generalize based on the curriculum pool’s data,
it cannot explore any more of the search space.
On the other hand, student learning is much faster
than teacher learning. The experience replay pool
does not need to be repeatedly generated, and many
more loss gradients can be calculated all at once.
We will explore several architectures and configu-
rations that take advantage of this speed.

3.1 State Representations

A fundamental parameter that must be specified
is the input signal used to form the game state s
and how it is encoded. For action video games,

3It would not be viable or helpful to collect Q-values ex-
haustively during the ε-greedy phase because of the poor initial
estimates of fDQN .

https://github.com/yinxusen/learning_to_generalize
https://github.com/yinxusen/learning_to_generalize


3049

this generally consists of a sequence of images
from the game display. We use a history of sys-
tem description-player action sequences for text
games, which we call a trajectory. We consider
the following representation architectures for the
trajectory, some of which are only possible to use
in the significantly faster student learning scenario:

CNN. While much work applied to text games
uses LSTMs (Hochreiter and Schmidhuber, 1997)
to represent the trajectory (Narasimhan et al., 2015;
Ammanabrolu and Riedl, 2019; Yuan et al., 2018;
Kostka et al., 2017; Ansari et al., 2018), we favor
CNN encoders with position embeddings, which
are faster to train than LSTMs (Zahavy et al., 2018;
Yin and May, 2019a; Kim, 2014). This encoder
is the only representation that is fast enough for
training the teacher model, given the fact that the
trajectory length is usually much longer than a sin-
gle sentence or paragraph. We also experiment
with it as a student model trajectory representation.
This baseline CNN encoder uses randomly initial-
ized word embeddings that are fine-tuned during
training. This encoder has one layer, with 32 con-
volutional filters for each of size 3–5 (Kim, 2014).

CNN-GloVe. The CNN-GloVe encoder is identi-
cal to the CNN encoder except for the use of GloVe
(Pennington et al., 2014) for word embeddings;
these are not fine-tuned.

Transformer. We use the Transformer (Vaswani
et al., 2017) architecture configured in the same
way as the BERT-base uncased model with 12 lay-
ers (Devlin et al., 2019), but with all weights ran-
domly initialized. This model will serve as a com-
parison with the following model.

BERT. We use the BERT-base uncased model
with 12 layers. This model has the same architec-
ture as Transformer but is initialized with BERT
weights (Devlin et al., 2019).

We use a max-pooling layer over the output of
CNN as the encoded state in the same way that we
do with CNN-GloVe, while for Transformer and
BERT , we use the pooling output from the CLS
token as the encoded state. All encoded states from
different encoders are passed through a dense linear
layer of 32 dimensions to ensure the encoded state
is of equal size across models.

We use BERT’s provided Byte-Pair Encoding
(Sennrich et al., 2016) sub-word tokenizer and vo-
cabulary with 30,522 tokens for CNN, Transformer,
and BERT . For CNN-GloVe, we use the GloVe
6B model with 400,000 tokens and the TreeBank

CNN

Trajectory
S1 + P1 + S2

s (state)

Dense

Q-values

LSTM

Actions
P2

𝑎", 𝑎$, 𝑎% (actions)

S1: You find yourself in a kitchen. You see a counter. on the counter you can
make out a knife. You have a potato and a bottle of water.

P1: take the knife from counter
S2: You take the knife, which is suitable for slicing, peeling, and chopping

P2: [slice potato with knife | drop knife | drink water]

Figure 2: The architecture of the DRRN model. Trajec-
tories and actions are encoded by a CNN (in this case)
and an LSTM into state and action representations, re-
spectively, followed by a dense layer to compute the
Q-values. On the bottom, we show a truncated exam-
ple of dialogue from a text game in the cooking genre,
with S1 and S2 representing the system’s descriptions,
and P1 showing the player’s first actions in response to
S1. S1 + P1 + S2 is an example of a trajectory. P2
shows a set of admissible actions.

word tokenizer from NLTK (Loper and Bird, 2002)
since GloVe embeddings are pre-determined and
not compatible with BPE. We use a zero vector as
the padding token and average of all word embed-
dings as the unknown token for CNN-GloVe. CNN
uses a word embedding size of 64, while for CNN-
GloVe and BERT , we use the pre-trained word em-
bedding size, i.e., 50 dimensions for CNN-GloVe
(we choose this dimension because it is close to our
CNN) and 768 for BERT (so does Transformer).

3.2 Action Representations

A consequence of learning to play different games
is that actions differ from one game to another.
Vanilla DQNs, introduced by (Mnih et al., 2015),
are incompatible with this modification since they
presume a predefined finite and consistent action
space, such as the directions and push buttons of a
joystick. Additionally, vanilla DQNs presume no
semantic relatedness among action spaces. In text
games, by contrast, it would make sense for, e.g.,
open the door to be semantically closer to
shut the door than to dice the carrot.
In our experiments, we assume the action set for
a test game may be unknown at training time, and
that actions may have some interrelatedness.4 We

4This is itself still a simplification, as many text games
allow unbounded action generation. We leave this problem
for future work.
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Trajectory ActionCLS SEP SEP
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Figure 3: The architecture of the BERT-NLU models
(BERT-NLU-SE shown). Trajectories and actions are
concatenated together as the input to BERT , followed
by a dense layer over the pooling output of the CLS to-
ken to compute the Q-value. Unlike the DRRN model,
we need to concatenate a trajectory with an action to
compute a Q-value, which increases computation time.

thus represent actions using Deep Reinforcement
Relevance Networks (DRRN) (He et al., 2016), a
modification of the standard DQN, as shown in Fig-
ure 2. Actions are encoded via an LSTM (Hochre-
iter and Schmidhuber, 1997) and scored against
state representations by inner products and an ex-
tra dense layer. In preliminary experiments, we
found that LSTMs worked better than CNN on the
small and similar actions in our space, such as take
yellow potato from fridge and dice purple potato.
We limit these actions to a maximum length of 10
tokens. We use DRRNs in both teacher and student
scenarios.

3.3 Game-Playing as Sequential Natural
Language Understanding Tasks

Large contextualized language models built on the
Transformer architecture such as BERT and GPT
(Radford et al., 2018) have been used in supervised
multiple-choice Natural Language Understanding
(NLU) tasks. While we have so far encoded trajec-
tories and actions separately in the DRRN formula-
tion of DQN (Section 3.2), NLU task architectures
commonly encode context and hypothesis together,
using a dense final layer to obtain scalar confidence
in the hypothesis being the correct result of the con-
text. This is then trained (with a cross-entropy loss)
across all hypotheses for that context. By consid-
ering trajectories as context, actions as hypotheses,
and argmaxã∈A fDQN−teacher(t, ã)

5 as a label
for trajectory t from the curriculum pool, we may
easily switch to this framework, now minimizing
a standard cross-entropy loss in place of DQN stu-
dent learning. We call this model BERT-NLU-CE.

5Henceforth we abuse notation and replace s, the state,
with t, the trajectory used to represent it

At evaluation time, the model chooses an action to
take given a trajectory, but we are no longer explic-
itly learning a new Q-function other than simply
learning a preferred choice.

Of course, having an existing Q-table from the
teacher model, we may instead replace the cross-
entropy loss with the familiar mean squared error
loss (Section 3). This model, which we call BERT-
NLU-SE, operates the same way as BERT-NLU-
CE, but the values associated with each (trajectory,
action) pair are once again regarded as Q-values.
Figure 3 depicts the architecture of BERT-NLU-
SE; BERT-NLU-CE is identical except the output
is not explicitly intended to be a Q-value.

While most NLU tasks like SWAG (Zellers et al.,
2018) or ARC (Clark et al., 2018) have no more
than five hypotheses to choose from, even artifi-
cially constrained text-based games may have hun-
dreds of potential choices. To make training feasi-
ble for text games, given each trajectory, we ran-
domly sample three possible actions, along with
the teacher model’s most favored one. At evalua-
tion time, the model can choose from all admissible
actions.

4 Games and Evaluation Methodology

Unlike most video- or text-game-playing work
(Mnih et al., 2013; Zahavy et al., 2018; Yin and
May, 2019a; Narasimhan et al., 2015) which in-
crementally learns to play games through RL ap-
proaches and reports results on those same games,
we evaluate on games that are not seen during learn-
ing. Our games are generated from the TextWorld
platform (Côté et al., 2019), which procedurally
generates a wide variety of game variants with dif-
ferent maps, objectives, actions, threats, and back-
ground text, given user-supplied inputs. The plat-
form provides the set of admissible actions, i.e.,
legal actions available at each state of each game.
There are between 10–100 of these actions depend-
ing on the context.

4.1 Training and Evaluation Data

We use the games released by Microsoft for the
First TextWorld Problems6 competition for our
training set and an evaluation set of unseen but
in-domain games. The competition provides
4,440 cooking games generated by the TextWorld
framework. The goal of each game is to prepare a

6https://www.microsoft.com/en-us/
research/project/textworld

https://www.microsoft.com/en-us/research/project/textworld
https://www.microsoft.com/en-us/research/project/textworld
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recipe. The action space is simple, yet expressive,
and has a moderately large, though domain-limited,
vocabulary. One example presents a recipe with
directions such as fry the pork chop,
chop the yellow bell pepper, fry
the yellow bell pepper, prepare
meal. To succeed, the player must find and take
the items in various rooms and containers, use
the correct cooking implements, and not spoil
the ingredients, e.g., by frying an apple that
has already been fried. We hold out 444 of these
games as an in-domain test set.

To evaluate our models’ ability to generalize be-
yond their training domain, we also evaluate on
an out-of-dojain set, comprising 208 newly gen-
erated games7 in a treasure-hunting genre. These
have quite different actions, objects, and goals from
cooking games. They generally require the player
to navigate around rooms, find a specific object,
and take a specified action with the entity, e.g., pick-
ing up a key and inserting into a gate’s lock
in a different room to unlock it. These games
have little vocabulary overlap with any cooking
games apart from basic commands like take and
drop.

4.2 Evaluation

We report scores on each test set as a percentage of
the possible total score. Each game has 1–6 points
available. At evaluation time, we play each game
twice, stopping after the sooner of 100 steps, game
completion, or game failure, and consider each
play independently. Scores can vary because each
gameplay uses an initial knowledge graph map con-
struction built via random walks (Ammanabrolu
and Riedl, 2019) and because confidence bound is
learned per action (Yin and May, 2019b), such that
at evaluation time, lower-confidence actions are
chosen with more stochasticity. An agent taking
purely random walks (a low-bar baseline) scores
14% on the in-domain test and 16% on out-of-
domain.

We train the teacher agent for 10 million steps
on the 3,960 training games in the cooking domain,
using deep Q-learning described in Section 3.2. We
use a curriculum training schema (Yin and May,
2019b) to train our teacher model. During train-
ing, each 5,000-step checkpoint takes 25 minutes
on a single P100 GPU. We decay ε from 1 to 0

7https://github.com/microsoft/
TextWorld#usage

40

45

50

55

60

65

70

75

0 100000 200000 300000 400000 500000

pe
rc
en
ta
ge
of
to
ta
ls
co
re

steps

CNN-Glove

CNN

Transformer

BERT

teacher

Figure 4: Comparing DRRN state encoders over in-
domain test games. BERT converges faster and to
a higher point (72%) than other students (CNN 67%;
CNN-GloVe 65%; Transformer: 67%) and the teacher
(70%).

during training. The teacher agent scores 70% on
in-domain test and 33% on out-of-domain test.

5 Student Experiment Results

Having trained a teacher model using DQN and
allowing unlimited exploration of the game space,
we now experiment with several student learning
approaches. Relative to the teacher model, the
students are constrained to explore using data gen-
erated from the trained teacher model. This restric-
tion limits their ability to search but enables much
faster training and, consequently, richer models.
All student models are trained for 500,000 steps of
32 (trajectory, action) pairs per batch, saving check-
points every 5,000 steps and generating results for
in- and out-of-domain test sets. Running on a sin-
gle P100 GPU, all Transformer-based models take
75-80 minutes per 5000 steps, while CNN-based
models take 13 minutes.

5.1 Data Generation from Teacher Models

We generate student curriculum pools from the
trained teacher model by playing all Cooking-Train
games in random order. Specifically, we play
games with the teacher agent using ε-greedy search
(Section 2). We uniformly sample ε ∈ [0, 1] among
different game playing episodes to increase the va-
riety of trajectories exhibited to student learners.
We collect the trajectory, all actions, and Q-values
assigned to each action by the teacher model for
each game playing step. In total, we collect 10
million instances of such tuples from the 3,960
Cooking-Train games.

https://github.com/microsoft/TextWorld#usage
https://github.com/microsoft/TextWorld#usage
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Figure 5: Comparing the use of BERT in a DRRN
(Section 3.2) or NLU (Section 3.3) student model over
in-domain test games. BERT-NLU-SE converges 7%
higher than the teacher model very rapidly, indicating
quick generalization capability.

5.2 In-Domain DRRN Results

In Figure 4, we compare student model learning to
the teacher model’s final position (horizontal line).
We see that for many of the models, the trade-off to
a potentially more sophisticated architecture is not
worth the damage caused by limited exploration.
As expected, our baseline model, CNN, which is
the same model used for teacher training, converges
to 67% of the total possible score at around 300,000
steps of training; the teacher model is at 70%. CNN-
GloVe, compared to CNN, is even worse and con-
verges more slowly. Even though CNN-GloVe is
equipped with pre-trained word embeddings, the
student agent cannot benefit from it.

Transformer performs comparably to CNN, but
BERT learns much more quickly than all other mod-
els, reaching 72% of the total score on test games;
5% higher than any other student models and some-
what better than the teacher model, which is an
encouraging preliminary result.

5.3 In-Domain NLU Results

In Figure 5 we explore the performance of the
NLU-inspired architecture (Section 3.3). The cross-
entropy-based approach, BERT-NLU-CE, is the
most similar to standard supervised NLU tasks and
performs comparably to the DRRN teacher-student
framework. However, BERT-NLU-SE, which di-
rectly regresses to the Q-function’s value, quickly
converges to around 77% of optimal scores, 7
points higher than the teacher model.

Independent of the method for learning Q-values,
we can choose between multiple methods to apply

GRD UCB
Sampling

t=0.01 t=0.1 t=1.0
SE 72 77 72 66 27
CE 67 71 65 65 66

Table 1: Comparing different inference methods for
BERT-NLU agents over cooking-Test (percentage of
total possible score). We compare two BERT-NLU
agents, one trained with square error loss (SE) and
one with cross entropy loss (CE). We use three differ-
ent methods of choosing actions from policies: greedy
(GRD), LinUCB (UCB) and sampling at three different
temperatures.

SE CE
BERT 77 71
no-init 69 60
freeze-all-but-pooler 26 25
freeze-to-penultimate 61 54

Table 2: Ablation study of the NLU method. We com-
pare the best test-set evaluation scores (percentage of
total) over the 100 epochs of training for each model
trained with either square error loss (SE) or cross-
entropy loss (CE).

the policy at inference time. We compare three
frequently used methods—ε-greedy, sampling, and
LinUCB, a bandit feedback method (Auer, 2003;
Abe et al., 2003; Abbasi-yadkori et al., 2011)—in
Table 1. Following Yin and May (2019b), we use
ε = 0 for the ε-greedy method. For the sampling
method, we choose different temperatures over the
Q-values. We follow Yin and May (2019b) for
the LinUCB method. In Table 1, we ablate BERT-
NLU-CE and BERT-NLU-SE training and five dif-
ferent inference approaches. The same Q-values
are used for each setting using BERT-NLU-CE and
for each setting using BERT-NLU-SE. We find that
models trained with square error loss and evaluated
using sampling are highly sensistive to temperature;
cross-entropy-trained models are fairly insensitive.
However, both the ε-greedy and the sampling meth-
ods perform worse than the LinUCB method.

We ablate the impact of fine-tuning BERT in
Table 2, showing what happens if we do not fine-
tune except the pooler (freeze-all-but-pooler), only
fine-tune the last layer and the pooler (freeze-to-
penultimate), or fine-tune all layers (BERT). We
also show the fine-tuned equivalent Transformer
that is not pre-trained (no-init) for comparison.
All settings fine-tune the 768-parameter last dense
layer on top of Transformer to compute Q-values.
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Figure 6: Comparing performance on out-of-domain
test games. Only two agents exceed teacher results
(by 24% and 13%, respectively). Analysis in Figure 7
shows that the superior performing BERT-NLU-SE
benefits from external knowledge, while CNN-DRRN
mostly benefits from stochasticity.

The freeze-to-penultimate allows the final Q-value
layer, the pooler, and the last layer of BERT to
train. In total, more than seven million parameters
are trainable in freeze-to-penultimate. However,
the performance still has a 16% gap compared to
the fully fine-tuned 110-million-parameter BERT
models. This ablation study shows that the bene-
fits coming from BERT can not be reproduced by
simply using out-of-the-box BERT weights, which
would speed up the training process, and under-
scores the importance of imitation learning.

5.4 Out-of-Domain Results

Figure 6 shows the result of evaluating with out-of-
domain games. These games have different goals
and action sets from the training games, so it is pos-
sible during training to observe performance curve
drops, an indication that the model is overfitting on
the cooking game genre and not properly general-
izing. Most of the DRRN student models exhibit
some overfitting; only the CNN model can learn
somewhat well and exceeds the performance (46%)
of the teacher model (33%). BERT-NLU-SE, the
NLU-style architecture that fine-tunes BERT and
is trained to directly estimate Q-values,greatly ex-
ceeds the teacher model’s performance (57%) on
these games from an unseen genre.

6 Discussion

In this section we seek to understand the following:
• What extra information BERT-NLU-SE lever-

ages compared to other DRRN models (Fig-
ures 4 and 5);
• What generalization and extra information

BERT-NLU-SE leverages on out-of-domain
games, and why the CNN student model per-
forms better than expected on out-of-domain
games (Figure 6).

A qualitative investigation of model performance
on in-domain test sets shows that game failure
arises when a model decides to prepare an ingredi-
ent improperly, (e.g., to use the BBQ instead of the
stove to fry). Models initialized with BERT
have fewer such failures, indicating that BERT
provides background cooking knowledge, beyond
what can be learned from the curriculum pool. Ex-
ample gameplays and complete statistics on test
games are provided in the Appendix.

A similar pattern is observed for out-of-domain
tests. One test requires the player to use four differ-
ent kinds of keys with matched locked containers.
As the curriculum pool does not have any informa-
tion relevant for this task, models without general
background knowledge suffer. In the key/lock test
game (a readout is in the Appendix), the teacher
model repeatedly unlocks and locks a single
box, and puts and takes the same key without
making progress. The BERT-NLU-SE model, how-
ever, can correctly open the sequence of containers.

Figure 7 provides more insight into model perfor-
mance, including an explanation for the surprising
success of the CNN model. That figure shows the
KL-divergence (Kullback and Leibler, 1951) be-
tween a uniform distribution and the distribution
formed from the Q-values (the categorical choice
distribution for BERT-NLU-CE) at every step dur-
ing every out-of-domain test, computed from the
final point of each model. The CNN model’s dis-
tribution is closer to uniform than the others. As
stochastic choices are made at test time when the
action distribution is uncertain (see Section 4.2),
the CNN model performs more exploration during
the evaluation of Treasure hunting games. These
games do not have failure cases like the in-domain
test games, so there can be some benefit to stochas-
ticity. The other models are more confident8 and,
except for BERT-NLU-SE, are generally wrong.
This result indicates that equipped with the ability
to generalize from BERT pre-training, BERT-NLU-
SE has learned the skill of decision making, rather
than the ability to memorize patterns.

8particularly BERT-NLU-CE, which is trained to make
very peaked decisions
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Figure 7: Boxplot of KL-divergence between Q-values
and uniform distributions for agents over treasure hunt-
ing games, showing agent confidence. A larger KL-
divergence value indicates more confidence and thus
a sharper distribution of Q-values. The CNN student
agent is the least confident agent, but this allows it to
explore more; other models are more confident but are
wrong. Only BERT-NLU-SE is both confident and cor-
rect, able to generalize well.

7 Related Work

Many recent works (Narasimhan et al., 2015; He
et al., 2016; Ansari et al., 2018; Fulda et al., 2017;
Côté et al., 2019; Kostka et al., 2017) on building
agents to play text-based games apply DQNs (Mnih
et al., 2015) or their variants. Different aspects of
DQN have been presented, such as action reduc-
tion with language correlation (Fulda et al., 2017),
a bounding method (Zahavy et al., 2018), the intro-
duction of a knowledge graph (Ammanabrolu and
Riedl, 2019), text understanding with dependency
parsing (Yin and May, 2019a), and the bandit feed-
back method for agent evaluation (Yin and May,
2019b).

However, previous work uses different games
to evaluate, making it difficult to compare results
comprehensively. With the TextWorld framework’s
availability, there is more and more work con-
centrating on the generalization ability of agents,
which seldom appears in the video game playing
domain. Yuan et al. (2018) work on generaliza-
tion of agents on variants of a very simple coin-
collecting game. The simplicity of their games
enables them to use an LSTM-DQN method with a
counting-based reward. Ammanabrolu and Riedl
(2019) use a knowledge graph as a persistent mem-
ory to encode states, while we use a knowledge
graph later on to make actions more informative.

The TextWorld competition has yielded a variety
of works that use different approaches and methods:
Yuan et al. (2019) co-train a DQN with a question

answering system for building new interactive ma-
chine reading comprehension tasks while creating
agents to solve games. Madotto et al. (2020) de-
scribe a non-RL method to learn agents, by first
randomly playing on training games, then collect-
ing all winning trajectories. By using these trajec-
tories as training data, they manage to transform
an RL problem into supervised learning. Adolphs
and Hofmann (2020) use an actor-critic framework
and prune the action-space by using hierarchical
RL and a specialized module trained on a recipe
database to build better agents. Jain et al. (2020)
apply the action elimination method proposed by
Zahavy et al. (2018) on Zork to the cooking games.

For teacher-student training, Rusu et al. (2015)
design a policy distillation method that trains differ-
ent agents as teacher agents. Each of these teacher
agents learns to play a single and separate game.
Then they build one student learner that can be
trained with a supervised learning method to dis-
till the policy knowledge for multi-game playing.
Ansari et al. (2018) also use teacher-student train-
ing for text-based games. However, our teacher-
student training method is different: we use one
teacher that can play multiple games to guide mul-
tiple student agents’ learning processes.

8 Conclusion

We provide a recipe for integrating large contex-
tualized language models and deep reinforcement
learning, applying to sequential decision making
and a demonstration on the proxy task of text
games, showing dramatic improvements over the
standard practice, particularly in out-of-domain
held-out tests. We expect to apply this approach to
various challenging real-world sequential decision
scenarios, such as goal-directed dialogue and active
information-gathering.
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Lin, Chris Pal, Yoshua Bengio, and Adam Trischler.
2019. Interactive language learning by question an-
swering. Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP).

Tom Zahavy, Matan Haroush, Nadav Merlis, Daniel J.
Mankowitz, and Shie Mannor. 2018. Learn what
not to learn: Action elimination with deep rein-
forcement learning. In Advances in Neural In-
formation Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems
2018, NeurIPS 2018, 3-8 December 2018, Montréal,
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A Appendix

This appendix contains comprehensive results of
the models explored in this work on the two test
sets. Table 3 shows the number of in-domain games
won, lost due to incorrect handling of materials,
and lost due to taking too many steps; the latter cat-
egory is helpful, along withQ-table KL-divergence
from a uniform distribution, in explaining the poor
performance of overly deterministic BERT-NLU-
CE, which fails very infrequently, but often gets
stuck in a step loop instead. Table 4 shows the
number of out-of-domain games won per model, as
out-of-domain games cannot be lost other than by
taking too many steps. We can subtract the num-
bers in this table from 416 to find how many games
a model lost. The column ‘wins over teacher,’ for
all models other than the teacher, shows the num-
ber of games the model won that the teacher model
did not. As all failures here were due to taking too
many steps, stochasticity helps CNN just as much
as determinism hurts BERT-NLU-CE. Sections B
and C contain one complete out-of-domain game,
as played by BERT-NLU-SE and the teacher agent.
Sections D and E show the same for a cooking
game.

B BERT-NLU-SE on one Treasure
Hunting Game

Who’s got a virtual machine and is about to play
through an life changing round of TextWorld? You
do! Here is how to play! Your first objective is to
pick up the keycard in the cubicle. Then, insert the
keycard into the box within the cubicle’s lock to
unlock it. After you have unlocked the box, ensure
that the box in the cubicle is open. Having pulled
open the box, retrieve the type A latchkey from the
box. After that, unlock the type A locker inside the
cubicle. Then, ensure that the type A locker in the
cubicle is open. After that, pick up the key from
the type A locker. Then, unlock the chest. Then,
make it so that the chest inside the cubicle is open.
After that, retrieve the passkey from the chest in
the cubicle. Got that? Good!
-= Cubicle =- I never took you for the sort of person
who would show up in a cubicle, but I guess I was
wrong.
You make out a locked chest. You see a locked type
A locker here. You can see a box. You make out an
open cabinet. The cabinet is empty! What a waste
of a day!

There is a closed door leading south. There is a
closed passageway leading west.
There is a keycard and a worm on the floor.

take keycard
You pick up the keycard from the ground.

take worm
You pick up the worm from the ground.

unlock box with keycard
You unlock the box.

examine keycard
The keycard looks useful

open box
You open the box, revealing a type A latchkey and
a mouse.

take mouse from box
You take the mouse from the box.

take type A latchkey from box
You take the type A latchkey from the box.

unlock type A locker with type A latchkey
You unlock the type A locker.

open type A locker
You open the type A locker, revealing a key.

take key from type A locker
You take the key from the type A locker.

drop mouse
You drop the mouse on the ground.

take mouse
You pick up the mouse from the ground.

examine cabinet
The cabinet looks strong, and impossible to crack
open. You can see inside it.

insert key into cabinet
You put the key into the cabinet.

take key from cabinet
You take the key from the cabinet.

close cabinet
You close the cabinet.

open cabinet
You open the cabinet.

drop key
You drop the key on the ground.

take key
You pick up the key from the ground.

examine chest
The chest looks strong, and impossible to open.
You can’t see inside it because the lid’s in your
way.

drop keycard
You drop the keycard on the ground.

take keycard
You pick up the keycard from the ground.
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Win (↑) Fail (↓) too many steps (↓)
teacher 578 245 65
CNN 543 306 39
CNN-GloVe 525 317 46
Transformer 551 233 104
BERT-DRRN 596 190 102
BERT-NLU-CE 572 87 229
BERT-NLU-SE 631 150 107

Table 3: Tally of in-domain test game outcomes for the models explored in this work, indicating which games are
won, which games lead to a failure (by spoiling ingredients), and which end when the step limit (100) is reached.
BERT-NLU-CE and BERT-NLU-SE fail on in-domain tests the least, indicating a better intuitive understanding of
how to prepare recipes. Because BERT-NLU-CE is so confident (Figure 7) it can get stuck in a deterministic loop;
this is reflected in a larger number of ‘too many steps’ outcomes relative to BERT-NLU-SE.

Wins Wins over teacher
teacher 122 -
CNN 173 70
CNN-GloVe 85 24
Transformer 112 25
BERT-DRRN 102 19
BERT-NLU-CE 56 5
BERT-NLU-SE 209 106

Table 4: Tally of out-domain test game outcomes for
the models explored in this work, indicating which
games are won and which games are won in excess of
those won by the teacher.

unlock chest with key
You unlock the chest.

open chest
You open the chest, revealing a passkey.

take passkey from chest
You take the passkey from the chest.
Your score has just gone up by one point.
*** The End ***
You scored 1 out of a possible 1, in 26 turn(s).

C Teacher on the Treasure Hunting
Game

Who’s got a virtual machine and is about to play
through an life changing round of TextWorld? You
do! Here is how to play! Your first objective is to
pick up the keycard in the cubicle. Then, insert the
keycard into the box within the cubicle’s lock to
unlock it. After you have unlocked the box, ensure
that the box in the cubicle is open. Having pulled
open the box, retrieve the type A latchkey from the
box. After that, unlock the type A locker inside the
cubicle. Then, ensure that the type A locker in the
cubicle is open. After that, pick up the key from

the type A locker. Then, unlock the chest. Then,
make it so that the chest inside the cubicle is open.
After that, retrieve the passkey from the chest in
the cubicle. Got that? Good!
-= Cubicle =- I never took you for the sort of person
who would show up in a cubicle, but I guess I was
wrong.
You make out a locked chest. You see a locked type
A locker here. You can see a box. You make out an
open cabinet. The cabinet is empty! What a waste
of a day!
There is a closed door leading south. There is a
closed passageway leading west.
There is a keycard and a worm on the floor.

examine latchkey
The latchkey is surprisingly heavy.

inventory
You are carrying: a gummy bear a latchkey

drop latchkey
You drop the latchkey on the ground.

examine gummy bear
that’s a normal gummy bear!

eat gummy bear
You eat the gummy bear. Not bad.

take latchkey
You pick up the latchkey from the ground.

examine worm
The worm appears to fit in here

examine keycard
The keycard looks useful

examine door
it is what it is, a door It is closed.

examine cabinet
The cabinet looks strong, and impossible to crack
open. You can see inside it.

examine chest
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The chest looks strong, and impossible to open.
You can’t see inside it because the lid’s in your
way.

examine passageway
it is what it is, a passageway It is closed.

take worm
You pick up the worm from the ground.

drop worm
You drop the worm on the ground.

take keycard
You pick up the keycard from the ground.

drop keycard
You drop the keycard on the ground.

insert latchkey into cabinet
You put the latchkey into the cabinet.

take latchkey from cabinet
You take the latchkey from the cabinet.

examine box
The box looks strong, and impossible to crack open.
It is closed.

look
-= Cubicle =- I never took you for the sort of person
who would show up in a cubicle, but I guess I was
wrong.
You make out a locked chest. You see a locked type
A locker here. You can see a box. You make out an
open cabinet. The cabinet is empty! What a waste
of a day!
There is a closed door leading south. There is a
closed passageway leading west.
There is a keycard and a worm on the floor.

close cabinet
You close the cabinet.

open cabinet
You open the cabinet.

examine type A locker
The type A locker looks strong, and impossible to
bash open. It is closed.

examine latchkey
The latchkey is surprisingly heavy.

inventory
You are carrying: a latchkey

drop latchkey
You drop the latchkey on the ground.

take latchkey
You pick up the latchkey from the ground.

examine worm
The worm appears to fit in here

examine keycard
The keycard looks useful

examine door

it is what it is, a door It is closed.
examine cabinet

The cabinet looks strong, and impossible to crack
open. You can see inside it.

examine chest
The chest looks strong, and impossible to open.
You can’t see inside it because the lid’s in your
way.

examine passageway
it is what it is, a passageway It is closed.

take worm
You pick up the worm from the ground.

insert worm into cabinet
You put the worm into the cabinet.

take worm from cabinet
You take the worm from the cabinet.

drop worm
You drop the worm on the ground.

take keycard
You pick up the keycard from the ground.

unlock box with keycard
You unlock the box.

lock box with keycard
You lock the box.

insert keycard into cabinet
You put the keycard into the cabinet.

take keycard from cabinet
You take the keycard from the cabinet.

drop keycard
You drop the keycard on the ground.

insert latchkey into cabinet
You put the latchkey into the cabinet.

take latchkey from cabinet
You take the latchkey from the cabinet.

examine box
The box looks strong, and impossible to crack open.
It is closed.

look
-= Cubicle =- I never took you for the sort of person
who would show up in a cubicle, but I guess I was
wrong.
You make out a locked chest. You see a locked type
A locker here. You can see a box. You make out an
open cabinet. The cabinet is empty! What a waste
of a day!
There is a closed door leading south. There is a
closed passageway leading west.
There is a keycard and a worm on the floor.

close cabinet
You close the cabinet.

open cabinet
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You open the cabinet.
examine type A locker

The type A locker looks strong, and impossible to
bash open. It is closed.

examine latchkey
The latchkey is surprisingly heavy.

inventory
You are carrying: a latchkey

drop latchkey
You drop the latchkey on the ground.

take latchkey
You pick up the latchkey from the ground.

examine worm
The worm appears to fit in here

examine keycard
The keycard looks useful

examine door
it is what it is, a door It is closed.

examine cabinet
The cabinet looks strong, and impossible to crack
open. You can see inside it.

examine chest
The chest looks strong, and impossible to open.
You can’t see inside it because the lid’s in your
way.

examine passageway
it is what it is, a passageway It is closed.

take worm
You pick up the worm from the ground.

insert worm into cabinet
You put the worm into the cabinet.

take worm from cabinet
You take the worm from the cabinet.

drop worm
You drop the worm on the ground.

take keycard
You pick up the keycard from the ground.

unlock box with keycard
You unlock the box.

open box
You open the box, revealing a type A latchkey and
a mouse.

examine type A latchkey
The type A latchkey is light.

take type A latchkey from box
You take the type A latchkey from the box.

drop type A latchkey
You drop the type A latchkey on the ground.

take type A latchkey
You pick up the type A latchkey from the ground.

unlock type A locker with type A latchkey

You unlock the type A locker.
lock type A locker with type A latchkey

You lock the type A locker.
insert type A latchkey into cabinet

You put the type A latchkey into the cabinet.
take type A latchkey from cabinet

You take the type A latchkey from the cabinet.
take mouse from box

You take the mouse from the box.
examine mouse

The mouse would seem to be to fit in here
insert latchkey into box

(the latchkey into the box) You put the latchkey
into the box.

take latchkey from box
You take the latchkey from the box.

insert type A latchkey into box
You put the type A latchkey into the box.

drop mouse
You drop the mouse on the ground.

insert keycard into box
You put the keycard into the box.

take keycard from box
You take the keycard from the box.

close box
You close the box.

take mouse
You pick up the mouse from the ground.

insert mouse into cabinet
You put the mouse into the cabinet.

take mouse from cabinet
You take the mouse from the cabinet.

lock box with keycard
You lock the box.

insert keycard into cabinet
You put the keycard into the cabinet.

take keycard from cabinet
You take the keycard from the cabinet.

examine mouse
The mouse would seem to be to fit in here

drop mouse
You drop the mouse on the ground.

take mouse
You pick up the mouse from the ground.

insert mouse into cabinet
You put the mouse into the cabinet.

take mouse from cabinet
You take the mouse from the cabinet.

drop keycard
You drop the keycard on the ground.

insert latchkey into cabinet
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You put the latchkey into the cabinet.
take latchkey from cabinet

You take the latchkey from the cabinet.
examine box

The box looks strong, and impossible to crack open.
It is closed.

look
-= Cubicle =- I never took you for the sort of person
who would show up in a cubicle, but I guess I was
wrong.
You make out a locked chest. You see a locked type
A locker here. You can see a box. You make out an
open cabinet. The cabinet is empty! What a waste
of a day!
There is a closed door leading south. There is a
closed passageway leading west.
There is a keycard and a worm on the floor.
=====
won: False
lost: False
total steps: 100

D BERT-NLU-SE on one Cooking Game

You are hungry! Let’s cook a delicious meal.
Check the cookbook in the kitchen for the recipe.
Once done, enjoy your meal!
-= Pantry =- You are in a pantry. An usual one.
You can see a shelf. But the thing hasn’t got any-
thing on it. Oh! Why couldn’t there just be stuff on
it?
There is an open frosted-glass door leading north.

go north
-= Kitchen =- You’re now in the kitchen.
Look out! It’s a- oh, never mind, it’s just a fridge.
Suddenly, you bump your head on the ceiling, but
it’s not such a bad bump that it’s going to prevent
you from looking at objects and even things. The
fridge contains some water, a diced block of cheese,
a diced yellow bell pepper, a raw yellow potato, an
orange bell pepper, a raw pork chop and a cilantro.
You see a closed oven nearby. You can make out a
table. The table is massive. But the thing hasn’t got
anything on it. You can make out a counter. The
counter is vast. On the counter you see a cookbook.
Look over there! a stove. Now why would someone
leave that there? The stove is conventional. But the
thing is empty.
There is an open patio door leading east. There is
an open frosted-glass door leading south. You need
an exit without a door? You should try going west.

examine cookbook

You open the copy of ”Cooking: A Modern Ap-
proach (3rd Ed.)” and start reading:
Recipe #1 ——— Gather all following ingredients
and follow the directions to prepare this tasty meal.
Ingredients: block of cheese water yellow bell pep-
per
Directions: dice the block of cheese grill the block
of cheese dice the yellow bell pepper roast the yel-
low bell pepper prepare meal

inventory
You are carrying nothing.

take block of cheese from fridge
You take the block of cheese from the fridge.
Your score has just gone up by one point.

examine cookbook
You open the copy of ”Cooking: A Modern Ap-
proach (3rd Ed.)” and start reading:
Recipe #1 ——— Gather all following ingredients
and follow the directions to prepare this tasty meal.
Ingredients: block of cheese water yellow bell pep-
per
Directions: dice the block of cheese grill the block
of cheese dice the yellow bell pepper roast the yel-
low bell pepper prepare meal

inventory
You are carrying: a diced block of cheese

take water from fridge
You take the water from the fridge.
Your score has just gone up by one point.

examine cookbook
You open the copy of ”Cooking: A Modern Ap-
proach (3rd Ed.)” and start reading:
Recipe #1 ——— Gather all following ingredients
and follow the directions to prepare this tasty meal.
Ingredients: block of cheese water yellow bell pep-
per
Directions: dice the block of cheese grill the block
of cheese dice the yellow bell pepper roast the yel-
low bell pepper prepare meal

inventory
You are carrying: some water a diced block of
cheese

take yellow bell pepper from fridge
You take the yellow bell pepper from the fridge.
Your score has just gone up by one point.

examine cookbook
You open the copy of ”Cooking: A Modern Ap-
proach (3rd Ed.)” and start reading:
Recipe #1 ——— Gather all following ingredients
and follow the directions to prepare this tasty meal.
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Ingredients: block of cheese water yellow bell pep-
per
Directions: dice the block of cheese grill the block
of cheese dice the yellow bell pepper roast the yel-
low bell pepper prepare meal

inventory
You are carrying: a diced yellow bell pepper some
water a diced block of cheese

cook yellow bell pepper with oven
You roasted the yellow bell pepper.
Your score has just gone up by one point.

examine cookbook
You open the copy of ”Cooking: A Modern Ap-
proach (3rd Ed.)” and start reading:
Recipe #1 ——— Gather all following ingredients
and follow the directions to prepare this tasty meal.
Ingredients: block of cheese water yellow bell pep-
per
Directions: dice the block of cheese grill the block
of cheese dice the yellow bell pepper roast the yel-
low bell pepper prepare meal

inventory
You are carrying: a diced roasted yellow bell pep-
per some water a diced block of cheese

drop block of cheese
You drop the block of cheese on the ground.

take block of cheese
You pick up the block of cheese from the ground.

inventory
You are carrying: a diced block of cheese a diced
roasted yellow bell pepper some water

go east
-= Backyard =- You arrive in a backyard. A typical
kind of place. You start to take note of what’s in
the room.
You can make out a patio chair. But the thing is
empty, unfortunately. Hopefully, this discovery
doesn’t ruin your TextWorld experience! You rest
your hand against a wall, but you miss the wall and
fall onto a patio table. The patio table is stylish.
However, the patio table, like an empty patio table,
has nothing on it. Oh, great. Here’s a BBQ.
There is an open barn door leading south. There is
an open patio door leading west. There is an exit
to the east.

cook block of cheese with BBQ
You grilled the block of cheese.
Your score has just gone up by one point.

go west
-= Kitchen =- You’re now in the kitchen.

Look out! It’s a- oh, never mind, it’s just a fridge.
Suddenly, you bump your head on the ceiling, but
it’s not such a bad bump that it’s going to prevent
you from looking at objects and even things. The
fridge contains a raw yellow potato, an orange bell
pepper, a raw pork chop and a cilantro. You see a
closed oven nearby. You can make out a table. The
table is massive. But the thing hasn’t got anything
on it. You can make out a counter. The counter is
vast. On the counter you see a cookbook. Look
over there! a stove. Now why would someone
leave that there? The stove is conventional. But the
thing is empty.
There is an open patio door leading east. There is
an open frosted-glass door leading south. You need
an exit without a door? You should try going west.

examine cookbook
You open the copy of ”Cooking: A Modern Ap-
proach (3rd Ed.)” and start reading:
Recipe #1 ——— Gather all following ingredients
and follow the directions to prepare this tasty meal.
Ingredients: block of cheese water yellow bell pep-
per
Directions: dice the block of cheese grill the block
of cheese dice the yellow bell pepper roast the yel-
low bell pepper prepare meal

inventory
You are carrying: a diced grilled block of cheese a
diced roasted yellow bell pepper some water

prepare meal
Adding the meal to your inventory.
Your score has just gone up by one point.

eat meal
You eat the meal. Not bad.
Your score has just gone up by one point.
*** The End ***
You scored 7 out of a possible 7, in 27 turn(s).

E Teacher on the Cooking Game

You are hungry! Let’s cook a delicious meal.
Check the cookbook in the kitchen for the recipe.
Once done, enjoy your meal!
-= Pantry =- You are in a pantry. An usual one.
You can see a shelf. But the thing hasn’t got any-
thing on it. Oh! Why couldn’t there just be stuff on
it?
There is an open frosted-glass door leading north.

go north
-= Kitchen =- You’re now in the kitchen.
Look out! It’s a- oh, never mind, it’s just a fridge.
Suddenly, you bump your head on the ceiling, but
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it’s not such a bad bump that it’s going to prevent
you from looking at objects and even things. The
fridge contains some water, a diced block of cheese,
a diced yellow bell pepper, a raw yellow potato, an
orange bell pepper, a raw pork chop and a cilantro.
You see a closed oven nearby. You can make out a
table. The table is massive. But the thing hasn’t got
anything on it. You can make out a counter. The
counter is vast. On the counter you see a cookbook.
Look over there! a stove. Now why would someone
leave that there? The stove is conventional. But the
thing is empty.
There is an open patio door leading east. There is
an open frosted-glass door leading south. You need
an exit without a door? You should try going west.

examine cookbook
You open the copy of ”Cooking: A Modern Ap-
proach (3rd Ed.)” and start reading:
Recipe #1 ——— Gather all following ingredients
and follow the directions to prepare this tasty meal.
Ingredients: block of cheese water yellow bell pep-
per
Directions: dice the block of cheese grill the block
of cheese dice the yellow bell pepper roast the yel-
low bell pepper prepare meal

inventory
You are carrying nothing.

take block of cheese from fridge
You take the block of cheese from the fridge.
Your score has just gone up by one point.

examine cookbook
You open the copy of ”Cooking: A Modern Ap-
proach (3rd Ed.)” and start reading:
Recipe #1 ——— Gather all following ingredients
and follow the directions to prepare this tasty meal.
Ingredients: block of cheese water yellow bell pep-
per
Directions: dice the block of cheese grill the block
of cheese dice the yellow bell pepper roast the yel-
low bell pepper prepare meal

inventory
You are carrying: a diced block of cheese

take yellow bell pepper from fridge
You take the yellow bell pepper from the fridge.
Your score has just gone up by one point.

examine cookbook
You open the copy of ”Cooking: A Modern Ap-
proach (3rd Ed.)” and start reading:
Recipe #1 ——— Gather all following ingredients
and follow the directions to prepare this tasty meal.

Ingredients: block of cheese water yellow bell pep-
per
Directions: dice the block of cheese grill the block
of cheese dice the yellow bell pepper roast the yel-
low bell pepper prepare meal

inventory
You are carrying: a diced yellow bell pepper a diced
block of cheese

take water from fridge
You take the water from the fridge.
Your score has just gone up by one point.

examine cookbook
You open the copy of ”Cooking: A Modern Ap-
proach (3rd Ed.)” and start reading:
Recipe #1 ——— Gather all following ingredients
and follow the directions to prepare this tasty meal.
Ingredients: block of cheese water yellow bell pep-
per
Directions: dice the block of cheese grill the block
of cheese dice the yellow bell pepper roast the yel-
low bell pepper prepare meal

inventory
You are carrying: some water a diced yellow bell
pepper a diced block of cheese

cook yellow bell pepper with oven
You roasted the yellow bell pepper.
Your score has just gone up by one point.

examine cookbook
You open the copy of ”Cooking: A Modern Ap-
proach (3rd Ed.)” and start reading:
Recipe #1 ——— Gather all following ingredients
and follow the directions to prepare this tasty meal.
Ingredients: block of cheese water yellow bell pep-
per
Directions: dice the block of cheese grill the block
of cheese dice the yellow bell pepper roast the yel-
low bell pepper prepare meal

inventory
You are carrying: some water a diced roasted yel-
low bell pepper a diced block of cheese

drop block of cheese
You drop the block of cheese on the ground.

take block of cheese
You pick up the block of cheese from the ground.

inventory
You are carrying: a diced block of cheese some
water a diced roasted yellow bell pepper

cook block of cheese with stove
You fried the block of cheese.
*** You lost! ***
You scored 4 out of a possible 7, in 20 turn(s).


