
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 2925–2937
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

2925

DiPair: Fast and Accurate Distillation for Trillion-Scale
Text Matching and Pair Modeling

Jiecao Chen∗, Liu Yang, Karthik Raman, Michael Bendersky
Jung-Jung Yeh, Yun Zhou, Marc Najork, Danyang Cai, Ehsan Emadzadeh

Google Research

Abstract
Pre-trained models like BERT (Devlin et al.,
2018) have dominated NLP / IR applications
such as single sentence classification, text pair
classification, and question answering. How-
ever, deploying these models in real systems
is highly non-trivial due to their exorbitant
computational costs. A common remedy to
this is knowledge distillation (Hinton et al.,
2015), leading to faster inference. However –
as we show here – existing works are not opti-
mized for dealing with pairs (or tuples) of texts.
Consequently, they are either not scalable or
demonstrate subpar performance. In this work,
we propose DiPair — a novel framework for
distilling fast and accurate models on text pair
tasks. Coupled with an end-to-end training
strategy, DiPair is both highly scalable and of-
fers improved quality-speed tradeoffs. Empir-
ical studies conducted on both academic and
real-world e-commerce benchmarks demon-
strate the efficacy of the proposed approach
with speedups of over 350x and minimal qual-
ity drop relative to the cross-attention teacher
BERT model.

1 Introduction

Modeling the relationship between textual objects
is critical to numerous NLP and information re-
trieval (IR) applications (Li and Xu, 2014). This
subsumes a number of different problems such as
textual entailment, semantic text matching, para-
phrase identification, plagiarism detection, and rel-
evance modeling. For example, modeling the rela-
tionship between queries and documents / ad key-
words is central to search engines / digital advertise-
ment systems (Li and Xu, 2014; Guo et al., 2019).

Recently neural network-based models have
demonstrated large gains in this space (Hu et al.,
2014; Pang et al., 2016). In particular, the Trans-
former / BERT family of models (Devlin et al.,

∗Correspondence to chenjiecao@google.com

2018; Lan et al., 2019; Liu et al., 2019; Clark
et al., 2020) have set a new bar for these seman-
tic text matching problems. However, the compu-
tational costs of these models have proven to be
prohibitively expensive, thus limiting their use in
real-world applications (Frankle and Carbin, 2019).
For example, on the e-commerce relevance-scoring
task (P2T-REL dataset) discussed in Sec. 4.1, scor-
ing the (trillion+) text pairs would take years.

One popular remedy is to distill these expen-
sive teacher models (Hinton et al., 2015) into
lightweight student models. Training these students
using examples labeled by the teacher has been
shown to maintain quality while enabling faster
inference. The key to the effectiveness of distilla-
tion techniques is a good trade-off between student
quality and inference speed.

However, as we show here, existing knowledge
distillation techniques (Sanh et al., 2019; Jiao et al.,
2019; Turc et al., 2019; Tang et al., 2019) fall
short on the quality-speed trade-off when dealing
with pairs of texts. On one hand, approaches that
model the texts jointly (i.e., using cross-attention)
even one as highly optimized as BERT-TINY (Turc
et al., 2019) are still orders of magnitude too slow.

On the other hand, techniques that model the
texts independently such as the dual-encoder mod-
els1 (Das et al., 2016; Johnson et al.; Chidambaram
et al., 2019; Cer et al., 2018; Henderson et al.,
2017; Reimers and Gurevych, 2019) are able to
run efficient inference on large-scale text pairs.
By exploiting the independence of the texts, these
techniques can significantly speed up inference by
caching/indexing embeddings of individual texts.
However, this speedup comes at a significant cost –
with sharply reduced scoring quality.

The key drawback here is that these independent
models lack the ability to mimic the cross-attention

1These models encode the two texts separately and then
combine them via a lightweight dot product / cosine.

2926

enabled teachers and model the joint nuances and
facets of the texts. As a motivating example, con-
sider the ecommerce term relevance-scoring task.
For the product “Black Sport Nike Shoes for Boys
Size Wide”, terms such as “black”, “wide footwear”
and “nike shoes” are all relevant. However, enforc-
ing similarity between the independently modeled
term and product will lead to the embeddings of
“black” and “nike shoes” being incorrectly consid-
ered similar.

Motivated by this, we propose DiPair for fast
and accurate distillation of large-scale text match-
ing and pair modeling. DiPair aims to combine
the best of both worlds: Like dual-encoder mod-
els, it leverages common pre-computation, while
at the same time modeling the text jointly – with
cross-attention – using multiple contextual embed-
dings for each text. In particular, we extract a small
fraction of the output token embeddings from each
text, and then jointly model this smaller “sequence”
using a transformer head (we use the term head
to refer to the component that consumes the out-
puts of a dual-encoder model, see Figure 2). We
demonstrate that a two-stage, end-to-end training
allows the proposed DiPair model to learn richer
multifaceted semantic representations of the text
pairs. The resulting DiPair model is 350x+ faster
with minimal quality drop relative to the teacher on
academic and real-world e-commerce datasets.

In summary, our main contributions include:

• DiPair: A new framework for distilling fast,
accurate models on text pair tasks. Its advan-
tages include: 1) Generic framework appli-
cable across numerous applications involving
pairwise/n-ary textual input. To the best of our
knowledge, this is among the first few works
tackling this problem. 2) Highly practical so-
lution with limited storage and computation
needs that scales to trillions of examples. 3)
Large speedups for model inference – 350x+
faster relative to the BERT-base teacher and 8x
faster than previous highly optimized bench-
marks (Turc et al., 2019).

• A two-stage, end-to-end training scheme en-
ables an improved quality-speed tradeoff as
shown in Fig. 1.

• Evidence that (self and cross) attention is im-
portant for student models when it comes to
distilling from teachers like BERT.

• Extensive experiments on academic and real-

0 200 400 600 800
Speedup over BERT-base

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

AU
C-

RO
C

BERT Variants
DiPair-TSF
DE-FFNN

Figure 1: Inference speed vs quality trade-off for three
different representative approaches (see Sec. 4.2 for a
more detailed description): DE-FFNN refers to dual-
encoder + a feedforward neural network head; BERT
variants refers to different cross-attention BERT-based
student models released by Turc et al. (2019); DiPair-
TSF refers to the DiPair model with a transformer head.
The metrics and inference speedup are evaluated with
the Q2P-MAT dataset (see Sec. 4.1). Note that the
DiPair and DE-FFNN are varied using only the head in
this plot for a fair comparison.

world e-commerce datasets demonstrate that
DiPair can lead to fast and accurate models
that outperform existing techniques on text
matching and pair modeling.

2 Related Work

Text Pair Modeling and Matching. A large vari-
ety of neural models have been proposed for text
pair tasks such as matching and similarity scor-
ing (Huang et al., 2013; Hu et al., 2014; Pang
et al., 2016; Guo et al., 2016; Yang et al., 2016;
Mitra et al., 2017; Xiong et al., 2017; Rao et al.,
2019). These models can be broadly classified into
representation-focused models (or dual-encoder
models) (Huang et al., 2013; Hu et al., 2014) and
interaction-focused models (Pang et al., 2016; Guo
et al., 2016; Yang et al., 2016; Mitra et al., 2017;
Xiong et al., 2017), where the former involves en-
coding the individual text separately while the lat-
ter models the pair jointly (often involving some
interaction / attention model). In recent years,
Transformer (Vaswani et al., 2017) based models
like BERT (Devlin et al., 2018) leveraged cross-
attention to achieve impressive performance gains
on several text pairs tasks including natural lan-
guage inference (Bowman et al., 2015), sentence
pair classification and relevance scoring. As shown
in several previous research (Pang et al., 2016;
Guo et al., 2016; Yang et al., 2016; Mitra et al.,
2017; Xiong et al., 2017; Devlin et al., 2018),
interaction-focused models usually achieve better

2927

performances for text pair tasks. However, it is
difficult to serve these types of models for appli-
cations involving large inference sets in practice.
On the other hand, text embeddings from dual en-
coder models can be learned independently and
thus pre-computed, leading to faster inference ef-
ficiency but at the cost of reduced quality. Early
work like (Wang and Jiang, 2017) uses attention to
aggregate the two sequences of word embeddings,
and a CNN model is then applied to extract the
final representation. This method is relatively ex-
pensive as it requires to store the whole sequences
of word embeddings and a full cross-attention op-
eration has to be performed. Recently the PreTTR
model (MacAvaney et al., 2020) aimed to reduce
the query-time latency of deep transformer net-
works by pre-computing part of the document term
representations. However, their model still required
modeling the full document/query input length in
the head, thus limiting inference speedup. Another
recent work is Poly-encoders (Humeau et al., 2020)
which shared some similar motivations. However,
Poly-Encoders makes strong assumptions on the
input data property thus limiting its applicability
(Appendix C demonstrates this quality drop on a
standard text matching task).

Knowledge Distillation. Our research is an ex-
ample of knowledge distillation in neural networks
(Hinton et al., 2015; Sun et al., 2019; Sanh et al.,
2019). The idea of knowledge distillation is to
transfer information from a heavily-parameterized
and accurate teacher model to a lightweight student
model for faster inference. Tang et al. (2019) pro-
posed to distill knowledge from BERT to a single-
layer BiLSTM model. TinyBERT (Jiao et al., 2019)
performs knowledge distillation into transformers
in two-stage learning including pre-training and
task-specific fine-tuning. Turc et al. (2019) pro-
posed Pre-trained Distillation, which shows task-
specific distillation on an unlabeled transfer set is
helpful to improve the student model performance.
Key differences between our work and these ap-
proaches are that we focus on model distillation for
text pair inputs and speeding up inference while
aiming to match the teacher’s performances.

Model Quantization and Parameter Pruning.
Another line of research loosely connected to our
work is to reduce inference time via pruning less
significant weights and/or converting the model to
low-precision (aka quantization) (Han et al., 2016;
Howard et al., 2017; Iandola et al., 2016; Renda

et al., 2020; Frankle and Carbin, 2019). Effective in
many applications, those approaches, however, of-
ten only lead to less than 20x speedup and therefore
do not scale to many tasks with pairwise input.

3 Our Approach

3.1 Method Overview

Figure 2 provides an overview of the proposed
DiPair model. First, a transformer-based dual-
encoder model is applied to the input pair; the
output of an encoder is a sequence of token em-
beddings, which has the same sequence length as
the tokenized input text. We then truncate the out-
put sequences by only taking the first N and M
token embeddings from the left and right inputs,
respectively; the next step is to project those se-
lected token embeddings into lower dimensions
and merge them to form the new input sequence.
The merged input sequence is then fed into the
transformer (or an FFNN) head, and the first token
embedding of the output sequence of the head is
used as the representation of the initial input pair.

Note that, the dual-encoder will process the full-
length input sequences. At the same time, the head
only consumes a sequence of length (N + M),
which is typically much smaller than the length of
the input sequences and ensures efficient execution
of the head.

To create the training data for our proposed
model, we use an expensive teacher model (e.g., a
12-layer BERT fine-tuned with human-rated data)
to annotate a set of unlabeled text pairs (a.k.a. dis-
tillation set). The dual-encoder part of our model is
initialized from the first few layers of a pre-trained
BERT, and a novel two stage training strategy (see
Sec. 3.7) is applied to boost the performance fur-
ther. We defer more details of data specific model
distillation to Sec. 4.3.

We now discuss each component of the proposed
architecture in detail.

3.2 Dual-Encoder

A dual-encoder is the key component of our pro-
posed architecture, and we initialize our dual-
encoder from pre-trained BERT (or tinyBERT, AL-
BERT, etc.). Our basic assumption is that the num-
ber of pairs is much larger than the set of unique
inputs to the left or right encoders, and the bottle-
neck of serving our model is to run inference on
the pairs with the head. Our proposed architecture,
therefore, has an important benefit: increasing the

2928

The Head
FFNN/Transformer ...

Transformer-Layer
Initialize from first K layers of

pretrained BERT

First N token
embeddings

First M token
embeddings

loss

potentially
share
parameters

shared
projection layer

shared
projection layer

 truncate, merge, seq_len=N+M

Full length input sequence Full length input sequence

Transformer-Layer
Initialize from first K layers of

pretrained BERT

Figure 2: The architecture of the DiPair model.

model capacity does not increase the inference time
as we can keep the head the same but use more ex-
pensive encoders. Figure 3b shows that increasing
the number of layers of the encoders will often lead
to better model performance.

3.3 Truncated Output Sequences

This is the key step to speed up the model serving.
Recall that the running time of a transformer-based
model quadratically depends on the input sequence
length. One of the most effective ways to reduce the
running time is to reduce the input sequence length.
However, as Table 4 reveals, blindly truncating
the input to a BERT model will lead to a quick
performance drop. Our key intuition is that, by
using a dual-encoder + head architecture, we can
focus on reducing the inference time of the head,
instead of speeding up the encoders.

Therefore, we still use the full-length input se-
quences in our encoders, but aggressively reduce
the input sequence length to the head. To be more
concrete, before merging the outputted sequences
from the two encoders, we take the first N and
M token embeddings from the left and the right
sequences, respectively; This truncation technique
has several benefits:

• It significantly speeds up the inference with
the head, as the time complexity of trans-

former layers is quadratic w.r.t. the input se-
quence length.

• It significantly reduces the amount of data
we need to cache. Only the first few token
embeddings need be stored as the output of
the encoders.

• N and M can be tuned to reflect the desired
effectiveness and efficiency trade-off for a par-
ticular problem domain.

It is important to note that due to the end-to-end
architecture of our model, even though we only
use (N +M) token embeddings from the output
of the dual-encoder, the model learns to push the
information of the input text to the first (N +M)
embeddings (thanks to the transformer layers, those
selected token embeddings can interact with other
token embeddings, and can be viewed as a sum-
mary of the full-length input sequences).

3.4 Projection Layer
For each encoder, we add a projection layer to
project each token embedding to a lower dimen-
sion. A projection layer is shared within an encoder,
but different encoders may use different projection
layers. There are two purposes of adding the pro-
jection layers:

• Reduce storage. To run the inference with the
proposed architecture, we need to cache all

2929

the outputs from the encoders.

• Speed up the inference with the head. The
time complexity of a transformer linearly de-
pends on the embedding dimension.

In Table 5, we show that by choosing a proper
projection layer, we can significantly reduce the em-
bedding dimension with almost no quality drops.

3.5 Transformer-Based Head

After the projection layer, we merge the N +M
projected token embeddings into one sequence and
feed it into the head. Like the BERT model, we also
add position embeddings and segment embeddings
to help the transformer head better aggregate the
input sequence. The first token embedding (i.e.,
CLS embedding) of the transformer head is used
as the final representation of the input pair.

Another advantage of using a head is that the
head is tokenization-free: the input to the head is
purely float tensors, and we do not need to prepro-
cess/ tokenize the input text. This may lead to an
additional speedup.

It is worth mentioning that a feedforward neural
network (FFNN) can also be used as a head. An
FFNN is faster than a transformer-head and often
gives reasonable performance (though worse than
a transformer head). See the experimental section
(Sec. 4.6) for more discussion on these trade-offs.

3.6 Task Specific Losses

In the standard dual-encoder model and the recent
Poly-Encoders (Humeau et al., 2020) work, the dot
product between the embeddings is a scalar, which
is not suited for tasks beyond regression/binary
classification. On the other hand, our proposed
architecture outputs a representation of the input
pair and is therefore compatible with a wide range
of loss functions.

3.7 A Two-Stage Training Approach

It turns out that directly training the proposed mod-
els often leads to sub-optimal results (see Sec. 4.7
for more evidence). This is primarily because
adding non-trivial layers on top of a well pre-
trained dual-encoder during training may corrupt
the knowledge that has been preserved in the dual-
encoder. To address this issue, we propose to use
a two-stage training strategy: we first freeze the
dual-encoder part and only train the newly added
parameters until convergence; we then unfreeze
the dual-encoder and further train the entire model.

A similar training strategy can be found in e.g.,
(Wang et al., 2019).

3.8 Extension to n-Ary Tuple
Unlike the models proposed in the recent works
(MacAvaney et al., 2020; Humeau et al., 2020)
where only pairs can be supported, our pro-
posed architecture trivially extends to the sce-
nario where we have n-ary tuple of textual ob-
jects (a1, a2, . . . , an) as the model input, as we
can simply replace the dual-encoder model with an
n-encoder model. This feature is useful in many
applications, such as QA tasks with context, query
to document scoring tasks with personalized infor-
mation.

4 Experiments

In this section, we conduct experimental studies.
We aim to answer the following questions through
our experiments:
• RQ1: How well does our proposed architec-

ture perform compared with other strong base-
line approaches? Compared with the teacher,
how much faster are our methods (Sec. 4.5)?
• RQ2: Compared with FFNN heads, is the

transformer head essential to reduce the distil-
lation gap (Sec.4.6)?
• RQ3: How does two-stage training affect the

final model performance (Sec. 4.7)?
• RQ4: How would the proposed dual-

encoder+head architecture be affected by
other hyper-parameters of different compo-
nents (Sec. 4.8).

4.1 Datasets
We evaluate our proposed methods on two datasets
(Table 1 provides an overview):

• Q2P-MAT is a binary classification task de-
rived from the MSMARCO Passage Ranking
data2. Given a (query, passage) pair, the goal
is to predict whether the passage contains the
answer for the query. We measure the model
performance using AUC-ROC. Appendix B
lists more details.
• P2T-REL is a regression task on a real-world

ecommerce dataset. Given a (product, term)
pair, the goal is to predict the relevance of the
term to the product. We measure the model
performance using Pearson correlation with

2https://microsoft.github.io/
MSMARCO-Passage-Ranking/

https://microsoft.github.io/MSMARCO-Passage-Ranking/
https://microsoft.github.io/MSMARCO-Passage-Ranking/

2930

the human judgments. Title and description
are used as the product features. Appendix A
provides several examples of (product, term)
pairs.

4.2 Baseline Approaches
There exist many knowledge distillation (see Sec.
2 for more details) works, but none of them has
been optimized for pairwise input. We choose
to compare our DiPair approach with the fastest
BERT-based student model (Turc et al., 2019) we
are aware of, and our model is at least 8x faster (see
Table 3b). We also compare our proposed approach
with several other strong baselines:
• BERT-TINY: the fastest version of BERT

released in (Turc et al., 2019). This model has
2 layers with 128D word embeddings and 2-
head transformer. It is claimed to be 52x faster
than BERT-base (on TPU), and to the best of
our knowledge, this is faster than any other
BERT-based student models in the literature.
• DE-COS: BERT-based Dual-Encoder model.

Cosine between left/right CLS embeddings is
used as the similarity score.
• DE-FFNN: BERT-based Dual-Encoder

model. FFNN (Feedforward Neural Net-
works) is used to aggregate the left/right
CLS embeddings into a similarity score.
Unless otherwise stated, we fix the FFNN
to be 2-Layer with dimensions x128x128.
The input to the FFNN has dimension
768 + 768 = 1536.
• DIPAIRTSF: our proposed model, BERT-

based Dual-Encoder, with a transformer-based
head. N and M refer to the output sequence
lengths (see Figure 2). In all experiments, we
fix our head to be 2-Layer, 1-Head, 1024D
intermediate size. The value of hidden size
(i.e., the dimension of the input token embed-
dings) is decided by the output of the projec-
tion layer.
• DIPAIRFFNN: this is similar to DIPAIRTSF;

the only difference is that the transformer-
based head is replaced with an FFNN. The
input to the FFNN has dimension (N +M) *
hidden size (N, M defined in Figure 2). We
use 2-Layer FFNN with dimensions x128x128
unless otherwise stated.

In all the aforementioned models (except BERT-
TINY), the dual-encoder is initialized from the first

K layers of the pre-trained BERT model as well
as the token embedding matrix. Unless otherwise
stated, we fix K=1 for P2T-REL and K=4 for Q2P-
MAT. The Left encoder and the right encoder will
share parameters. For models with a projection
layer, we use D to represent the dimension of the
projected result.

4.3 Model Distillation
Teacher Models For Q2P-MAT, we use
Google’s public 12-layer BERT-base pre-trained
model, and fine-tune it with the 1.1M labeled
query to passage pairs.

On the other hand, for P2T-REL data, we pre-
train a 12-layer BERT-based model with a cus-
tomized vocabulary of size 80K, using user interac-
tion data. We use the default parameters released
in the public BERT code.3 We then fine-tune the
pre-trained model using the 393K product to term
pairs.

For both teachers, we use the following cross-
entropy loss,

−
∑
i

(yi log pi + (1− yi) log(1− pi)) (1)

where yi is the label and pi is computed via ap-
plying a sigmoid function on the teacher’s logits
zi. This loss function works for both regression
problems and binary classification problems.

Distillation Inspired by Hinton et al. (2015), we
use sigmoid(zi/T) to create soft labels to annotate
the distillation sets, where zi is teacher’s logits and
T is known as the temperature. In our experiment,
we fix T = 1. We then apply the cross entropy loss
as detailed in Equation (1).

4.4 Experimental Setup
Our code is implemented with TensorFlow 4 and
we use TPUv3 in all of our experiments. We
use AdamW optimizer following the public BERT
code. The warmup step is fixed to be 50k. Other
parameters of the optimizer are identical to the
default values set in the public BERT code (
weight decay rate=0.01, β1 = 0.9, β2 = 0.999,
ε = 1e−6).

We tune some other key hyper-parameters us-
ing the validation sets. We try multiple (learning
rate, batch size) combinations and choose the best
ones. In the two-stage training, the models are less

3Available in https://github.com/
google-research/bert.

4https://www.tensorflow.org/

https://github.com/google-research/bert
https://github.com/google-research/bert
https://www.tensorflow.org/

2931

Data P2T-REL Q2P-MAT
Item Distill Train Valid Test Distill Train Valid Test

of pairs 300M 393K 12.8K 12.8K 40M 1.1M 12.8K 12.8K
AvgLen product/passage 107.6 84.3 83.5 82.1 55.5 56.0 53.6 53.8

AvgLen term/query 1.49 1.32 1.32 1.31 6.37 6.03 6.00 6.03

Table 1: Datasets statistics.

sensitive to learning rates in the first stage, and
we set the learning rate as 5e-5; we then train the
models until they converge. In the second stage of
training, the learning rate is set to be 5e-5 in DI-
PAIRTSF, DE-COS, DIPAIRFFNN; we use batch
size 512 and 4x4 TPU topology. For BERT-TINY,
we use batch size 128, learning rate 2e-6, and 2x2
TPU topology. All other hyperparameters related
to model architecture are specified in Sec. 4.2.

4.5 Main Results

Table 2 and Table 3 present the experimental results
on P2T-REL and Q2P-MAT datasets, respectively.
Among all the student models with dual-encoder
architecture, DIPAIRTSF consistently achieves the
best performance. For the Q2P-MAT dataset, DI-
PAIRTSF achieves similar AUC ROC to BERT-
TINY; however, it achieves a 8x speedup.

Among all the student models, DE-COS is the
fastest one as it only requires dot product during
inference. However, it has the worst performance,
indicating that using Cosine function alone does
not allow enough interaction between the input
sequences embeddings.

4.6 Effectiveness of Transformer Head

To verify the importance of using a transformer-
based head, we vary #params in the heads of DI-
PAIRTSF, DE-FFNN and DIPAIRFFNN. Table 4
presents the experimental results.

Comparing rows 1 and 2 in Table 4, the model
quality of DIPAIRTSF can be improved by in-
creasing the head input sequences lengths (N and
M), although at the cost of longer inference time.
On the other hand, rows 3-5 show that increas-
ing #Params in FFNN head (e.g., using larger di-
mensions, more layers) does not lead to signifi-
cant quality improvement for DIPAIRFFNN; even
when the #Params of the FFNN head is 4x more
than the transformer head, the model quality of
DIPAIRTSF is still considerably superior to that
of DIPAIRFFNN(cf. rows 2 and 5). A similar
conclusion can be made for DE-FFNN (rows 6-8).

Another interesting observation is that even with
more input information and more parameters, DI-

PAIRFFNN does not generate higher AUC ROC
than DE-FFNN. This might suggest that FFNN is
not powerful enough to aggregate the input infor-
mation effectively.

Overall, Table 4 illustrates the importance of us-
ing a transformer head if we want to achieve high
model quality: Unlike FFNN-based heads, where
we could not further improve the model via increas-
ing #Params, a transformer-based head has more
headroom to reduce the distillation gap further, and
the desired quality-speed trade-off can be easily
achieved by adjusting the values of N and M .

4.7 Effect of Two-Stage Training

Figure 3a shows that two-stage training, which is
discussed in Section 3.7 has positive effects on all
the methods we test. When the head is transformer-
based, the two-stage training plays an important
role: the AUC ROC improves from 0.891 to 0.930.

On the other hand, the gain introduced by using
two-stage training is less significant in other ap-
proaches such as DE-FFNN and DIPAIRFFNN.
This might be because FFNN is generally easier
to train than transformer-based models, and thus
initialization choices play a lesser role.

DE-FFNN DiPairTSF DiPairFFNN0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98

AU
C_

RO
C

One-Stage
Two-Stage

(a)

DE-Cos DE-FFNN DiPairTSF DiPairFFNN0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

AU
C_

RO
C

1-Layer Encoders
4-Layer Encoders

(b)
Figure 3: (a) One-stage training v.s. two-stage training.
Projection dimension D=256. (b) Different # of layers
in encoders. D=256

4.8 Model Ablation Studies

Varying the Encoder Layers Figure 3b shows
that we can improve the model performance by
increasing the number of layers in the encoders.
Since the heads remain the same, and the number
of pairs is often far greater than the number of
the unique items needed to be encoded, the total
inference time will not increase accordingly.

2932

Model Settings Pearson (valid) Delta (valid) Pearson (test) Delta (test) Speedup
Teacher (BERT-base) 0.757 -0% 0.757 -0% 1x

DE-FFNN 0.682 -9.9% 0.677 -11.6% 3129x
DE-COS 0.678 -10.4% 0.669 -11.6% 3990x

DIPAIRFFNN 0.696 -8.1% 0.697 -7.9% 2128x
DIPAIRTSF 0.732* -3.3%* 0.731* -3.4%* 362x

(a) Compare with Dual-Encoder based model.

Model Settings Pearson (valid) Delta (valid) Pearson (test) Delta (test) Speedup
BERT-TINY 0.644 -12.0% 0.640 -11.3% 53x

DIPAIRTSF 0.732* -3.3%* 0.731* -3.4%* 362x

(b) Compare with BERT-based student model.
Table 2: Main results for P2T-REL data. Entries marked with * are significant (p-value < 0.05, w.r.t. the closest
baseline, following (Berg-Kirkpatrick et al., 2012)). For DIPAIRTSF and DIPAIRFFNN, we set N=4, M=12 and
projected dimension D=128. Both teacher model and BERT-TINY take input with length 128. The teacher model
is a customized BERT model, with a vocabulary of size 80K. BERT-TINY has a different vocab, this explains why
it has the worst performance. We report the running time of the heads (measured on CPU), as #pairs� #products
+ #terms.

Model Settings AUC ROC (valid) Delta (valid) AUC ROC (test) Delta (test) Speedup
Teacher (BERT-base) 0.955 -0% 0.957 -0% 1x

DE-FFNN 0.895 -6.3% 0.896 -6.4% 3863x
DE-COS 0.871 -8.8% 0.878 -8.3% 5109x

DIPAIRFFNN 0.900 -5.8% 0.904 -5.5% 2437x
DIPAIRTSF 0.930* -2.6%* 0.932* -2.6%* 355x

(a) Compare with Dual-Encoder based models.

Model Settings AUC ROC (valid) Delta (valid) AUC ROC (test) Delta (test) Speedup
BERT-TINY 0.933* -2.3%* 0.936* -2.2%* 44x
DIPAIRTSF 0.930 -2.6% 0.932 -2.6% 355x

(b) Compare with BERT-based student model.

Table 3: Main results for Q2P-MAT data. Entries marked with * are significant (p-value < 0.05, w.r.t. the closest
baseline, following the approach detailed in (Berg-Kirkpatrick et al., 2012)). For DIPAIRTSF and DIPAIRFFNN,
N=4, M=8, D=256. The input to the teacher model and BERT-TINY has length 128. Query encoder and passage
encoder take input with lengths 32 and 128, respectively.

Model Type Head Settings N M #Params in Head AUC ROC Speedup
0 Teacher - - - - 0.955 1x
1 DIPAIRTSF 2-Layer 4 8 1.7M 0.930 355x
2 DIPAIRTSF 2-Layer 8 16 1.7M 0.942 98x
3 DIPAIRFFNN x27x27 4 8 0.4M 0.900 2437x
4 DIPAIRFFNN x210x210 4 8 4.2M 0.909 616x
5 DIPAIRFFNN x210x210 8 16 7.3M 0.908 268x
6 DE-FFNN x27x27 - - 0.2M 0.895 3863x
7 DE-FFNN x210x210 - - 2.6M 0.912 754x
8 DE-FFNN x210x210x210x210 - - 4.7M 0.909 420x

Table 4: Varying the head settings in DE-FFNN, DIPAIRFFNN and DIPAIRTSF. #Params refers to the number
of trainable parameters in the head. We set D=256 in DIPAIRTSF and DIPAIRFFNN. #Params is independent of
N and M in DIPAIRTSF, but not in DIPAIRFFNN.

Reducing Input Sequence Length Figure 4
shows that if we reduce the input sequence length
in BERT, the quality of the model drops quickly as
there is not enough information available for the
model to make the correct decision.

Dimension of the Projection Layer We vary
the projection dimension D. Table 5 shows that
AUC ROC drops quickly when we aggressively
reduce D from 256 to 16. This is expected as less
information can be preserved with a smaller pro-
jection dimension. On the other hand, removing

2933

16 32 64 128
Input Sequence Length (Teacher)

0.65
0.70
0.75
0.80
0.85
0.90
0.95

AU
C_

RO
C

Figure 4: The effect of input sequence length.

projection layer completely leads to almost no im-
provement over the 256D version. This indicates
that adding projection layer is a useful strategy to
save both storage and running time, without hurting
the model quality.

Output Dim of Projection AUC ROC
256D 0.930
128D 0.904
16D 0.831

No projection, 768D 0.930

Table 5: The effect of projection layer for DIPAIRTSF.

First N + M Tokens v.s. Last N + M Since our
DIPAIRTSF model is end to end trained, the model
should learn to push the information of the full
input sequence to arbitrarily selected (N + M) to-
ken embeddings. To verify this intuition, we select
the last (N + M) token embeddings from the dual-
encoder output and compare it with the one using
the first (N + M). As expected, when we fix N=4,
M=8, replacing the first tokens with the last to-
kens only changes AUC ROC from 0.930 to 0.925,
which is almost neglectable.

Effect of Output Sequence Lengths Table 6 il-
lustrates that for a transformer-based head, the
model quality drops when we reduce the output
sequence lengths (8 → 2, 16 → 2). Here we fix
D=256.

Another observation is that (N=11, M=1) is
worse than any other configurations with the same
value of (N+M). This might because in this Q2P-
MAT data, queries are usually shorter than the pas-
sages, and we might need more token embeddings
to store the information of a passage; therefore, M
should greater than 1.

N M L AUC ROC
8 16 2 0.942
8 4 2 0.934
4 8 4 0.936
4 8 2 0.930
2 2 2 0.909
1 11 2 0.922

11 1 2 0.916

Table 6: The effect of output sequence lengths in DI-
PAIRTSF. L is the #layers in the transformer head.

5 Open Questions
DiPair has been discussed in the context of knowl-
edge distillation in this work, but it can be triv-
ially extended to more scenarios, as we can train
it directly. The proposed framework raises several
research questions.

Learning Dynamics of Our Model Recall that,
in our framework, each encoder outputs its first few
token embeddings as the input to the head, and we
end to end to train the model to force the encoder
to push the information of the input text into those
outputted embeddings. However, it is unclear to
us what those outputted embeddings actually learn.
It would be interesting to understand the learning
dynamics of our model.

Models for Online Serving In some applica-
tions, we are interested in serving the model online.
Our proposed framework uses transformer-based
encoders and requires to pre-compute the embed-
dings. As a result, it is difficult to serve our model
online. It can be extremely useful to extend our
framework for online use cases. Here we give a
more concrete example: To score the query to docu-
ment relevance online, we can usually pre-compute
the embeddings of documents and index them, so
using an expensive document encoder is not an is-
sue; however, the query encoder and the head must
be run online.

Extend to Non-Textual Features Another inter-
esting situation to consider is when one side (or
both sides) of the input pair is non-textual. For ex-
ample, we may care about scoring a pair of (image,
document), or a pair of (audio, document). Those
applications require us to modify our proposed ar-
chitecture to better fit non-textual features.

6 Conclusion and Future Work
In this work, we reveal the importance of customiz-
ing models for problems with pairwise/n-ary input
and propose a new framework, DiPair, as an effec-
tive solution. This framework is flexible, and we
can easily achieve more than 350x speedup over
a BERT-based teacher model with no significant
quality drop.

Acknowledgments

We would like to thank Krishna Srinivasan for his
feedback and suggestions. We would also like
to thank Anand Murugappan, Corinna Cortes and
Greg Friedman for their support.

2934

References
T. Berg-Kirkpatrick, D. Burkett, and D. Klein. 2012.

An empirical investigation of statistical significance
in NLP. In Proceedings of the 2012 Joint Confer-
ence on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning, EMNLP-CoNLL 2012, July 12-14, 2012,
Jeju Island, Korea, pages 995–1005. ACL.

S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning.
2015. A large annotated corpus for learning natural
language inference. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 632–642, Lisbon, Portugal. Asso-
ciation for Computational Linguistics.

D. Cer, Y. Yang, S. Kong, N. Hua, N. Limtiaco,
R. St. John, N. Constant, M. Guajardo-Cespedes,
S. Yuan, C. Tar, B. Strope, and R. Kurzweil. 2018.
Universal sentence encoder for English. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing: System Demon-
strations, pages 169–174, Brussels, Belgium. Asso-
ciation for Computational Linguistics.

M. Chidambaram, Y. Yang, D. Cer, S. Yuan, Y. Sung,
B. Strope, and R. Kurzweil. 2019. Learning
cross-lingual sentence representations via a multi-
task dual-encoder model. In Proceedings of the
4th Workshop on Representation Learning for NLP
(RepL4NLP-2019), pages 250–259, Florence, Italy.
Association for Computational Linguistics.

K. Clark, M. Luong, Q. V. Le, and C. D. Manning.
2020. ELECTRA: pre-training text encoders as dis-
criminators rather than generators. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

A. Das, H. Yenala, M. Chinnakotla, and M. Shrivas-
tava. 2016. Together we stand: Siamese networks
for similar question retrieval. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
378–387, Berlin, Germany. Association for Compu-
tational Linguistics.

J. Devlin, M. Chang, K. Lee, and K. Toutanova.
2018. BERT: pre-training of deep bidirectional
transformers for language understanding. CoRR,
abs/1810.04805.

J. Frankle and M. Carbin. 2019. The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks.
In 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net.

J. Guo, Y. Fan, Q. Ai, and W. B. Croft. 2016. A deep
relevance matching model for ad-hoc retrieval. In
CIKM ’16.

J. Guo, Y. Fan, L. Pang, L. Yang, Q. Ai, H. Zamani,
C. Wu, W. B. Croft, and X. Cheng. 2019. A deep

look into neural ranking models for information re-
trieval.

S. Han, H. Mao, and W. J. Dally. 2016. Deep compres-
sion: Compressing deep neural network with prun-
ing, trained quantization and huffman coding. In
4th International Conference on Learning Represen-
tations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings.

M. L. Henderson, R. Al-Rfou, B. Strope, Y. Sung,
L. Lukács, R. Guo, S. Kumar, B. Miklos, and
R. Kurzweil. 2017. Efficient natural language
response suggestion for smart reply. CoRR,
abs/1705.00652.

G. E. Hinton, O. Vinyals, and J. Dean. 2015. Dis-
tilling the knowledge in a neural network. CoRR,
abs/1503.02531.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,
W. Wang, T.Weyand, M. Andreetto, and H. Adam.
2017. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. CoRR,
abs/1704.04861.

B. Hu, Z. Lu, H. Li, and Q. Chen. 2014. Convolu-
tional neural network architectures for matching nat-
ural language sentences. In NIPS ’14.

P. Huang, X. He, J. Gao, L. Deng, A. Acero, and
L. P. Heck. 2013. Learning deep structured seman-
tic models for web search using clickthrough data.
In CIKM ’13.

S. Humeau, K. Shuster, M. Lachaux, and J. We-
ston. 2020. Poly-encoders: Architectures and
pre-training strategies for fast and accurate multi-
sentence scoring. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Ad-
dis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han,
W.J. Dally, and K. Keutzer. 2016. Squeezenet:
Alexnet-level accuracy with 50x fewer parameters
and <1mb model size. CoRR, abs/1602.07360.

X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li,
F. Wang, and Q. Liu. 2019. Tinybert: Distilling
BERT for natural language understanding. CoRR,
abs/1909.10351.

J. Johnson, M. Douze, and H. Jégou. Billion-scale sim-
ilarity search with gpus.

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma,
and R. Soricut. 2019. ALBERT: A lite BERT for
self-supervised learning of language representations.
CoRR, abs/1909.11942.

H. Li and J. Xu. 2014. Semantic Matching in Search.
Now Publishers Inc., Hanover, MA, USA.

https://www.aclweb.org/anthology/D12-1091/
https://www.aclweb.org/anthology/D12-1091/
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/W19-4330
https://doi.org/10.18653/v1/W19-4330
https://doi.org/10.18653/v1/W19-4330
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.18653/v1/P16-1036
https://doi.org/10.18653/v1/P16-1036
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
http://arxiv.org/abs/1903.06902
http://arxiv.org/abs/1903.06902
http://arxiv.org/abs/1903.06902
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1705.00652
http://arxiv.org/abs/1705.00652
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=SkxgnnNFvH
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942

2935

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O.Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov.
2019. Roberta: A robustly optimized BERT pre-
training approach. CoRR, abs/1907.11692.

S. MacAvaney, F. Maria Nardini, R. Perego, N. Tonel-
lotto, N. Goharian, and O. Frieder. 2020. Efficient
document re-ranking for transformers by precomput-
ing term representations.

B. Mitra, F. Diaz, and N. Craswell. 2017. Learning to
match using local and distributed representations of
text for web search. In WWW ’17.

L. Pang, Y. Lan, J. Guo, J. Xu, S. Wan, and X. Cheng.
2016. Text matching as image recognition. In AAAI

’16.

J. Rao, L. Liu, Y. Tay, W. Yang, P. Shi, and J. Lin. 2019.
Bridging the gap between relevance matching and
semantic matching for short text similarity model-
ing. In EMNLP-IJCNLP 2019, pages 5370–5381,
Hong Kong, China. Association for Computational
Linguistics.

N. Reimers and I. Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for
Computational Linguistics.

A. Renda, J. Frankle, and M.Carbin. 2020. Comparing
rewinding and fine-tuning in neural network pruning.
In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

V. Sanh, L. Debut, J. Chaumond, and T. Wolf. 2019.
Distilbert, a distilled version of BERT: smaller,
faster, cheaper and lighter. CoRR, abs/1910.01108.

S. Sun, Y. Cheng, Z. Gan, and J. Liu. 2019. Patient
knowledge distillation for BERT model compres-
sion. In EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019, pages 4322–4331. Association
for Computational Linguistics.

R. Tang, Y. Lu, L. Liu, L. Mou, O. Vechtomova, and
J. Lin. 2019. Distilling task-specific knowledge
from BERT into simple neural networks. CoRR,
abs/1903.12136.

I. Turc, M. Chang, K. Lee, and K. Toutanova. 2019.
Well-read students learn better: The impact of stu-
dent initialization on knowledge distillation. CoRR,
abs/1908.08962.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł . Kaiser, and I. Polosukhin.
2017. Attention is all you need. In NIPS ’17.

Ran Wang, Haibo Su, Chunye Wang, Kailin Ji, and Ju-
peng Ding. 2019. To tune or not to tune? how about
the best of both worlds? CoRR, abs/1907.05338.

Shuohang Wang and Jing Jiang. 2017. A compare-
aggregate model for matching text sequences. In 5th
International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net.

C. Xiong, Z. Dai, J. Callan, Z. Liu, and R. Power. 2017.
End-to-end neural ad-hoc ranking with kernel pool-
ing. In Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, Shinjuku, Tokyo, Japan, Au-
gust 7-11, 2017, pages 55–64.

L. Yang, Q. Ai, J. Guo, and W. B. Croft. 2016. anmm:
Ranking short answer texts with attention-based neu-
ral matching model. In CIKM ’16.

Y. Yang, D. Cer, A. Ahmad, M. Guo, J. Law, N. Con-
stant, G. Hernández Ábrego, S. Yuan, C. Tar,
Y. Sung, B. Strope, and R. Kurzweil. 2019. Multi-
lingual universal sentence encoder for semantic re-
trieval. CoRR, abs/1907.04307.

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2004.14255
http://arxiv.org/abs/2004.14255
http://arxiv.org/abs/2004.14255
https://doi.org/10.18653/v1/D19-1540
https://doi.org/10.18653/v1/D19-1540
https://doi.org/10.18653/v1/D19-1540
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://openreview.net/forum?id=S1gSj0NKvB
https://openreview.net/forum?id=S1gSj0NKvB
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
http://arxiv.org/abs/1903.12136
http://arxiv.org/abs/1903.12136
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1907.05338
http://arxiv.org/abs/1907.05338
https://openreview.net/forum?id=HJTzHtqee
https://openreview.net/forum?id=HJTzHtqee
https://doi.org/10.1145/3077136.3080809
https://doi.org/10.1145/3077136.3080809
http://arxiv.org/abs/1907.04307
http://arxiv.org/abs/1907.04307
http://arxiv.org/abs/1907.04307

2936

A More Information On P2T-REL

We provide a few examples from the training data
to better illustrate the goal of each task.

Product One

• Title: Aurora Dragon Fantasy Mink Blanket
[Weight: Medium - 5LBS,Size: Queen].

• Description: Measures 79 inch x 96 inch and
will fit a Queen of Full size bed. Soft and
plush. Looks great and you will love cuddling
up with at night.

• Sample terms and ratings

– size queen: 0.83
– dragon fantasy: 0.83
– size: 0.16
– T-shirt: 0.

Product Two

• Title: Versace Women’s Chain Reaction
Chunky Sneakers - Size 37 (7).

• Description: The classic sneaker is given
a haute update with experimental details-
like a lightweight, chain-linked rubber sole
and a riot of color and texture-for a must-
have addition to your sneaker collection.
Style Name:Versace Chain Reaction Sneaker
(Women). Style Number: 5663881.

• Sample terms and ratings

– sneakers: 0.91
– leather: 0.08
– women: 0.58
– size 37: 0.78

The ratings are aggregated from 3 human raters.

B Derive Q2P-MAT from MS Marco
Ranking

For pairwise input, creating a transfer set that
roughly follows the same distribution as the train-
ing data can be very challenging (this is, however,
not a problem in industrial systems as we can easily
mine unlabeled data through logs). To this end, we
utilize MSMARCO Passage Ranking data as it is of
large scale, and we can easily create a large amount
of unlabeled data. MSMARCO Passage Ranking is
designed for ranking tasks, and it has 1M+ queries

and 8.8M+ passages. Other popular datasets (e.g.,
GLUE benchmark) are relatively small, and previ-
ous distillation works often use text augmentation
techniques to create transfer set.

In our work, we would like to directly verify
the effectiveness of model distillation, so instead
of using ranking metrics (a decent scoring model
does not always lead to better ranking metrics), we
derive a binary classification task from the MS-
MARCO data,

• First, all the human-rated query to passage
pairs in MSMARCO Passage Ranking data
are positive. We use that part as our positive
examples.

• To create relatively hard negative pairs (so that
the binary classification task can be more chal-
lenging), we encode queries/passages with the
universal-sentence-encoder-qa5 (Yang et al.,
2019; Chidambaram et al., 2019) and run near-
est neighborhood search (some public tools
are available, e.g., (Johnson et al.)) to retrieve
top-30 most relevant passages for each query.
We then sample pairs with dot product below
0.53 as the negative pairs. The number of neg-
ative pairs is roughly the same as the number
of positive pairs.

• For the transfer set, we simply retrieve the top-
50 most relevant passages (measured via dot
product of the query embedding and the pas-
sage embedding) and use those query/passage
pairs as the unlabeled data.

C Poly-Encoders Fails for Long Text

Compared with DiPair, Poly-Encoders (Humeau
et al., 2020) has at least the following limitations,

1. It makes a strong assumption on its input pairs:
One side of the input pair should be short text
(e.g., less than 20 tokens).

2. It does not extend to n-ary input.
3. It can not deal with tasks beyond regression /

binary-classification.
Both 2. and 3. can be implied directly from the
architecture of Poly-Encoders and assumption 1
is explicitly mentioned in (Humeau et al., 2020).
In this section, we experimentally show that when
the assumption in 1. is violated, Poly-Encoders
becomes considerably worse than DiPair.

5Available in https://tfhub.dev/google/universal-sentence-
encoder-qa/3

2937

We use an internal product to product similarity
dataset (P2P-REL). The average length of prod-
ucts is about 100, and Pearson correlation between
model predictions and the human ratings is our pri-
mary metric. Our teacher model is a fine-tuned
BERT-base model with a customized vocabulary,
and our distillation set has 182M pairs.

Model Settings N M Pearson
Teacher - - 0.840

DIPAIRTSF 6 6 0.826
POLYENCODERS 1 11 0.805

DIPAIRTSF 3 3 0.823
POLYENCODERS 1 5 0.790

Table 7: DIPAIRTSF v.s. POLYENCODERS on P2P-
REL data. We fix K=1. For fair comparison, we re-
move the projection layer in both methods as a projec-
tion layer is not proposed in Poly-Encoders.

Consider the fact that a product has only about
100 tokens, we believe that for longer text such as
full-page documents, the gap between POLYEN-
CODERS and DIPAIRTSF will be even larger. We
leave the verification of our hypothesis as future
work.

