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Abstract

Neural Machine Translation (NMT) models of-
ten lack diversity in their generated transla-
tions, even when paired with search algorithm,
like beam search. A challenge is that the di-
versity in translations are caused by the vari-
ability in the target language, and cannot be in-
ferred from the source sentence alone. In this
paper, we propose to explicitly model this one-
to-many mapping by conditioning the decoder
of a NMT model on a latent variable that rep-
resents the domain of target sentences. The
domain is a discrete variable generated by a
target encoder that is jointly trained with the
NMT model. The predicted domain of target
sentences are given as input to the decoder dur-
ing training. At inference, we can generate di-
verse translations by decoding with different
domains. Unlike our strongest baseline (Shen
etal., 2019), our method can scale to any num-
ber of domains without affecting the perfor-
mance or the training time. We assess the qual-
ity and diversity of translations generated by
our model with several metrics, on three differ-
ent datasets.

1 Introduction

Neural Machine Translation (NMT) models are
trained to translate a sentence from a source lan-
guage into a target language. There are many trans-
lations of the same sentence that are both gram-
matically correct and faithful to the source, but
these translations may differ greatly in their vocab-
ulary, style or grammar. Inferring the best transla-
tion among them requires to explore a vast output
space to cover this variability. This is typically
handle as a post-processing step using a search
algorithm, like beam search. This procedure is
known to produce translations that lack in diversity,
often differing only by a punctuation or a word (Ku-
mar and Byrne, 2004; Li et al., 2016). While the
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search algorithm can certainly be improved, part
of the problem resides also in the training of the
NMT models; they are trained on 1-to-1 translation
datasets without any objective to encourage diverse
translations.

There are many ways to model the diversity of
translations from data that contain only one transla-
tion, such as mixture of experts (Shen et al., 2019)
or variational autoencoders (Zhang et al., 2016). A
particularity of machine translation is that it is a
one-to-many mapping problem. This means that
the variability should be encoded by the target sen-
tence and the question is how to combine a NMT
system with a target sentence encoder with no pos-
terior collapse.

In this work, we propose to combine the encoder
of the NMT with a discrete target encoder. Similar
to other discrete autoencoders (Kaiser et al., 2018;
van den Oord et al., 2017), each target sentence
is assigned to a discrete variable, or domain, and
each domain is associated with an embedding. The
embeddings from both encoders are then fed to the
decoder of the NMT to form a translation. The
discrete latent representation follows a categorical
distribution that is constrained to be uniform over
the dataset to avoid a mode collapse. Since each do-
main has its own embedding, changing the domain
embedding changes the translation. At test time,
we can thus condition the generation on each do-
main embedding to produce multiple translations
with high diversity.

Our approach is general and can be applied on
top of any model with little computational over-
head. An advantage of our approach is that the
number of domains can be arbitrarily large without
affecting the performance or the running time. Our
approach can replace or work with beam search
during inference. We assess the quality and diver-
sity of translations generated by our model with
several metrics, on three different datasets.
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Figure 1: Illustration of our model. The model is composed of a source and a target encoder, and a decoder.
At training time, a target sentence is encoded with the target transformer encoder to get a latent representation
zy. The latent representation is linearly mapped to a vector of size K on which apply a softmax to obtain domain
probabilities. Each domain is associated with an embedding. The decoder is fed with both the source encoding,
and the sum of the domain embeddings reweighted by their probabilities. During inference, we can generate
K different hypotheses by switching the domain embedding that is fed to the decoder. To prevent a train-test
discrepancy, during training we apply an argmax operator on domain probabilities, with probability pharg.

2 Related Work

Several studies have proposed to sample diverse
sequences by changing the value of a latent vari-
able. For example, one possibility is to add
noise to the latent space of a Variational Auto-
Encoder (Kingma and Welling, 2013) to diver-
sify samples in machine translation (Zhang et al.,
2016), language modeling (Bowman et al., 2015)
or question generation (Jain et al., 2017). In partic-
ular, Zhang et al. (2016) also condition the decoder
of a NMT Model on a target encoder. As opposed
to our work, the output of their encoder is contin-
uous and sampling diverse generation requires to
inject random noise, while we obtain diversity by
switching between discrete domains. Similar noise
injection mechanisms have been investigated to im-
prove the diversity of responses in dialogue (Serban
et al., 2017; Cao and Clark, 2017; Wen et al., 2017),
and image captioning (Wang et al., 2017; Dai et al.,
2017). Closer to our work, (Shen et al., 2019; Shu
et al., 2019) and Xu et al. (2018) use domain em-
beddings to condition their generations. Unlike us,
they do not condition the domain on the target, but
select the domain which minimizes the reconstruc-
tion loss, which becomes expensive as the number
of domains increases. Another relevant work is the
fast decoder of Kaiser et al. (2018) where they also
combine a discrete encoder applied on the target
sentence with the NMT encoder. Their goal is to
accelerate the decoding process of a machine trans-
lation system, while we are interested in efficiently
sampling diverse translations.

Another line of work focuses on improving the

generation by changing the decoding scheme dur-
ing inference (Li et al., 2016; Gu et al., 2017) or by
matching the training of the model to the decoding
scheme (Wiseman and Rush, 2016; Collobert et al.,
2019). This is done by either training through a
beam search decoder (Wiseman and Rush, 2016;
Collobert et al., 2019) or by reframing generation
as a reinforcement learning problem (Bengio et al.,
2015; Ranzato et al., 2015). These works focus on
the decoding scheme to improve generation, but do
not address the problem of diversifying the outputs
generated from the same input.

3 Model

In this section, we describe our target encoder and
how to train it along with a translation model. The
target encoder learns to map target sentences to
discrete domains, and we show how to use these
domains to efficiently sample diverse translations.

3.1 Target encoding

A Neural Machine Translation (NMT) model is
composed of a source encoder Eg,, and a decoder
D. Given a dataset D of pairs (z,y) of source
sentences and their target translations, a standard
encoder-decoder model is trained to minimize:

E(z,y)eD ( —logpp (y | Esrc(x)))

where pp (y|Eqc(z)) represents the probability
given by the decoder D to a target sentence y to be
the translation of a source sentence . In our case,
we consider that we also have a target encoder Eg,
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and we feed the decoder not only with an encoding
of the source sentence, but also with an encoding
of the target sentence. As a result, the model is
trained to minimize:

Eyyen (1080 (Y | Bac(®): B(y)) )

Without architectural constraint, the decoder D
could trivially learn the identity mapping between
the encoding of the target sentence Figt(y) and
the sentence to generate y. Instead, we propose
to use a key-value structure for this embedding
where the target encoder provides a probability for
a key, or domain, and we feed the associated value
to the decoder of the machine translation system.
In practice, we constraint the output of the target
encoder to represent the domain probability distri-
bution of the target sentence. The output of the
target encoder is thus a K-dimensional vector of
probabilities p = Eigt(y). Since the output of the
target encoder is not directly fed to the decoder, we
bound the amount of information provided by the
target encoder, preventing the model from learning
a trivial mapping. At test time, we cannot estimate
Elgt(y) since the target sentence y is not available.
Instead, we feed the decoder D with any one-hot
vector of RX to generate K different translations.
An illustration of our model is provided in Figure 1.

3.2 Implementation

Our NMT model is the transformer network
of Vaswani et al. (2017) with a dimension d, with
a transformer encoder F,.. and a transformer de-
coder D. The target encoder Eigt that we introduce
in this paper is composed of a transformer encoder
with the same architecture as the source encoder
Fc and other components detailed bellow. We
refer the reader to Vaswani et al. (2017) for the
details of the architecture and describe below the
specificites of our target encoder Eigt.

The output Eiy(y) of the target encoder is a
probability vector of size K. To obtain these proba-
bilities, we encode the target through a transformer
encoder. We take the first hidden state h € R of
the last layer of the target encoder, corresponding
to the start token. We linearly map h to a score vec-
tor of dimension K. Finally, we apply a softmax
operator to obtain a vector of domain probabilities:

p = Eigi(y) = softmax(Mh)

In that setting, the decoder is trained with arbi-
trary probability vectors, which becomes problem-
atic at test time when p is set to a one-hot em-
bedding on which the decoder may never have
been trained. To prevent this train-test discrep-
ancy, we apply a temperature on the domain scores
s that decreases linearly from 1 to O over train-
ing. When the temperature reaches 0, we have
p = I(argmax(s))' (i.e. the domain with the high-
est score has probability 1, the others have prob-
ability 0) and the target encoder remains frozen
during the remaining training time.

Moreover, at each training step, we randomly
replace the softmax by an argmax operator with a
probability py..q. In practice, we set pparq = 0.25,
which means that 75% of the time the target en-
coder is trained along with the source encoder and
decoder, and 25% of the time the target encoder is
only used to predict the domain with the highest
probability. Overall, we have:

it 0 <X < phard

Z(argmax(s)),
E e
tet (Y) { s otherwise

softmax (T) ,

where X is a random variable from a uniform dis-
tribution, i.e., X ~ (0, 1).

Optimization. When 7" > 0, the model is fully
differentiable and the target encoder can be trained
in an end-to-end fashion with the rest of the model.
We found that it is also possible to use discrete op-
erators like the Gumbel-Softmax (Jang et al., 2016).
This way, Eigt(y) is always a one-hot vector and
there is no train-test discrepancy. However, learn-
ing the target encoder through a discrete encoding
makes optimization more difficult, and we obtained
better results with a regular softmax.

Domain input. To feed the target encoder
output FEi,t(y) as input to the decoder D,
the decoder learns a matrix of embeddings
E = [eo,...,eK_l] e R¥K where each e;
represents a different domain. Traditionally, the
first input of a decoder is an embedding that corre-
sponds to a start symbol (S). Instead, we feed as
first embedding a vector e, where:

K-1
e=Ep= Y _ pie;, with p=Ey(y)
i=0

'ByZ(j) = (0,...,0,1,0,...,0), we denote the one-hot
vector with 1 for j-th coordinate and 0 elsewhere).
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The domain embeddings E are learned during train-
ing. This process is illustrated in Figure 2.

3.3 Training objective

We denote by ¢ the parameters of E, Figt, and D.
Given a mini-batch of source and target sentences
{(zi,vi) }1<i<n, the model is trained to minimize:

f: log (pD Yil Bsre ()5 Etgt(ya))>

=1

In practice, we want the decoder to properly
leverage Figi(y), i.e., the domain information com-
ing from the target encoder. Without additional
constraints, nothing prevents the model from col-
lapsing to a mode where the target encoder con-
stantly predicts the same domain, regardless of its
input. The model is then perfectly predicting its
domain, which means that it receives no gradient
to escape this trivial solution.

To address this issue, we add a regularization
term to the training objective, to encourage the
model to make a uniform usage of available do-
mains. In particular, we define the entropy distribu-
tion of selected domains in the mini-batch:

Lxg(0) = —plog(p), with p=

1 N

Y n
i=1

where p; = FEigt(y;) is the probability distribution

of domains for the target sentence y;. Finally, the

model is trained to minimize £(0) — \Lxg(6),
where ) is a hyper-parameter.

3.4 Inference

At inference, we generate one hypothesis per do-
main, i.e. K hypotheses. To generate the k' hy-
pothesis, we perform decoding by feeding ey as
embedding of the start symbol. We generate trans-
lations with greedy decoding, except in Figure 5,
where we combine our model with beam search
decoding which leads to a different quality vs. di-
versity trade-off.

4 Experiments

In this section, we describe an evaluation protocol
similar to Shen et al. (2019), and compare our ap-
proach to several baselines on 3 MT datasets. Then,
we show the importance of different components
in our model in an ablation study.

e Cam
\/ + \Z
Z > Decoder
Y VvV V¥
| am in

Figure 2: Detailed illustration of our model. 7, is the
first hidden state of the output of the target transformer
encoder. To obtain Eyg(y), we linearly map Z, to a I
dimensional vector and perform a “soft-disctretization”
by applying either a softmax or an argmax operator.
We then compute the target domain vector e as the sum
of the domain embeddings E' reweighted by their prob-
abilities contained in E4¢ (). The vector e is fed to the
decoder as the embedding of the first token, along with
the source encoding Z, = Fgc ().

4.1 Evaluation Metrics

To measure both the quality and diversity of our
generations, we use an evaluation protocol sim-
ilar to Shen et al. (2019). The test set has
multiple human reference translations which al-
lows to measure diversity Formally, we de-
note by {s;, [r},...,7F]}1<i<ny a multi-reference
dataset, where each source sentence s; is pro-
vided with P reference translations [}, ..., 7], and
by [h, ..., th | the K hypotheses generated by our
model for the source sentence sl

We denote by BLEU({hy, [r},....7F1} oo y)
the corpus-level BLEU score, with P > 1 refer-
ences for each hypothesis. To measure the quality
of our generations, we define:

MBLEU = BLEU({hg, ... ’Tip]}lgz‘SN,jeK>
mBLEU measures the quality of translations for
each source sentence, and for each domain. A
model that does not generate good translations for
each domain will perform poorly. To measure the
diversity of translations, we use the pairwise
metric of Shen et al. (2019), defined as:

pairwise = BLEU({hm, hikl}  1<i<n >
(J.k)EK? j#k
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pairwise computes the BLEU score between
hypotheses of a same source sentence. A
low pairwise ensures diversity in translations,
while a pairwise of 100 means that for a given
source sentence, the decoder will always gener-
ate the same translation. Overall, we want the
model to have a low pairwise while preserving
a high mBLEU score.

4.2 Dataset

We train and test our model on three different
datasets, following Shen et al. (2019). Each dataset
comes with a test set with multiple human refer-
ence translations.

WMT’17 English-German (En-De). We fol-
low the same pre-processing protocol as Shen et al.
(2019), where we filter all training sentences with
more than 80 source or target words, which results
in 4.5M sentence pairs. We apply the Moses tok-
enizer (Koehn et al., 2007) and learn a joint BPE
vocabulary with 32k codes (Koehn et al., 2007).
We take newstest2013 as a validation set, and test
on a subset of 500 sentences of newstest2014 with
10 reference translations.

WMT’14 English-French (En-Fr). We follow
the setup of Gehring et al. (2017), which results
in 36M training sentence pairs. We use a joint vo-
cabulary of 40k BPE codes. We use newstest2012
and newstest2013 as a validation set, and test on
a subset of 500 sentences from newstest2014 with
10 reference translations.

WMT’17 Chinese-English (Zh-En). We follow
the pre-processing setup of Hassan et al. (2018).
The training set is composed of 20M sentence pairs,
with 48k and 32k source and target BPE vocabular-
ies respectively. We develop on devtest2017 and
evaluate on a subset of 2000 sentences of new-
stest2017 that comes with 3 reference translations.

4.3 Experimental details

In all our experiments, we consider transformers
with 6 layers, 8 attention heads, and we set the
model dimension to d = 512. We optimize our
model with the Adam optimizer (Kingma and Ba,
2014) with 51 = 0.9, 52, = 0.98 and a learning
rate of 3 x 104, We use the same learning rate
schedule as Vaswani et al. (2017). We use a dropout
(Srivastava et al., 2014) of 0.1 in the source encoder
and the decoder. Following Shen et al. (2019), we

do not use any dropout in the target encoder. With
stochasticity in the target encoder, a same target
sentence tends to be mapped to different domains
at different iterations, which prevents the decoder
from learning the specificity of each domain, and
results in identical generations with no diversity.

We use 128 GPUs for the En-Fr experiments, and
16 GPUs for the En-De and Zh-En experiments.
For the En-Fr experiments, we train with mini-
batches of around 450k tokens, and 55k tokens
for En-De and Zh-En. We use float16 operations to
speed up training and to reduce the memory usage
of our models. We implement our model within the
fairseq framework of Ott et al. (2019).

4.4 Baselines

Sampling and Beam. We report results with a
sampling and a beam baseline, as well as the di-
verse beam method (Vijayakumar et al., 2018). We
consider a standard NMT system (i.e. an encoder-
decoder model, without target encoder or latent
variable). At test time, for sampling we sample
K translations to generate K hypotheses. For the
beam search, we use a beam size of K and return
all hypotheses in the beam.

Mixture of Experts. We also compare against
the state-of-the-art Mixture of Experts (MoE)
model of Shen et al. (2019), with online responsi-
bility update, uniform prior, shared parameters and
hard assignment (AMup in their paper), which is
their overall best setup. MoE model is composed
of a source encoder F,.. and a decoder D. Like our
model, the decoder learns a matrix of embeddings
E = [eg, .. ,eK,l] € R¥K where each e; repre-
sents a different domain which is fed as first input
of the decoder. Unlike us, they do not use a separate
target encoder to select the domain, but consider an
EM algorithm where the selected domain is the one
that minimizes the reconstruction loss of the tar-
get sentence. In particular, for a mini-batch of N
source and target sentences {(x;, ;) }1<i<n, the
E-step computes:

d; = argmax pp (yi\Esrc(xi); d)
de(l1,K)
Then, the M-step minimizes the negative log-
probability of target sentences, given their source
encodings, and the selected domains:

N

£(0) = 3" ~log (pp (11l Buelo): )

=1
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mBLEU pairwise
En-De En-Fr Zh-En En-De En-Fr Zh-En
Sampling 28.2 43.6 19.1 11.8 21.0 12.0
Beam 66.3 79.3 32.2 74.0 777 83.8
Diverse Beam (Vijayakumar et al., 2018) 60.0 72.5 31.6 53.7 649  66.5
MoE (Shen et al., 2019) 59.8 72.6 35.7 48.8 64.4 47.5
Our model 55.4 65.9 34.7 46.2 57.3 52.5

Table 1: Results on three WMT datasets: En-De, En-Fr, Zh-En. We use K = 10, 10, 3 domains respectively. We
generate the same number of hypotheses as the number of references available in the multi-references datasets.

Beam search is computed with beam size of K.

We run all of these baselines with the same trans-
former architecture as the one used in our model.
For fair comparison, we use the same optimizer,
learning rate and batch size in all experiments.

4.5 Main results

Table 1 present nBLEU and pairwise scores for
different models, on the three considered datasets.
We observe that a high mBLEU score is often com-
bined with a high pairwise. For instance, the
beam search and sampling baselines fail at gen-
erating both diverse and high quality translations.
Beam search and diverse beam search hypotheses
are accurate, but lack diversity, resulting in a very
similar set of hypotheses. On WMT En-De, with
K = 10, beam search gives a mBLEU score of 66.3
but a pairwise score of 74. On the other hand,
the sampling baseline generates very diverse but
inaccurate hypotheses, with a pairwise score of
11.8, but a mBLEU of 28.2.

The Mixture of Experts and Target Encoder mod-
els have a better trade-off between diversity and
quality, as shown in Figure 4. Overall, our method
provides more diversity than the MoE method, i.e.
it obtains a lower pairwise score, but to the
detriment of a lower mBLEU score. In Table 1, we
observe that for En-De and En-Fr, our model ob-
tains a lower mBLEU score than beam search decod-
ing and the Mixture of Experts, but provides more
diversity, with a pairwise score of 57.3 instead
of 64.4 in En-Fr. While both methods perform sim-
ilarly, our approach is simpler to implement, and
can easily scale to an arbitrary number of domains,
as shown in the following section.

4.6 Training speed

The training speed of our method is independent
of the number of domains. In contrast, the train-

10000

8000

—s— Mixture of experts
—=— Target encoder

6000

4000

2000

Training speed (words per second)

10 100
Number of domains

Figure 3: Training speed. Measured in number of
words per second, for our target encoder model and the
Mixture of Experts model of Shen et al. (2019), for dif-
ferent number of domains (K = 3, 5, 10, 20, 50, 200).
The training speed of the target encoder model is con-
stant while the Mixture of Experts model training speed
decreases with the number of domains.

ing speed of the MoE model of Shen et al. (2019)
decreases drastically when the number of domains
increases. Indeed, the MoE model requires to per-
form K forward passes to determine the best do-
main. In Figure 3, we compare the training speed of
both models for K = 3, 5, 10, 20, 50 and 200. Un-
like the MoE model, using a target encoder allows
generalization to an arbitrary number of domains.

4.7 Ablation study

Beam search. In Figure 5, we study the impact
of decoding with beam search instead of greedy
decoding. Using beam search improves the qual-
ity of translations, but deteriorates the diversity.
Combining a target encoder model with a beam
search pushes towards the same trade-off of quality-
diversity as the greedy MoE model.

Domain regularization. Without any regulariza-
tion on the domain probabilities, i.e. when A = 0,
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Figure 4: Impact of the number of domains. Results
on the WMT’17 En-De dataset. We compare beam
search, sampling, MoE (Shen et al., 2019) to our Target
Encoder. In each case, we report results for K =5, 10
and 20 domains. MoE and Target Encoder provide the
best trade-off between quality and diversity. Compared
to MoE, Target Encoder provides a lower mBLEU score,
but also a lower pairwise (i.e., more diversity).

we sometimes encounter the “collapse” scenario
where at training time all target sentences are
mapped to the same domain. As a result, only
the embedding associated to that domain is trained,
and at test time, every sentence generated from an-
other (and untrained) domain embedding will be
invalid. This means that only one of the K gen-
erated hypotheses will be valid, leading to a very
poor mBLEU. Conversely, when A is too high, the
regularization term becomes predominant and the
target encoder primarily focuses on maximizing the
domain usage entropy, rather than on minimizing
the decoder reconstruction loss. As a result, the tar-
get encoder uniformly maps target sentences to all
available domains, but the domains do not contain
any information about target sentences. This way,
the decoder learns to ignore the domain, and will
always output the same translation, independently

80
@® Mixture of Experts
@® Target Encoder
Greedy
75 Ol [J Beamsize 3
= O Beamsize 5
) A O Beam size 10
w
El 70 @D
IS
A
65
6
Q70 65 60 55 50
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Figure 5: Beaming search decoding. Results on the
WMT’ 14 En-Fr dataset for K = 10 domains. We study
the impact of decoding greedily and beam search, for
beam sizes of 3, 5 and 10. Beam search increases both
the mBLEU and the pairwise scores, i.e., it provides
higher quality translations, but with lower diversity.

of the input domain, which results ina pairwise
score close to 100 (i.e. there is no diversity). In
practice, we found that setting A = 0.1 or A = 1
leads to similar results, and is enough to prevent
the collapse scenario.

Source versus target encoding. In this experi-
ment, we change the input of our target encoder to
probe where the source of diversity in our model
comes from. In particular, it is possible that the
diversity captured by our model is indirectly com-
ing from the source sentences through the target
sentences. We test this hypothesis by replacing the
input of the target encoder by the source sentence.
This model is identical to ours beside the change
in the input of the target encoder. In that setting,
on WMT’17 En-De, when using 10 domains, we
obtain a mBLEU score of 66.5, and a pairwise
BLEU of 97.2, which means that the model was not
able to learn anything specific about each domain,

S 5HREMR G, 58% %A F A5 -

It was rejected by 58% of its members who voted in the ballot.

Source
Human references

Of the members who voted, 58% opposed the contract transaction.
Of the members who participated in the vote, 58% opposed the contract.

Beam 3, Top 3 Of those voting, 58 per cent opposed the contract deal.

Fifty-eight per cent of the members voting opposed the contract deal.
Fifty-eight per cent of the members voting opposed the contract.

Mixture of Experts
(Shen et al., 2019)

Of the members who voted, 58% opposed the deal.

Our Model Of the members voting, 58 per cent opposed the contract deal.

Fifty-eight per cent of the members who voted opposed the contract deal.
Fifty-eight per cent of those voting had opposed this contract deal.

Fifty-eight per cent of the members who voted opposed the contract deal.
Fifty-eight per cent of the voting members opposed the contract deal.

BULA GG, WP HREMEHE -

Russian public opinion has also turned since November.

Russian public opinion has started to change since November.

The polls in Russian show a twist turn since the beginning of November.

Since November, Russian public opinion has also turned around.
Since November, Russian public opinion has also changed.
Russian public opinion has also changed since November.

Since November, the mood in Russia has also reversed.
Since November, opinion in Russia has also reversed.
Opinion in Russia has also shifted since November.

Since November, Russian public opinion has also reversed.
The mood in Russia has also reversed since November.
There has also been a reversal in Russian public opinion since November.

Table 2: Two examples of generations by our model and different baselines on the WMT’ 17 Zh-En dataset. Beam
search generation lack diversity. The target encoder model gives the most diverse sets of translations.
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Source FERGZIUEAL THEAL AR 285 | R 5 70052 K
Reference  This was done by pulling the northern approach viaduct 700 millimetres southwards.
Our model  Completion of the operation required the southern transfer of 700 mm from the northern elevated bridge.
This operation will require moving the northern elevated bridge to a further 700 mm south.
The operation was completed by moving the northern elevated bridge to the south by 700 mm.
Source REZHAEMESHRER, (ERSEASETAINIE WM& LT ERAEL, AR R AR -
Reference  Although the bridge is very large and heavy, joining the viaduct and roadway is a meticulous operation, requiring precise assembly.
Our model  Despite the scale and weight of the bridge, the completion of the Alloy bridge and the deck requires fine work and very precise assembly.
Although it is huge in size and weight, it requires fine work and very precise assembly to complete the Alloy between the viaduct and the deck.
The bridge, though of great scale and weight, requires fine work and a very precise assembly to complete the Alloy between the viaduct and the deck.
Source Wi, B/ EHE RN TN RIS AR A B -
Reference  According to the report, Recep Tayyip Erdogan mentioned his “good friend” Putin five times.
Our model It was reported that Recep Tayyip Erdogan made five references to “good friend” Putin.
Recep Tayyip Erdogan reportedly mentioned “good friend” Putin five times.
The five-time mentions of “good friend” Putin were reported by Recep Tayyip Erdogan.
Source AR KR EZ— - ZHRLE A SR EM SRR A0, MRP S T H SRR IR -
Reference  Syria is a key factor. Moscow has recently played the role of a mediator in Syria. However, Russia and Turkey supported opposing factions.
Our model  One of the key factors is Syria, where Moscow has played a conciliatory role, while Russia and Turkey have supported the opposite.
Syria is one key factor, with Moscow playing a conciliatory role in Syria, while Russia and Turkey have supported the opposite.
The role of Moscow as a peacemaker in Syria recently was one of the key factors, while Russia and Turkey supported the opposition.
Source X7 R AN AT ZE AR IR SR 7 5 RS AR 35 -
Reference  There is no clear consensus on where they can seek common ground on Syria.
Our model  There is no clear consensus on how to seek common ground on Syria.
No clear consensus has been reached on how to find common ground on Syria.
The two sides did not reach a clear consensus on how to seek common ground on Syria.
Source BRI A R R AR R
Reference  Moscow’s reaction was intense.
Our model Moscow was reacting violently.
Moscow’s reaction was very strong.
The reaction in Moscow was intense.
Source L NRRELR, — DI R ARIGR -
Reference It is gratifying that everything is going well.
Our model It is gratifying to note that everything is going well.

Thankfully, everything has gone well.
To the relief of all, everything was going well.

Table 3: Examples of generations by our model on the WMT’ 17 Zh-En dataset. Translations are sorted by domain
index. The model generates high-quality translations with high diversity. Unlike beam search decoding, that
tends to return similar hypotheses with only minor differences, our model generates various translations with very

different prefixes, even for long sentences.

and the decoder simply ignores the domain infor-
mation. The fact that learning the domain from the
input sentence does not work well is expected, as
this information is already encoded in the source
encoding z,. This validates that learning the diver-
sity form the target domains is important. It also
suggests that the diversity that our model learns is
inherent to the target domain, and does not come
from the source domain indirectly. Finally, both
models have the same number of parameters, sug-
gesting that the gain in performance is not only
caused by the additional parameters.

4.8 Qualitative analysis

Table 3 provides examples of generations by our
model on the WMT’17 Zh-En dataset. For each
Chinese source sentence, we provide one English
human translated reference, and translations by our
model for three different domains. We observe
that the model generates high-quality translations

with high diversity. Unlike beam search decoding,
that tends to return similar hypotheses with only
minor differences in the suffix (Ott et al., 2018), our
model is able to generate diverse translations with
very different prefixes, even for long sentences.

5 Conclusion

In this paper, we presented an efficient way to sam-
ple diverse translations by adding a discrete target
encoder to a NMT model. The discrete representa-
tion allows to change the domain of the translation
and can be trained without supervision. The advan-
tages of using a discrete encoder is that it is both
general and scales with the number of domains with
no additional computational time. In the future, we
plan to test our discrete target encoder to diversify
generations in other domains, such as language
modeling, image captioning or image inpainting.
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