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Abstract

Neural network NLP models are vulnerable to
small modifications of the input that maintain
the original meaning but result in a different
prediction. In this paper, we focus on robust-
ness of text classification against word substi-
tutions, aiming to provide guarantees that the
model prediction does not change if a word
is replaced with a plausible alternative, such
as a synonym. As a measure of robustness,
we adopt the notion of the maximal safe ra-
dius for a given input text, which is the min-
imum distance in the embedding space to the
decision boundary. Since computing the ex-
act maximal safe radius is not feasible in prac-
tice, we instead approximate it by comput-
ing a lower and upper bound. For the upper
bound computation, we employ Monte Carlo
Tree Search in conjunction with syntactic fil-
tering to analyse the effect of single and multi-
ple word substitutions. The lower bound com-
putation is achieved through an adaptation of
the linear bounding techniques implemented
in tools CNN-Cert and POPQORN, respec-
tively for convolutional and recurrent network
models. We evaluate the methods on senti-
ment analysis and news classification models
for four datasets (IMDB, SST, AG News and
NEWS) and a range of embeddings, and pro-
vide an analysis of robustness trends. We also
apply our framework to interpretability analy-
sis and compare it with LIME.

1 Introduction

Deep neural networks (DNNs) have shown great
promise in Natural Language Processing (NLP),
outperforming other machine learning techniques
in sentiment analysis (Devlin et al., 2018), lan-
guage translation (Chorowski et al., 2015), speech
recognition (Jia et al., 2018) and many other tasks1.

1See https://paperswithcode.com/area/
natural-language-processing

Despite these successes, concerns have been raised
about robustness and interpretability of NLP mod-
els (Arras et al., 2016). It is known that DNNs
are vulnerable to adversarial examples, that is, im-
perceptible perturbations of a test point that cause
a prediction error (Goodfellow et al., 2014). In
NLP this issue manifests itself as a sensitivity of
the prediction to small modifications of the input
text (e.g., replacing a word with a synonym). In
this paper we work with DNNs for text analysis
and, given a text and a word embedding, consider
the problem of quantifying the robustness of the
DNN with respect to word substitutions. In par-
ticular, we define the maximal safe radius (MSR)
of a text as the minimum distance (in the embed-
ding space) of the text from the decision boundary,
i.e., from the nearest perturbed text that is classi-
fied differently from the original. Unfortunately,
computation of the MSR for a neural network is
an NP-hard problem and becomes impractical for
real-world networks (Katz et al., 2017). As a conse-
quence, we adapt constraint relaxation techniques
(Weng et al., 2018a; Zhang et al., 2018; Wong and
Kolter, 2018) developed to compute a guaranteed
lower bound of the MSR for both convolutional
(CNNs) and recurrent neural networks (RNNs). Fur-
thermore, in order to compute an upper bound for
the MSR we adapt the Monte Carlo Tree Search
(MCTS) algorithm (Coulom, 2007) to word embed-
dings to search for (syntactically and semantically)
plausible word substitutions that result in a clas-
sification different from the original; the distance
to any such perturbed text is an upper bound, al-
beit possibly loose. We employ our framework
to perform an empirical analysis of the robustness
trends of sentiment analysis and news classification
tasks for a range of embeddings on vanilla CNN
and LTSM models. In particular, we consider the
IMDB dataset (Maas et al., 2011), the Stanford
Sentiment Treebank (SST) dataset (Socher et al.,

https://paperswithcode.com/area/natural-language-processing
https://paperswithcode.com/area/natural-language-processing
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2013), the AG News Corpus Dataset (Zhang et al.,
2015) and the NEWS Dataset (Vitale et al., 2012).
We empirically observe that, although generally
NLP models are vulnerable to minor perturbations
and their robustness degrades with the dimension-
ality of the embedding, in some cases we are able
to certify the text’s classification against any word
substitution. Furthermore, we show that our frame-
work can be employed for interpretability analysis
by computing a saliency measure for each word,
which has the advantage of being able to take into
account non-linearties of the decision boundary
that local approaches such as LIME (Ribeiro et al.,
2016) cannot handle.

In summary this paper makes the following main
contributions:

• We develop a framework for quantifying the
robustness of NLP models against (single and
multiple) word substitutions based on MSR
computation.

• We adapt existing techniques for approximat-
ing the MSR (notably CNN-Cert, POPQORN
and MCTS) to word embeddings and semanti-
cally and syntactically plausible word substi-
tutions.

• We evaluate vanilla CNN and LSTM senti-
ment and news classification models on a
range of embeddings and datasets, and pro-
vide a systematic analysis of the robustness
trends and comparison with LIME on inter-
pretability analysis.

Related Work. Deep neural networks are known
to be vulnerable to adversarial attacks (small per-
turbations of the network input that result in a
misclassification) (Szegedy et al., 2014; Biggio
et al., 2013; Biggio and Roli, 2018). The NLP
domain has also been shown to suffer from this
issue (Belinkov and Bisk, 2018; Ettinger et al.,
2017; Gao et al., 2018; Jia and Liang, 2017; Liang
et al., 2017; Zhang et al., 2020). The vulnerabilities
of NLP models have been exposed via, for exam-
ple, small character perturbations (Ebrahimi et al.,
2018), syntactically controlled paraphrasing (Iyyer
et al., 2018), targeted keywords attacks (Alzantot
et al., 2018; Cheng et al., 2018), and exploitation
of back-translation systems (Ribeiro et al., 2018).
Formal verification can guarantee that the classifi-
cation of an input of a neural network is invariant
to perturbations of a certain magnitude, which can

be established through the concept of the maxi-
mal safe radius (Wu et al., 2020) or, dually, mini-
mum adversarial distortion (Weng et al., 2018b).
While verification methods based on constraint
solving (Katz et al., 2017, 2019) and mixed inte-
ger programming (Dutta et al., 2018; Cheng et al.,
2017) can provide complete robustness guaran-
tees, in the sense of computing exact bounds, they
are expensive and do not scale to real-world net-
works because the problem itself is NP-hard (Katz
et al., 2017). To work around this, incomplete ap-
proaches, such as search-based methods (Huang
et al., 2017; Wu and Kwiatkowska, 2020) or reacha-
bility computation (Ruan et al., 2018), instead com-
pute looser robustness bounds with much greater
scalability, albeit relying on the knowledge of non-
trivial Lipschitz constants. In this work, we exploit
approximate, scalable, linear constraint relaxation
methods (Weng et al., 2018a; Zhang et al., 2018;
Wong and Kolter, 2018), which do not assume Lip-
schitz continuity. In particular, we adapt the CNN-
Cert tool (Boopathy et al., 2019) and its recurrent
extension POPQORN (Ko et al., 2019) to compute
robustness guarantees for text classification in the
NLP domain. We note that NLP robustness has
also been addressed using interval bound propaga-
tion (Huang et al., 2019; Jia et al., 2019).

2 Robustness Quantification of Text
Classification against Word
Substitutions

In text classification an algorithm processes a text
and associates it to a category. Raw text, i.e., a se-
quence of words (or similarly sentences or phrases),
is converted to a sequence of real-valued vectors
through an embedding E : W → X ⊆ Rd, which
maps each element of a finite set W (e.g., a vo-
cabulary) into a vector of real numbers. There are
many different ways to build embeddings (Gold-
berg and Levy, 2014; Pennington et al., 2014;
Wallach, 2006), nonetheless their common objec-
tive is to capture relations among words. Further-
more, it is also possible to enforce into the embed-
ding syntactic/semantic constraints, a technique
commonly known as counter-fitting (Mrkšić et al.,
2016), which we assess from a robustness perspec-
tive in Section 3. Each text is represented univo-
cally by a sequence of vectors x = (x1, . . . , xm),
where m ∈ N, xi ∈ X , padding if necessary. In
this work we consider text classification with neural
networks, hence, a text embedding x is classified
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into a category c ∈ C, through a trained network
N : Rd·m

[0,1] → R|C|, i.e., c = argmaxi∈C Ni(x),
where without any loss of generality we assume
that each dimension of the input space of N is nor-
malized between 0 and 1. We note that pre-trained
embeddings are scaled before training, thus result-
ing in a L∞ diameter whose maximum value is 1.
Thus, the lower and upper bound measurements
are affected by normalization only when one com-
pares embeddings with different dimensions with
norms different from L∞. In this paper robustness
is measured for both convolutional and recurrent
neural networks with the distance between words
in the embedding space that is calculated with ei-
ther L2 or L∞-norm: while the former is a proxy
for semantic similarity between words in polarized
embeddings (this is discussed more in details in
the Experimental Section), the latter, by taking into
account the maximum variation along all the em-
bedding dimensions, is used to compare different
robustness profiles.

2.1 Robustness Measure against Word
Substitutions

Given a text embedding x, a metric Lp, a subset
of word indices I ⊆ {1, . . . ,m}, and a distance
ε ∈ R≥0, we define Ball(x, ε) = {x′ ∈ Rd·m

[0,1] |
‖xI − x′I‖p ≤ ε ∧ (∀i /∈ I, xi = x′i)}, where xI

is the sub-vector of x that contains only embed-
ding vectors corresponding to words in I . That is,
Ball(x, ε) is the set of embedded texts obtained by
replacing words in I within x and whose distance
to x is no greater than ε. We elide the index set I to
simplify the notation. Below we define the notion
of the maximal safe radius (MSR), which is the
minimum distance of an embedding text from the
decision boundary of the network.

Definition 1 (Maximal Safe Radius). Given a neu-
ral network N, a subset of word indices I ⊆
{1, . . . ,m}, and a text embedding x, the maxi-
mal safe radius MSR(N,x) is the minimum dis-
tance from input x to the decision boundary, i.e.,
MSR(N,x) is equal to the largest ε ∈ R≥0 such
that ∀x′ ∈ Ball(x, ε) : argmaxiNi∈C(x

′) =
argmaxiNi∈C(x).

For a text x let d = maxx′∈Rd·m
[0,1]
‖xI − x′I‖p be

the diameter of the embedding, then a large value
for the normalised MSR, MSR(N,x)

d , indicates that x
is robust to perturbations of the given subset I of
its words, as substitutions of these words do not
result in a class change in the NN prediction (in
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Figure 1: Illustration of the Maximal Safe Radius
(MSR) and its upper and lower bounds. An upper
bound of MSR is obtained by computing the distance
of any perturbation resulting in a class change (blue el-
lipse) to the input text. A lower bound certifies that
perturbations of the words contained within that radius
are guaranteed to not change the classification decision
(green ellipse). Both upper and lower bounds approxi-
mate the MSR (black ellipse). In this example the word
strange can be safely substituted with odd. The
word timeless is within upper and lower bound of
the MSR, so our approach cannot guarantee it would
not change the neural network prediction.

particular, if the normalised MSR is greater than 1
then x is robust to any perturbation of the words in
I). Conversely, low values of the normalised MSR
indicate that the network’s decision is vulnerable at
x because of the ease with which the classification
outcomes can be manipulated. Further, averag-
ing MSR over a set of inputs yields a robustness
measure of the network, as opposed to being spe-
cific to a given text. Under standard assumptions
of bounded variation of the underlying learning
function, the MSR is also generally employed to
quantify the robustness of the NN to adversarial
examples (Wu et al., 2020; Weng et al., 2018a),
that is, small perturbations that yield a prediction
that differs from ground truth. Since computing
the MSR is NP-hard (Katz et al., 2017), we instead
approximate it by computing a lower and an upper
bound for this quantity (see Figure 1). The strategy
for obtaining an upper bound is detailed in Section
2.2, whereas for the lower bound (Section 2.3) we
adapt constraint relaxation techniques developed
for the verification of deep neural networks.

2.2 Upper Bound: Monte Carlo Tree Search

An upper bound for MSR is a perturbation of the
text that is classified by the NN differently than the
original text. In order to only consider perturba-
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tions that are syntactically coherent with the input
text, we use filtering in conjunction with an adap-
tation of the Monte Carlo Tree Search (MCTS)
algorithm (Coulom, 2007) to the NLP scenario
(Figure 2). The algorithm takes as input a text,
embeds it as a sequence of vectors x, and builds a
tree where at each iteration a set of indices I iden-
tifies the words that have been modified so far: at
the first level of the tree a single word is changed
to manipulate the classification outcome, at the sec-
ond two words are perturbed, with the former being
the same word as for the parent vertex, and so on
(i.e., for each vertex, I contains the indices of the
words that have been perturbed plus that of the
current vertex). We allow only word for word sub-
stitutions. At each stage the procedure outputs all
the successful attacks (i.e., perturbed texts that are
classified by the neural network differently from
the original text) that have been found until the
terminating condition is satisfied (e.g., a fixed frac-
tion out of the total number of vertices has been
explored). Successful perturbations can be used as
diagnostic information in cases where ground truth
information is available. The algorithm explores
the tree according to the UCT heuristic (Browne
et al., 2012), where urgent vertices are identified by
the perturbations that induce the largest drop in the
neural network’s confidence. A detailed descrip-
tion of the resulting algorithm, which follows the
classical algorithm (Coulom, 2007) while working
directly with word embeddings, can be found in
Appendix A.1. Perturbations are sampled by con-
sidering the n-closest replacements in the word’s
neighbourhood: the distance between words is mea-
sured in the L2 norm, while the number of substitu-
tions per word is limited to a fixed constant (e.g.,
in our experiments this is either 1000 or 10000).
In order to enforce the syntactic consistency of the
replacements we consider part-of-speech tagging
of each word based on its context. Then, we filter
all the replacements found by MCTS to exclude
those that are not of the same type, or from a type
that will maintain the syntactic consistency of the
perturbed text (e.g., a noun sometimes can be re-
placed by an adjective). To accomplish this task
we use the Natural Language Toolkit (Bird et al.,
2009). More details are provided in Appendix A.1.

2.3 Lower Bound: Constraint Relaxation

A lower bound for MSR(N,x) is a real number
εl > 0 such that all texts in Ball(x, εl) are classified

the movie is good

movie is good
the the the

the  sample({a, all, for, ... })

movie  sample({ lm, book, watch, ... })

the
the

Figure 2: Structure of the tree after two iterations of the
MCTS algorithm. Simulations of 1-word substitutions
are executed at each vertex on the first level to update
the UCT statistics. The most urgent vertex is then ex-
panded (e.g., word the) and several 2-words substitu-
tions are executed combining the word identified by the
current vertex (e.g., word movie at the second level of
the tree) and that of its parent, i.e., the. Redundant
substitutions may be avoided (greyed out branch).

in the same class by N. Note that, as MSR(N,x)
is defined in the embedding space, which is contin-
uous, the perturbation space, Ball(x, ε), contains
meaningful texts as well as texts that are not syn-
tactically or semantically meaningful. In order to
compute εl we leverage constraint relaxation tech-
niques developed for CNNs (Boopathy et al., 2019)
and LSTMs (Ko et al., 2019), namely CNN-Cert
and POPQORN. For an input text x and a hyper-
box around Ball(x, ε), these techniques find linear
lower and upper bounds for the activation functions
of each layer of the neural network and use these
to propagate an over-approximation of the hyper-
box through the network. εl is then computed as
the largest real such that all the texts in Ball(x, εl)
are in the same class, i.e., for all x′ ∈ Ball(x, εl),
argmaxi∈C Ni(x) = argmaxi∈C Ni(x

′). Note
that, as Ball(x, εl) contains only texts obtained by
perturbing a subset of the words (those whose in-
dex is in I), to adapt CNN-Cert and POPQORN
to our setting, we have to fix the dimensions of x
corresponding to words not in I and only propa-
gate through the network intervals corresponding
to words in I.

3 Experimental Results

We use our framework to empirically evaluate the
robustness of neural networks for sentiment analy-
sis and news classification on typical CNN and
LSTM architectures. While we quantify lower
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NEWS SST AG NEWS IMDB
Inputs (Train, Test) 22806, 9793 117220, 1821 120000, 7000 25000, 25000

Output Classes 7 2 4 2

Average Input Length 17± 2.17 17.058± 8.27 37.295± 9.943 230.8± 169.16

Max Input Length 88 52 136 2315

Max Length Considered 14 25 49 100

Table 1: Datasets used for the experimental evaluation. We report the number of samples (training/test ratio as
provided in the original works) and output classes, the average and maximum length of each input text before
pre-processing and the maximum length considered in our experiments.

bounds of MSR for CNNs and LSTMs, respec-
tively, with CNN-Cert and POPQORN tools, we
implement the MCTS algorithm introduced in Sec-
tion 2.2 to search for meaningful perturbations (i.e.,
upper bounds), regardless of the NN architecture
employed. In particular, in Section 3.1 we consider
robustness against single and multiple word sub-
stitutions and investigate implicit biases of LSTM
architectures. In Section 3.2 we study the effect of
embedding on robustness, while in Section 3.3 we
employ our framework to perform saliency analysis
of the most relevant words in a text.

Experimental Setup and Implementation We
have trained several vanilla CNN and LSTM mod-
els on datasets that differ in length of each input,
number of target classes and difficulty of the learn-
ing task. All our experiments were conducted on a
server equipped with two 24 core Intel Xenon 6252
processors and 256GB of RAM2,3. We consider
the IMDB dataset (Maas et al., 2011), the Stan-
ford Sentiment Treebank (SST) dataset (Socher
et al., 2013), the AG News Corpus (Zhang et al.,
2015) and the NEWS dataset (Vitale et al., 2012):
details are in Table 1. In our experiments we con-
sider different embeddings, and specifically both
complex, probabilistically-constrained representa-
tions (GloVe and GloVeTwitter) trained on global
word-word co-occurrence statistics from a corpus,
as well as the simplified embedding provided by
the Keras Python Deep Learning Library (referred
to as Keras Custom) (Chollet et al., 2015), which
allows one to fine tune the exact dimension of the
vector space and only aims at minimizing the loss
on the classification task. The resulting learned
Keras Custom embedding does not capture com-

2We emphasise that, although the experiments reported
here have been performed on a cluster, all the algorithms are
reproducible on a mid-end laptop; we used a machine with
16GB of RAM and an Intel-5 8th-gen. processor.

3Code for reproducing the MCTS experiments is available
at: https://github.com/EmanueleLM/MCTS

plete word semantics, just their emotional polar-
ity. More details are reported in Appendix A.3
and Table 4. For our experiments, we consider a
3-layer CNN, where the first layer consists of bi-
dimensional convolution with 150 filters, each of
size 3×3, and a LSTM model with 256 hidden neu-
rons on each gate. We have trained more than 20
architectures on the embeddings and datasets men-
tioned above. We note that, though other architec-
tures might offer higher accuracy for sentence clas-
sification (Kim, 2014), this vanilla setup has been
chosen intentionally not to be optimized for a spe-
cific task, thus allowing us to measure robustness
of baseline models. Both CNNs and LSTMs pre-
dict the output with a softmax output layer, while
the categorical cross-entropy loss function is used
during the optimization phase, which is performed
with Adam (Kingma and Ba, 2014) algorithm (with-
out early-stopping); further details are reported in
Appendix A.3.

3.1 Robustness to Word Substitutions

For each combination of a neural network and em-
bedding, we quantify the MSR against single and
multiple word substitutions, meaning that the set
of word indices I (see Definition 1) consists of 1 or
more indices. Interestingly, our framework is able
to prove that certain input texts and architectures
are robust for any single-word substitution, that is,
replacing a single word of the text (any word) with
any other possible other word, and not necessarily
with a synonym or a grammatically correct word,
will not affect the classification outcome. Figure 3
shows that for CNN models equipped with Keras
Custom embedding the (lower bound of the) MSR
on some texts from the IMDB dataset is greater
than the diameter of the embedding space. To
consider only perturbations that are semantically
close and syntactically coherent with the input text,
we employ the MCTS algorithm with filtering de-
scribed in Section 2.2. An example of a successful

https://github.com/EmanueleLM/MCTS
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Figure 3: Lower bounds indicate classification invariance to any substitution when greater than the embedding
diameter d (see diagram on the right and Section 2), here represented by the dotted vertical line. Left: Examples of
words safe to any substitution (IMDB, Keras embedding 10d, text no 2). Middle: Examples of words vulnerable
to substitutions that may change the classification (IMDB, Keras embedding 5d, text no 1).

DIMENSION LOWER BOUND

Keras

5 0.278

10 0.141

25 0.023

50 0.004

100 0.002

GloVe 50 0.007

100 0.002

GloVeTwitter
25 0.013

50 0.008

100 0.0

Table 2: Comparison of lower bounds for single-
word substitutions computed by CNN-Cert on the SST
dataset. Values are averaged over 100 input texts (ap-
prox. 2500 measurements) and normalized by the em-
bedding diameter (L2-norm).

perturbation is shown in Figure 4, where we illus-
trate the effectiveness of single-word substitutions
on inputs that differ in the confidence of the neural
network prediction. We note that even with sim-
ple tagging it is possible to identify perturbations
where replacements are meaningful. For the first
example in Figure 4 (top), the network changes the
output class to World when the word China is
substituted for U.S.. Although this substitution
may be relevant to that particular class, nonetheless
we note that the perturbed text is coherent and the
main topic remains sci-tech. Furthermore, the
classification changes also when the word exists
is replaced with a plausible alternative misses,
a perturbation that is neutral, i.e. not informative
for any of the possible output classes. In the third
sentence in Figure 4 (bottom), we note that replac-
ing championship with wrestling makes
the model output class World, where originally
it was Sport, indicating that the model relies

on a small number of key words to make its de-
cision. We report a few additional examples of
word replacements for a CNN model equipped
with GloVe-50d embedding. Given as input
the review ’this is art paying homage
to art’ (from the SST dataset), when art is
replaced by graffiti the network misclassifies
the review (from positive to negative). Further, as
mentioned earlier, the MCTS framework is capable
of finding multiple word perturbations: considering
the same setting as in the previous example, when
in the review ’it’s not horrible just
horribly mediocre’ the words horrible
and horribly are replaced, respectively, with
gratifying and decently, the review is clas-
sified as positive, while for the original sentence
it was negative. Robustness results for high-
dimensional embeddings are included in Table 3,
where we report the trends of the average lower
and upper bounds of MSR and the percentage of
successful perturbations computed over 100 texts
(per dataset) for different architectures and embed-
dings. Further results are in Appendix A.3, in-
cluding statistics on lower bounds (Tables 5, 6) and
single and multiple word substitutions (Tables 7, 8).

CNNs vs. LTSMs By comparing the average
robustness assigned to each word, respectively, by
CNN-Cert and POPQORN over all the experiments
on a fixed dataset, it clearly emerges that recur-
rent models are less robust to perturbations that
occur in very first words of a sentence; interest-
ingly, CNNs do not suffer from this problem. A
visual comparison is shown in Figure 6. The key
difference is the structure of LSTMs compared to
CNNs: while in LSTMs the first input word influ-
ences the successive layers, thus amplifying the
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Single-Word Substitutions

EMBEDDING LOWER BOUND SUBSTITUTIONS UPPER BOUND
% per text % per word

IMDB
Keras50d 0.055± 0.011 6.0 1.4 0.986

GloVe50d 0.018± 0.007 39.7 5.1 0.951

GloVeTwitter50d 0.02± 0.002 47.0 7.7 0.926

AG News
Keras50d 0.002± 0.001 50.0 15.6 0.852

GloVe50d 0.005± 0.004 22.4 10.8 0.898

GloVeTwitter50d 0.007± 0.001 21.4 6.6 0.937

SST
Keras50d 0.004± 0.001 52.2 19.9 0.813

GloVe50d 0.007± 0.003 81.1 37.4 0.646

GloVeTwitter50d 0.008± 0.004 78.1 36.3 0.653

NEWS

GloVe50d 0.001± 0.002 96.5 34.0 0.679

GloVe100d 0.002± 0.002 89.7 29.1 0.727

GloVeTwitter50d 0.001± 0.001 90.9 30.6 0.707

GloVeTwitter100d 0.001± 0.001 89.7 27.7 0.739

Table 3: Statistics on single-word substitutions averaged on 100 input texts of each dataset. We report: the average
lower bound of the MSR as measured with either CNN-Cert or POPQORN; the approximate ratio that given a word
from a text we find a single-word substitution and the average number of words that substituted for a given word
change the classification; the average upper bound computed as the distance between the original word and the
closest substitution found by MCTS (when no successful perturbation is found we over-approximate the upper
bound for that word with the diameter of the embedding). Values reported for lower bounds have been normalized
by each embedding diameter (measurements in the L2-norm).

dell        exits      lowend      china    consumer      pc       market    [..] 

MCTS ATTACKS - AG DATASET

parsons   misses    founds        u.s.       bene ts    parsons    wall

ORIGINAL      :

REPLACEMENT  :

AG Test Set n° 47, Model Prediction = CLASS "sci-tech", Con dence = 0.53, Words Perturbed = 47/48

dutch    retailer   beats        local       download      market    [..] 

     -             -              -                -              -                    -

ORIGINAL      :

REPLACEMENT  :

AG Test Set n° 12, Model Prediction = CLASS "sci-tech", Con dence = 0.86, Words Perturbed = 0/42

ranked  player  who  has   not   won   a   major   champ.   since   his    [..] 

      -     replacements  -      -     -          -      -        -     wrestling    -       joke

ORIGINAL      :

REPLACEMENT  :

AG Test Set n° 49, Model Prediction = CLASS "sport", Con dence = 0.75, Words Perturbed = 3/33

green: meaningful replacement     red: replacement (grammatically inconsistent)    - : no replacement found

 

Figure 4: Single-word substitutions found with MCTS
in conjunction with filtering. Grammatically consistent
substitutions shown in green, inconsistent in red, a dash
indicates that no substitution is found.

manipulations, the output of a convolutional region
is independent from any other of the same layer.
On the other hand, both CNNs and LSTMs have
in common an increased resilience to perturbations
on texts that contain multiple polarized words, a
trend that suggests that, independently of the archi-
tecture employed, robustness relies on a distributed
representation of the content in a text (Figure 5).

3.2 Influence of the Embedding on
Robustness

As illustrated in Table 2 and in Figure 3, mod-
els that employ small embeddings are more robust
to perturbations. On the contrary, robustness de-

<unk>      "s"     <unk>      cancer       gel       fails      in      trial    <pad>      <pad>      <pad>       <pad>     <pad>

  0.03        0.05      0.06         0.08        0.1       0.11    0.11   0.12      0.14          0.16          0.19           0.25           0.4

  

<unk>   <unk>   makes   recordings   <pad>   <pad>   <pad>   <pad>   <pad>   <pad>   <pad>   <pad>   <pad>

  0.0          0.0         0.0           0.0             0.0         0.0         0.0        0.03       0.04       0.05       0.06        0.07       0.08

 arizona   seeks       to           build        its        own    mexico  border    fence  <pad>

  0.06        0.08       0.1          0.09       0.12      0.13     0.14      0.15      0.19      0.26          

(a)

(b)

    "         spider         -            man         "      returns    to     broadway  <pad> <pad>

  0.09        0.11       0.17         0.16     0.17      0.19    0.25     0.26         0.35      0.54          
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Figure 5: Lower bound values for individual words
obtained from POPQORN (L2-norm), showing an in-
creasing trend for consecutive words. (a) Two texts
with padding (<unk> denotes an unknown token). (b)
Texts with several words related to a specific output
class (U.S. and entertainment, respectively).

creases, from one to two orders of magnitude, when
words are mapped to high-dimensional spaces, a
trend that is confirmed also by MCTS (see Ap-
pendix Table 8). This may be explained by the
fact that adversarial perturbations are inherently re-
lated to the dimensionality of the input space (Car-
bone et al., 2020; Goodfellow et al., 2014). We
also discover that models trained on longer inputs
(e.g., IMDB) are more robust compared to those
trained on shorter ones (e.g., SST): in long texts
the decision made by the algorithm depends on
multiple words that are evenly distributed across
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Figure 6: Robustness lower bound trends for succes-
sive input words for LSTMs (red dots) and CNNs (blue
dots) on NEWS and AG News datasets.

the input, while for shorter sequences the decision
may depend on very few, polarized terms. From
Table 3 we note that polarity-constrained embed-
dings (Keras) are more robust than those that are
probabilistically-constrained (GloVe) on relatively
large datasets (IMDB), whereas the opposite is
true on smaller input dimensions: experiments sug-
gest that models with embeddings that group to-
gether words closely related to a specific output
class (e.g., positive words) are more robust, as op-
posed to models whose embeddings gather words
together on a different principle (e.g., words that ap-
pear in the same context): intuitively, in the former
case, words like good will be close to synonyms
like better and nice, while in the latter words
like good and bad, which often appear in the
same context (think of the phrase ’the movie
was good/bad’), will be closer in the embed-
ding space. In the spirit of the analysis in (Baroni
et al., 2014), we empirically measured whether
robustness is affected by the nature of the embed-
ding employed, that is, either prediction-based (i.e.,
embeddings that are trained alongside the classi-
fication task) or hybrid/count-based (e.g., GloVe,
GloVeTwitter). By comparing the robustness of dif-
ferent embeddings and the distance between words
that share the same polarity profile (e.g., positive
vs. negative), we note that MSR is a particularly
well suited robustness metric for prediction-based
embeddings, with the distance between words serv-
ing as a reasonable estimator of word-to-word se-
mantic similarity w.r.t. the classification task. On
the other hand, for hybrid and count-based em-
beddings (e.g., GloVe), especially when words are
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Figure 7: For an increasing number of substitutions
per text we report the difference between MSR lower
bounds of counter-fitted and vanilla embeddings (Keras
and GloVeTwitter, 25d) on the AG News Dataset.

represented as high-dimensional vectors, the dis-
tance between two words in the embedding space,
when compressed into a single scalar, does not re-
tain enough information to estimate the relevance
of input variations. Therefore, in this scenario, an
approach based solely on the MSR is limited by
the choice of the distance function between words,
and may lose its effectiveness unless additional fac-
tors such as context are considered. Further details
of our evaluation are provided in Appendix A.3,
Table 5 and Figure 11.

Counter-fitting To mitigate the issue of robust-
ness in multi-class datasets characterized by short
sequences, we have repeated the robustness mea-
surements with counter-fitted (Mrkšić et al., 2016)
embeddings, i.e., a method of injecting additional
constraints for antonyms and synonyms into vector
space representations in order to improve the vec-
tors’ capability to encode semantic similarity. We
observe that the estimated lower bound of MSR is in
general increased for low-dimensional embeddings,
up to twice the lower bound for non counter-fitted
embeddings. This phenomenon is particularly rele-
vant when Keras Custom 5d and 10d are employed,
see Appendix A.3, Table 6. On the other hand, the
benefits of counter-fitting are less pronounced for
high-dimensional embeddings. The same pattern
can be observed in Figure 7, where multiple-word
substitutions per text are allowed. Further details
can be found in Appendix A.3, Tables 6 and 8.
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Figure 8: Interpretability comparison of our framework
with LIME. (a) Saliency map produced with CNN-
Cert (top) and LIME (bottom) on IMDB (GloVeTwit-
ter 25d embedding). (b) Saliency map produced
with POPQORN (top) and LIME (bottom) on NEWS
dataset (GloVe 100d embedding).

3.3 Interpretability of Sentiment Analysis via
Saliency Maps

We employ our framework to perform inter-
pretablity analysis on a given text. For each word
of a given text we compute the (lower bound of the)
MSR and use this as a measure of its saliency, where
small values of MSR indicate that minor perturba-
tions of that word can have a significant influence
on the classification outcome. We use the above
measure to compute saliency maps for both CNNs
and LSTMs, and compare our results with those
obtained by LIME (Ribeiro et al., 2016), which
assigns saliency to input features according to the
best linear model that locally explains the deci-
sion boundary. Our method has the advantage of
being able to account for non-linearities in the deci-
sion boundary that a local approach such as LIME
cannot handle, albeit at a cost of higher compu-
tational complexity (a similar point was made in
(Blaas et al., 2020) for Gaussian processes). As
a result, we are able to discover words that our
framework views as important, but LIME does not,
and vice versa. In Figure 8 we report two exam-
ples, one for an IMDB positive review (Figure 8
(a)) and another from the NEWS dataset classi-
fied using a LTSM (Figure 8 (b)). In Figure 8 (a)
our approach finds that the word many is salient

and perturbing it slightly can make the NN change
the class of the review to negative. In contrast,
LIME does not identify many as significant. In
order to verify this result empirically, we run our
MCTS algorithm (Section 2.2) and find that simply
substituting many with worst changes the classi-
fication to ‘negative’. Similarly, for Figure 8 (b),
where the input is assigned to class 5 (health),
perturbing the punctuation mark (:) may alter the
classification, whereas LIME does not recognise
its saliency.

4 Conclusions

We introduced a framework for evaluating robust-
ness of NLP models against word substitutions.
Through extensive experimental evaluation we
demonstrated that our framework allows one to cer-
tify certain architectures against single word pertur-
bations and illustrated how it can be employed for
interpretability analysis. While we focus on pertur-
bations that are syntactically coherent, we acknowl-
edge that semantic similarity between phrases is a
crucial aspect that nonetheless requires an approach
which takes into account the context where substi-
tutions happen: we will tackle this limitation in
future. Furthermore, we will address robustness of
more complex architectures, e.g., networks that ex-
ploit attention-based mechanisms (Vaswani et al.,
2017).
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Nelson, Nedim Šrndić, Pavel Laskov, Giorgio Giac-
into, and Fabio Roli. 2013. Evasion attacks against
machine learning at test time. In Joint European
conference on machine learning and knowledge dis-
covery in databases, pages 387–402. Springer.

Battista Biggio and Fabio Roli. 2018. Wild patterns:
Ten years after the rise of adversarial machine learn-
ing. Pattern Recognition, 84:317–331.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

Arno Blaas, Andrea Patane, Luca Laurenti, Luca
Cardelli, Marta Kwiatkowska, and Stephen Roberts.
2020. Adversarial robustness guarantees for classi-
fication with gaussian processes. In International
Conference on Artificial Intelligence and Statistics,
pages 3372–3382.

Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Si-
jia Liu, and Luca Daniel. 2019. Cnn-cert: An ef-
ficient framework for certifying robustness of con-
volutional neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 3240–3247.

Cameron B Browne, Edward Powley, Daniel White-
house, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyri-
don Samothrakis, and Simon Colton. 2012. A sur-
vey of monte carlo tree search methods. IEEE Trans-
actions on Computational Intelligence and AI in
games, 4(1):1–43.

Ginevra Carbone, Matthew Wicker, Luca Laurenti,
Andrea Patane, Luca Bortolussi, and Guido San-
guinetti. 2020. Robustness of bayesian neural net-
works to gradient-based attacks. arXiv preprint
arXiv:2002.04359.

Chih-Hong Cheng, Georg Nührenberg, and Harald
Ruess. 2017. Maximum resilience of artificial neu-
ral networks. In Automated Technology for Verifica-
tion and Analysis, pages 251–268, Cham. Springer
International Publishing.

Minhao Cheng, Jinfeng Yi, Huan Zhang, Pin-Yu Chen,
and Cho-Jui Hsieh. 2018. Seq2sick: Evaluat-
ing the robustness of sequence-to-sequence mod-
els with adversarial examples. arXiv preprint
arXiv:1803.01128.

François Chollet et al. 2015. keras.

Jan K Chorowski, Dzmitry Bahdanau, Dmitriy
Serdyuk, Kyunghyun Cho, and Yoshua Bengio.
2015. Attention-based models for speech recogni-
tion. In Advances in neural information processing
systems, pages 577–585.

Rémi Coulom. 2007. Efficient selectivity and backup
operators in monte-carlo tree search. In Comput-
ers and Games, pages 72–83, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Souradeep Dutta, Susmit Jha, Sriram Sankara-
narayanan, and Ashish Tiwari. 2018. Output range
analysis for deep feedforward neural networks. In
NASA Formal Methods, pages 121–138.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. Hotflip: White-box adversarial exam-
ples for text classification. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
31–36.

Allyson Ettinger, Sudha Rao, Hal Daumé III, and
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son, Milica Gašić, Lina Rojas-Barahona, Pei-
Hao Su, David Vandyke, Tsung-Hsien Wen, and
Steve Young. 2016. Counter-fitting word vec-
tors to linguistic constraints. arXiv preprint
arXiv:1603.00892.

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM computing surveys (CSUR), 41(2):1–
69.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. ”why should I trust you?”: Explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
San Francisco, CA, USA, August 13-17, 2016, pages
1135–1144.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversar-
ial rules for debugging nlp models. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 856–865.

Wenjie Ruan, Xiaowei Huang, and Marta
Kwiatkowska. 2018. Reachability analysis of
deep neural networks with provable guarantees. In
Proceedings of the 27th International Joint Confer-
ence on Artificial Intelligence, pages 2651–2659.
AAAI Press.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181


2960

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2014. Intriguing properties of neural
networks. In International Conference on Learning
Representations.

Andrew Trask, Phil Michalak, and John Liu. 2015.
sense2vec-a fast and accurate method for word sense
disambiguation in neural word embeddings. arXiv
preprint arXiv:1511.06388.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Daniele Vitale, Paolo Ferragina, and Ugo Scaiella.
2012. Classification of short texts by deploying top-
ical annotations. In European Conference on Infor-
mation Retrieval, pages 376–387. Springer.

Hanna M Wallach. 2006. Topic modeling: beyond bag-
of-words. In Proceedings of the 23rd international
conference on Machine learning, pages 977–984.

Lily Weng, Huan Zhang, Hongge Chen, Zhao Song,
Cho-Jui Hsieh, Luca Daniel, Duane Boning, and
Inderjit Dhillon. 2018a. Towards fast computation
of certified robustness for relu networks. In Inter-
national Conference on Machine Learning, pages
5276–5285.

Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng
Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, and Luca
Daniel. 2018b. Evaluating the robustness of neural
networks: An extreme value theory approach. In
6th International Conference on Learning Represen-
tations.

Eric Wong and Zico Kolter. 2018. Provable defenses
against adversarial examples via the convex outer
adversarial polytope. In Proceedings of the 35th In-
ternational Conference on Machine Learning, pages
5286–5295. PMLR.

Min Wu and Marta Kwiatkowska. 2020. Robustness
guarantees for deep neural networks on videos. In
2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR).

Min Wu, Matthew Wicker, Wenjie Ruan, Xiaowei
Huang, and Marta Kwiatkowska. 2020. A game-
based approximate verification of deep neural net-
works with provable guarantees. Theoretical Com-
puter Science, 807:298 – 329.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui
Hsieh, and Luca Daniel. 2018. Efficient neural net-
work robustness certification with general activation
functions. In Advances in neural information pro-
cessing systems, pages 4939–4948.

Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi,
and Chenliang Li. 2020. Adversarial attacks on

deep-learning models in natural language process-
ing: A survey. ACM Transactions on Intelligent Sys-
tems and Technology (TIST), 11(3):1–41.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.



2961

A Appendix

A.1 Monte Carlo Tree Search (MCTS)
We adapt the MCTS algorithm (Browne et al.,
2012) to the NLP classification setting with word
embedding, which we report here for completeness
as Algorithm 1. The algorithm explores modifica-
tions to the original text by substituting one word
at the time with nearest neighbour alternatives. It
takes as input: text, expressed as a list of T words;
N, the neural network as introduced in Section 2;
E , an embedding; sims, an integer specifying the
number of Monte Carlo samplings at each step;
and α, a real-valued meta-parameter specifying the
exploration/exploitation trade-off for vertices that
can be further expanded. The salient steps of the
MCTS procedure are:

• Select: the most promising vertex to explore
is chosen to be expanded (Line 14) according
to the standard UCT heuristic:
Q(v)

N(v)
+ α

√
2lnN(v′)

N(v)
, where v and v′ are

respectively the selected vertex and its par-
ent; α is a meta-parameter that balances
exploration-exploitation trade-off; N() rep-
resents the number of times a vertex has been
visited; and Q() measures the neural network
confidence drop, averaged over the Monte
Carlo simulations for that specific vertex.

• Expand: the tree is expanded with T new
vertices, one for each word in the input text
(avoiding repetitions). A vertex at index
t ∈ {1, ...T} and depth n > 0 represents
the strategy of perturbing the t-th input word,
plus all the words whose indices have been
stored in the parents of the vertex itself, up to
the root.

• Simulate: simulations are run from the cur-
rent position in the tree to estimate how the
neural network behaves against the perturba-
tions sampled at that stage (Line 23). If one
of the word substitutions induced by the sim-
ulation makes the network change the clas-
sification, a successful substitution is found
and added to the results, while the value Q of
the current vertex is updated. Many heuristics
can be considered at this stage, for example
the average drop in the confidence of the net-
work over all the simulations. We have found
that the average drop is not a good measure

of how the robustness of the network drops
when some specific words are replaced, since
for a high number of simulations a perturba-
tion that is effective might pass unnoticed. We
thus work with the maximum drop over all
the simulations, which works slightly better
in this scenario (Line 27).

• Backpropagate: the reward received is back-
propagated to the vertices visited during se-
lection and expansion to update their UCT
statistics. It is known that, when UCT is
employed (Browne et al., 2012; Kocsis and
Szepesvári, 2006), MCTS guarantees that the
probability of selecting a sub-optimal pertur-
bation tends to zero at a polynomial rate when
the number of games grows to infinity (i.e., it
is guaranteed to find a discrete perturbation, if
it exists).

For our implementation we adopted sims =
1000 and α = 0.5. Tables 8 and 7 give details
of MCTS experiments with single and multiple
word substitutions.

MCTS Word Substitution Strategies We con-
sider two refinements of MCTS: weighting the
replacement words by importance and filtering
to ensure syntactic/semantic coherence of the in-
put text. The importance score of a word sub-
stitution is inversely proportional to its distance
from the original word, e.g., pickup(w ← w′) =

1

|U | − 1
(

∑
u∈U\{w′} d(w, u)∑

u∈U d(w, u)
), where w,w′ are re-

spectively the original and perturbed words, d() is
an Lp norm of choice and U a neighbourhood of
w, whose cardinality, which must be greater than
1, is denoted with |U | (as shown in Figure 9). We
can further filter words in the neighborhood such
that only synonyms/antonyms are selected, thus
guaranteeing that a word is replaced by a mean-
ingful substitution; more details are provided in
Section 2.2. While in this work we use a relatively
simple method to find replacements that are syn-
tactically coherent with the input text, more com-
plex methods are available that try also to enforce
semantic consistency (Navigli, 2009; Ling et al.,
2015; Trask et al., 2015), despite this problem is
known to be much harder and we reserve this for
future works.
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Algorithm 1 Monte Carlo Tree Search with UCT heuristic
1: procedure MCTS(text, N, E , sims, α)
2: t← argmaxi∈C Ni(E(text)) . Store the unperturbed network output, ref. Section2
3: Tree← createTree(text, c, N) . Create the initial tree
4: root← getRoot(Tree) . Store the initial vertex
5: P ← [ ] . List of final perturbations
6: while terminate(Tree) 6= True do . Loop over the MCTS steps
7: v ←SELECT(Tree, α)
8: C ←EXPAND(v, text)
9: P.insert(SIMULATE(C, text, sims, N, E , t))

10: BACKPROPAGATE(v, root)
11: return P

12: procedure SELECT(Tree, α)
13: L← getLeaves(Tree)

14: return argmaxv∈L
Q(v)

N(v)
+ α

√
2lnN(v′)

N(v)
. UCT best leaf

15: procedure EXPAND(v, text)
16: for i = 0, i < length(text), i++ do
17: v.expand(i) . Create v’s i-th child
18: return getChildren(v) . Return the expanded children

19: procedure SIMULATE(C, text, sims, N, E , t)
20: Perturbations← [ ]
21: for c ∈ C do
22: for i = 0, i < sims, i++ do
23: text′ ← samplePerturbation(text, c) . Ref. Figure 9
24: x← E(text); x′i ← E(text′) . Embed inputs
25: if N(x′i) 6= N(x) then . The output class changes
26: Perturbations.append(text′)

27: Q(c) = maxi∈sims(Nt(x)−Nt(x
′
i)) . Update vertex heuristic

28: return Perturbations

29: procedure BACKPROPAGATE(v, root) . Propagate UCT update
30: while v 6= root do
31: updateUCT (v)
32: v ← getParent(v)
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e1

e0

vivid

odd

strange

the

a better

good

Figure 9: Substitutions are selected either randomly or
according to a score calculated as a function of the dis-
tance from the original word. The sampling region (red
circle) is a finite fraction of the embedding space (blue
circle). Selected candidates can be filtered to enforce
semantic and syntactic constraints. Word the has been
filtered out because it is not grammatically consistent
with the original word strange, while words good,
better and a are filtered out as they lie outside the
neighborhood of the original word.

A.2 Experimental Setup
The network architectures that have been employed
in this work are shown in Figure 10, while the em-
beddings are summarised in Table 4. More details
of both the embeddings and the architectures em-
ployed are provided in the main paper, Section 3.

A.3 Additional Robustness Results
In the remainder of this section we present addi-
tional experimental results of our robustness eval-
uation. More specifically, we show the trends
of upper and lower bounds for different datasets
(Tables 5, 6, 7 and 8); include robustness results
against multiple substitutions; and perform robust-
ness comparison with counter-fitted models (Fig-
ure 11).
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Figure 10: Architecture of CNN and LSTM vanilla models used in this work. (a) Embedding of input words as
vectors of real numbers that are passed as input to a network model that outputs the class to which a text belongs
(shown here with two outputs, e.g., a positive, negative review of a movie). (b) Convolutional network (CNN)
model. (d) LSTM network model. (c) A single LSTM cell in detail.

Embeddings

DIM WORDS DIAMETER DIAMETER (raw)

Keras

5 177175 2.236 1.144

10 88587 3.162 0.957

25 88587 5 0.763

50 88587 7.07 0.664

100 88587 10 0.612

GloVe
50 400003 7.071 10.918

100 400003 10 8.133

GloVeTwitter

25 1193517 5 21.15

50 1193517 7.071 13.947

100 1193517 10 13.058

Table 4: Embeddings used for the experimental evaluation: we report the number of dimensions, the number of
words in each vocabulary and the maximum distance between the two farthest words, namely the diameter (both
after normalization of the input vectors and the raw value, expressed in the L2-norm). After normalization, an
embedding of dimension d will have a diameter equal to

√
d, as a consequence of scaling to 1 the difference

between maximum and minimum values for any dimension of the input.
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IMDB

DIMENSION ACCURACY LOWER BOUND

Keras

5 0.789 1.358± 0.604

10 0.788 2.134± 1.257

25 0.78 1.234± 2.062

50 0.78 0.394± 0.079

100 0.778 0.31± 0.041

GloVe 50 0.758 0.133± 0.054

100 0.783 0.127± 0.055

GloVeTwitter
25 0.739 0.168± 0.093

50 0.752 0.143± 0.02

100 0.77 0.177± 0.057

Stanford Sentiment Treebank (SST)

DIMENSION ACCURACY LOWER BOUND

Keras

5 0.75 0.623± 0.28

10 0.756 0.449± 0.283

25 0.757 0.116± 0.14

50 0.811 0.029± 0.012

100 0.818 0.023± 0.006

GloVe 50 0.824 0.053± 0.023

100 0.833 0.028± 0.015

GloVeTwitter
25 0.763 0.065± 0.023

50 0.826 0.059± 0.031

100 0.823 0.0± 0.0 (NaN)

NEWS Dataset

DIMENSION ACCURACY LOWER BOUND

GloVe 50 0.625 0.013± 0.015

100 0.7 0.018± 0.017

GloVeTwitter 50 0.627 0.009± 0.006

100 0.716 0.008± 0.009

Table 5: Lower bound results for single-word substitutions as found by CNN-Cert and POPQORN, respectively,
on the IMDB, SST and NEWS datasets. Values reported refer to measurements in the L2-norm.
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AG News Results: Single Word Substitution

DIAMETER ACCURACY LOWER BOUND
Vanilla Counter-fitted Vanilla Counter-fitted

Keras

5 0.414 0.464 0.072± 0.066 0.145± 0.147

10 0.491 0.505 0.026± 0.025 0.088± 0.087

25 0.585 0.597 0.022± 0.025 0.032± 0.026

50 0.692 0.751 0.015± 0.009 0.024± 0.015

100 0.779 0.807 0.011± 0.007 0.015± 0.009

GloVe 50 0.892 0.879 0.04± 0.028 0.043± 0.03

100 0.901 0.887 0.027± 0.018 0.0± 0.0 (NaN)

GloVeTwitter
25 0.848 0.846 0.033± 0.025 0.046± 0.036

50 0.877 0.866 0.05± 0.012 0.033± 0.018

100 0.833 0.883 0.019± 0.012 0.026± 0.005

AG News Results: Multiple Words Substitutions

DIAMETER L.B. 2 SUBSTITUTIONS L.B. 3 SUBSTITUTIONS
Vanilla Counter-fitted Vanilla Counter-fitted

Keras

5 0.029± 0.024 0.065± 0.059 0.025± 0.017 0.054± 0.044

10 0.013± 0.012 0.043± 0.042 0.008± 0.008 0.028± 0.028

25 0.011± 0.008 0.015± 0.012 0.007± 0.006 0.01± 0.008

50 0.007± 0.004 0.012± 0.007 0.005± 0.003 0.008± 0.005

100 0.006± 0.004 0.006± 0.004 0.003± 0.003 0.003± 0.002

GloVe 50 0.02± 0.013 0.02± 0.014 0.013± 0.009 0.016± 0.01

100 0.015± 0.007 0.0± 0.0 (NaN) 0.01± 0.006 0.0± 0.0 (NaN)

GloVeTwitter
25 0.014± 0.011 0.023± 0.017 0.01± 0.008 0.0015± 0.012

50 0.024± 0.005 0.015± 0.009 0.016± 0.004 0.011± 0.007

100 0.009± 0.006 0.013± 0.002 0.006± 0.004 0.008± 0.002

DIAMETER L.B. 4 SUBSTITUTIONS L.B. 5 SUBSTITUTIONS
Vanilla Counter-fitted Vanilla Counter-fitted

Keras

5 0.018± 0.012 0.035± 0.028 0.014± 0.009 0.03± 0.021

10 0.006± 0.005 0.02± 0.019 0.005± 0.004 0.016± 0.015

25 0.005± 0.004 0.007± 0.006 0.004± 0.003 0.006± 0.004

50 0.003± 0.002 0.005± 0.002 0.003± 0.002 0.005± 0.003

100 0.003± 0.002 0.003± 0.002 0.002± 0.001 0.002± 0.001

GloVe 50 0.009± 0.006 0.01± 0.006 0.008± 0.005 0.008± 0.006

100 0.007± 0.004 0.0± 0.0 (NaN) 0.005± 0.003 0.0± 0.0 (NaN)

GloVeTwitter
25 0.007± 0.005 0.011± 0.008 0.006± 0.004 0.009± 0.006

50 0.008± 0.004 0.008± 0.006 0.009± 0.001 0.006± 0.004

100 0.004± 0.003 0.006± 0.001 0.003± 0.002 0.005± 0.001

Table 6: Lower bound results for single (top) and multiple word (middle and bottom) substitutions, comparing
vanilla and counter-fitted models. Robustness of counter-fitted models is superior to the vanilla counterpart, except
for high-dimensional embeddings such as GloVe 100d, where it has not been possible to obtain a bound for the
counter-fitted embedding due to computational constraints (nonetheless the counterpart lower bound is close to
zero). Values reported refer to measurements in the L∞-norm.
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MCTS Results

EMBEDDING EXEC TIME [s] SUB. (% per-text) SUB. (% per-word) UB

IMDB
Keras50d 29.52 6.0 1.4 0.41± 0.04

GloVe50d 39.61 39.7 5.1 0.39± 0.016

GloVeTwitter50d 54.1 47.0 7.7 0.329± 0.015

AG NEWS
Keras50d 21.09 50.0 15.6 0.396± 0.02

GloVe50d 19.25 22.4 10.8 0.438± 0.042

GloVeTwitter50d 17.75 21.4 6.6 0.336± 0.019

SST
Keras50d 8.36 52.2 19.9 0.444± 0.077

GloVe50d 11.94 81.1 37.4 0.385± 0.024

GloVeTwitter50d 11.96 78.1 36.3 0.329± 0.024

NEWS

GloVe50d 75.76 96.5 34.0 0.405± 0.045

GloVe100d 79.31 89.7 29.1 0.442± 0.042

GloVeTwitter50d 77.74 90.9 30.6 0.314± 0.033

GloVeTwitter100d 81.29 89.7 27.7 0.417± 0.042

Table 7: Upper bound results for single-word substitutions as found by MCTS. We report: the average execution
time for each experiment; the percentage of texts for which we have found at least one successful single-word
substitution (which results in a class change) and the approximate ratio that selecting randomly 1 word from a
text we find a replacement that is successful; the distance to the closest meaningful perturbation to the original
word found, namely an upper bound (differently from Table 3 and for completeness, here values are reported
only considering the values for those words where the perturbations were successful). Values reported refer to
measurements in the L2-norm.

MCTS Multiple Substitutions

EMBEDDING 2 SUBSTITUTIONS 3 SUBSTITUTIONS 4 SUBSTITUTIONS
% per-text % per-word % per-text % per-word % per-text % per-word

IMDB
Keras50d 8.5 5.0 13.4 5.9 18.2 6.6

GloVe50d 43.8 17.7 52.0 21.6 57.5 24.5

GloVeTwitter50d 44.1 18.3 49.3 23.0 57.1 26.4

AG NEWS
Keras50d 68.1 27.5 72.7 38.3 83.3 47.9

GloVe50d 31.4 15.8 33.7 16.8 37.0 19.7

GloVeTwitter50d 23.8 12.5 23.8 15.3 38.0 18.4

SST
Keras50d 64.8 33.0 74.7 40.2 78.0 48.7

GloVe50d 89.4 58.0 96.4 70.8 97.6 76.5

GloVeTwitter50d 88.3 57.8 94.1 69.1 95.3 74.9

NEWS

GloVe50d 98.8 55.4 97.3 62.5 97.3 68.6

GloVe100d 100.0 46.8 95.0 68.0 96.0 65.2

GloVeTwitter50d 94.5 50.5 97.5 63.0 97.5 71.9

GloVeTwitter100d 92.7 49.9 98.1 58.2 98.3 65.3

Table 8: Upper bound results for multiple-word substitutions as found by MCTS. We report the percentage of texts
for which we have found at least a single-word substitution and the approximate ratio that selecting randomly k
words from a text (where k is the number of substitutions allowed) we find a replacement that is successful. We
do not report the average execution times as they are (roughly) the same as in Table 7. Values reported refer to
measurements in the L2-norm. For more than 1 substitution, values reported are an estimate on several random
replacements, as it quickly becomes prohibitive to cover all the possible multiple-word combinations.
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Figure 11: Comparison of robustness of vanilla vs. counter-fitted embeddings for an increasing number of di-
mensions and word substitutions on the AG News dataset. (a) Simple Keras Custom embeddings optimised for
emotional polarity. (b) GloVeTwitter embeddings that encode more complex representations. Counter-fitted em-
beddings exhibit greater robustness on low-dimensional or simple embeddings. A reversed trend is observed on
high-dimensional embeddings or more complex word representations. Values reported refer to measurements in
the L∞-norm.


