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Abstract

Recent work in NLP shows that LSTM lan-
guage models capture hierarchical structure in
language data. In contrast to existing work, we
consider the learning process that leads to their
compositional behavior. For a closer look at
how an LSTM’s sequential representations are
composed hierarchically, we present a related
measure of Decompositional Interdependence
(DI) between word meanings in an LSTM,
based on their gate interactions. We connect
this measure to syntax with experiments on
English language data, where DI is higher on
pairs of words with lower syntactic distance.
To explore the inductive biases that cause these
compositional representations to arise during
training, we conduct simple experiments on
synthetic data. These synthetic experiments
support a specific hypothesis about how hi-
erarchical structures are discovered over the
course of training: that LSTM constituent rep-
resentations are learned bottom-up, relying on
effective representations of their shorter chil-
dren, rather than learning the longer-range re-
lations independently from children.

1 Introduction

For years the LSTM dominated language architec-
tures. It remains a popular architecture in NLP,
and unlike Transformer-based models, it can be
trained on small corpora (Tran et al., 2018)." Ab-
nar et al. (2020) even found that the recurrent in-
ductive biases behind the LSTM’s success are so
essential that distilling from them can improve the
performance of fully attentional models. However,
the reasons behind the LSTM’s effectiveness in
language domains remain poorly understood.

! As evidence of the ongoing popularity of LSTMs in NLP,
a Google Scholar search restricted to aclweb.org since
2019 finds 191 citations to the original LSTM paper (Hochre-
iter and Schmidhuber, 1997) and 242 citations to the original
Transformer paper (Vaswani et al., 2017).
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A Transformer can encode syntax using at-
tention (Hewitt and Manning, 2019), and some
LSTM variants explicitly encode syntax (Bowman
et al., 2016; Dyer et al., 2016). So, the success
of these models is partly explained by their abil-
ity to model syntactic relationships when predict-
ing a word. By contrast, an LSTM simply scans
a sentence from left to right, accumulating mean-
ing into a hidden representation one word at a
time, and using that representation to summarize
the entire preceding sequence when predicting the
next word. Yet we have extensive evidence that
trained LSTMs are also sensitive to syntax. For
example, they can recall more history in natural
language data than in similarly Zipfian-distributed
n-gram data, implying that they exploit linguis-
tic structure in long-distance dependencies (Liu
et al., 2018). Their internal representations appear
to encode constituency (Blevins et al., 2018; Hup-
kes and Zuidema, 2018) and syntactic agreement
(Lakretz et al., 2019; Gulordava et al., 2018). In
this paper, we consider how such representations
are learned, and what kind of inductive bias sup-
ports them.

To understand how LSTMs exploit syntax, we
use contextual decomposition (CD; Section 2.1),
a method that computes how much the hidden rep-
resentation of an LSTM depends on particular past
span of words. We then extend CD to Decom-
positional Interdependence (DI; Section 2.2), a
measure of interaction between spans of words to
produce the representation at a particular timestep.
For example, in the sentence “Socrates asked
the student trick questions”, we might expect the
hidden representation of the LSTM at the word
“questions” to interact primarily with its syntac-
tic head “asked”, and less with the direct object
“the student”. If so, then an LSTM could be seen
as implementing compositional localism (Hupkes
et al., 2020): if a hidden representation encodes
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meaning, then this meaning is composed from lo-
cal syntactic relationships. Our experiments on
syntactically-parsed corpora (Section 3) illustrate
this property — interdependence decreases with
syntactic distance, stratified by surface distance.
We then turn to a hypothesis about how such
representations are learned. Using a simple syn-
thetic corpus (Section 4.2), we allow LSTMs to
learn to represent short sequences before they
learn longer sequences that are dependent on
them. Our goal is to then illustrate how they
use representations of short sequences in order
to learn longer dependencies—if these smaller
constituents are unfamiliar, LSTMs learn more
slowly. Further experiments (Section 4.3.1) isolate
hierarchical behavior from other factors causing
local relations to be learned first, indicating that
the model tends to build a subtree from its smaller
constituents. We conclude that LSTMs compose
hierachically because they learn bottom-up.

2 Methods

Our DI measure is a natural extension of Contex-
tual Decomposition (CD; Murdoch et al., 2018), a
tool for analyzing the representations produced by
LSTMs. To conform with Murdoch et al. (2018),
our English language experiments use a one layer
(400-dim) LSTM, with inputs taken from an em-
bedding layer and outputs processed by a softmax
layer.

2.1 Contextual Decomposition

We now will provide a blackbox explanation of
CD, the groundwork for our DI. Let us say that we
need to determine when our language model has
learned that “either” implies an appearance of “or”
later in the sequence—a convenient test used since
at least Chomsky (1956). We consider an example
sentence, “Either Socrates is mortal or not”. Be-
cause many nonlinear functions are applied in the
intervening span “Socrates is mortal”, it is difficult
to directly measure the influence of “either” on the
later occurrence of “or”. To dissect the sequence
and understand the impact of individual elements
in the sequence, we could employ CD.

CD is a method of looking at the individual in-
fluences that words and phrases in a sequence have
on the output of a recurrent model. Illustrated
in Figure 1, CD decomposes the activation vector
produced by an LSTM layer into a sum of relevant
and irrelevant parts. The relevant part is the ex-

Socrates is mortal or
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Figure 1: CD uses linear approximations of gate op-
erations to linearize the sequential application of the
LSTM module. CD produces the vector htﬁ isolating
the contribution of “Either” to the vector h! predicting
“or”, as well as producing the irrelevant contribution

h%; sef The irrelevant contribution considers both 3
and its interactions with /3. In our figures, red will rep-
resent matched tokens and green the intervening span
of tokens through which information must pass to pre-

dict the match.

clusive contribution of the set of words in focus,
i.e., a set of words whose impact we want to mea-
sure. We denote this set of words as 3. The irrele-
vant part includes the contribution of all words not
in that set (denoted 3) as well as interactions be-
tween the relevant and irrelevant words (denoted
B=p). For an output hidden state vector h!, CD
will decompose it into two vectors: the relevant
h%, and irrelevant htﬁ—; sop? such that:

o b o g
This decomposition of the hidden state is based
on individual Shapley decompositions of the gat-
ing mechanisms themselves, as detailed in Ap-
pendix A.

Because the individual contributions of the
items in a sequence interact in nonlinear ways, this
decomposition is only an approximation and can-
not exactly compute the impact of a specific word
or words on the label predicted. CD linearizes
hidden states with low approximation error, but
the presence of slight nonlinearities in the inter-
actions between components forms the basis for
our measure of Decompositional Interdependence
later on.?

*In our analyses, CD yielded mean approximation error

(4ot ooz —vll _5 . .
% < 107° at the logits. However, this mea-

surement misses another source of approximation error: the
allocation of credit between S and the interactions 8=p.
Changing the sequence out of focus [ might influence vg, for
example, even though the contribution of the words in focus
should be mostly confined to the irrelevant vector component.
This approximation error is crucial because the component
attributed to = is central to our measure of DI.
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We can use softmax to convert the relevant log-
its (the hidden units after a linear transformation)
vj; into a probability distribution as P(Y | z5) =
softmax(vj). This allows us to analyze the effect
of input x5 on the probability of a later element
while controlling for the influence of the rest of
the sequence.

2.2 Decompositional Interdependence

Next, we extend CD to focus on nonlinear inter-
actions. We frame compositionality in terms of
whether the meanings of a pair of words or word
subsets can be treated independently. For exam-
ple, a “slice of cake” can be broken into the indi-
vidual meanings of “slice”, “of”, and “cake”, but
an idiomatic expression such as “piece of cake”,
meaning a simple task, cannot be broken into the
individual meanings of “piece”, “of”’, and “cake”.
The words in the idiom likely have higher Decom-
positional Interdependence, or reliance on their
interactions to build meaning. Another influence
on DI should be syntactic relation; if you “happily
eat a slice of cake”, the meaning of “cake” does
not depend on ‘“happily”, which modifies “eat”
and is far on the syntactic tree from “cake”, but the
meaning of “cake” should be more dependent on
“slice”, which gives context for its part of speech
and suggests that it is concrete.> We will use
the nonlinear interactions in contextual decompo-
sition to analyze the DI between words alternately
considered in focus.

Generally, CD considers all nonlinear interac-
tions between the relevant and irrelevant sets of
words to fall under S=3, the irrelevant contri-
bution, although other allocations of interactions
have been proposed (Jumelet et al., 2019). DI uses
these nonlinearities to discover how strongly a pair
of spans are associated. A fully flat structure for
building meaning could lead to a contextual repre-
sentation that requires memorization of each word,
breaking the simplifying assumption at the heart of
CD that each word has an independent meaning to
be incorporated into the sentence.

Given two interacting sets of words to poten-
tially designate as the 3 in focus, A, B such that
AN B = (), we use a measure of DI to quantify

3In our natural language experiments, we focus on de-
pendency relations, but the inductive bias we observe is to-
wards broadly hierarchical patterns in which longer relations
depend on local constituents. DI analysis of other sources
of this latent hierarchical structure, such as idiom, are left to
future work.

ROOT
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R

Socrates asked the student trick questions

Figure 2: A dependency parsed sentence.

interdependence
2 & 8§ 2

sequential distance

Figure 3: Average DI between word pairs z;, z, at dif-
ferent sequential distances r — .

the degree to which A U B be broken into their
individual meanings. With h!y and h'; denoting
the relevant contributions at the hidden layers of
A and B according to CD, and hY; 5 as the rele-
vant contribution of AU B, we compute the magni-
tude of nonlinear interactions, rescaled to control
for the magnitude of the representation:

t ot t
1hausll2

This quantity is related to probabilistic indepen-
dence. We would say that random variables X
and Y are independent if their joint probability
P(X,Y) = P(X)P(Y). Likewise, the meanings
of A and B can be called independent if by 5 =
hYy + hly. A parallel can also be drawn to Infor-
mation Quality Ratio (Jetka et al., 2019), a nor-
malized form of mutual information which quanti-
fies information exchanged between two variables
against total uncertainty, if we view a decomposed
output vector htﬁ as information transmitted from

B:
H(A,B)— H(A|B) — H(B|A)
H(A, B)

IQR'(A, B) =

3)

Note that CD is applied to the representation at

a particular timestep, and therefore DI is implic-
itly an operation that takes three parameters (ex-
cluding the sentence): A, B and the timestamp
at which to access their representations. How-
ever, in order to minimize information degra-
dation over time, we access h' at the lowest

timestep accommodating all spans in focus, ¢ =
max(idx(A),idx(B)).
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Figure 4: Mean DI (y-axis) between word pairs at varying syntactic distances (x-axis), stratified by whether the
POS tags are closed or open class (line color) and by sequential distance (plot title). The y-axis ranges differ, but
the scale is the same for all plots. Each mean is plotted only if there are at least 100 cases to average.

Concurrently with this work, Chen et al. (2020)
also developed a method of studying the inter-
action between words using Shapley-based tech-
niques like CD. However, their method was based
on an assumption of underlying hierarchical struc-
ture and therefore unsuitable for the experiments
we are about to conduct. Their results nonetheless
validate the relationship between feature interac-
tion and syntactic structure.

3 English Language Experiments

We now apply our measure of DI to a natu-
ral language setting to see how LSTMs employ
bottom-up construction. In natural language, dis-
entangling the meaning of individual words re-
quires contextual information which is hierarchi-
cally composed. For example, in the sentence,
“Socrates asked the student trick questions”, “trick
questions” has a clear definition and strong con-
notations that are less evident in each word indi-
vidually. However, knowing that “trick” and “‘stu-
dent” co-occur is not sufficient to clarify the mean-
ing and connotations of either word or compose a
shared meaning.

Here, we consider whether the LSTM ob-
serves headedness, by composing meaning be-
tween a headword and its immediate modifiers—
behavior which a Recurrent Neural Network
Grammar (RNNG; Dyer et al., 2016) also
learns (Kuncoro et al., 2017). If a standard LSTM
learns similar behavior in line with syntax, it is im-
plicitly a syntactic language model.

These experiments use language models trained
on wikitext-2 (Merity et al., 2016), run on the Uni-
versal Dependencies corpus English-EWT (Sil-
veira et al., 2014).

3.1 DI and Syntax

To assess the connection between DI and syntax,
we consider the DI of word pairs with different
syntactic distances. For example, in Figure 2,
“trick” is one edge away from “questions”, two
from “asked”, and four from “the”. In Figure 3,
we see that in general, the closer two words occur
in sequence, the more they influence each other,
leading to correspondingly high DI. Therefore we
stratify by the sequential distance of words when
we investigate syntactic distance.

As synthetic data experiments will show (Sec-
tion 4), phrase frequency and predictability play a
critical role in determining DI (although we found
raw word frequency shows no clear correlation
with DI in English). In Figure 4, we control for
these properties through stratifying by open and
closed POS tag class. Open class POS tags fre-
quently accept new words (e.g., nouns and adjec-
tives), whereas closed class tags are mostly con-
sistent historically (e.g., determiners and preposi-
tions). These classes vary in their predictability in
context; for example, determiners are almost al-
ways soon followed by a noun, but adjectives ap-
pear in many constructions like “Socrates is mor-
tal” where they are not. Irrespective of both se-
quential distance and POS class, we see broadly
decreasing trends in DI as the syntactic distance
between words increases, consistent with the pre-
diction that syntactic proximity drives DI. This
pattern is clearer as words become further apart in
the sequence, likely due to the absence of localized
non-syntactic influences such as priming effects.

This behavior shows a tendency towards hierar-
chical construction aligned with syntax, wherein
the LSTM ties a head’s representation together
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Figure 5: Top: A familiar span (indicated by a triangle
illustrating it as a recognizable constituent) is used as a
scaffold in its new context, allowing the model to con-
struct a closely interdependent representation for pre-
dicting the next word. Bottom: An unfamiliar span
cannot be used as a scaffold, so the model is forced
to learn the either/or relation independently.

with its child constituents and further associations
are less dependent on each other. Similar behav-
ior is the goal of RNNGs and other models which
use stack LSTMs (Dyer et al., 2015), which ensure
the words in a constituent will be highly interde-
pendent in their shared representation because the
constituent will be based on a dictionary lookup
for its subtree structure. In an RNNG, this behav-
ior is a result of bottom-up learning during train-
ing, when the composition operation combines ex-
isting tag subtrees into a new lookup key. Our
next experiments will illustrate how LSTMs al-
ready learn bottom-up implicitly, because they are
biased towards the top behavior in Figure 5 when
a scaffolding environment is available.

4 Synthetic Experiments

Our next experiments use synthetic data to show
how training is bottom-up. LSTM training sees
long-range connections discovered after short-
range connections; in particular, document-level
content topic information is encoded much later
in training than local information like part of
speech (Saphra and Lopez, 2019).

These experiments explain such learning phases
by showing that the training process is inherently
compositional due to bottom-up learning.* That
is, not only are the shorter sequences learned first,
but they form the basis for longer relations learned
over them. For example, the model might learn to

*Other phenomena contribute but are outside our current
focus. First, long-range connections are less consistent (par-
ticularly in a right-branching language like English), and will
thus take longer to learn (Appendix B. For example, the pat-
tern of a determiner followed by a noun will appear very fre-
quently, as in “the man”, while long-range connections like
“either/or” are rarer. Second, rarer patterns are learned slowly
due to vanishing gradients (Appendix C).

represent sequences like “Socrates is mortal” be-
fore it can learn to represent the either/or relation
around it, building from short constituents to long.
This behavior is seen in shift-reduce parsers and
their neural derivatives like RNNGs.

Bottom-up training is not a given and must be
verified.” However, if the hypothesis holds and
training builds syntactic patterns hierarchically, it
can lead to representations that are built hierarchi-
cally at inference time, reflecting linguistic struc-
ture, as we have seen. To test the idea of a com-
positional training process, we use synthetic data
that controls for the consistency and frequency of
longer-range relations. We find:

1. LSTMs trained with familiar intervening
spans have poor performance predicting long
distance dependents like “or” without famil-
iar intervening spans (Figure 7). This could
be explained by the idea that they never ac-
quire the either/or rule (instead memorizing
the entire sequence).

2. But in fact, the either/or rule is acquired
faster with familiar constituents, as is clear
even if the role of “either” is isolated (Fig-
ure 8).

3. The poor performance is instead connected
to high interdependence between “either”” and
the intervening span (Figures 9 and 10).

4. Observations (2) and (3) support the idea
that acquisition is biased towards bottom-up
learning, using the constituent as a scaffold to
support the long-distance rule.

4.1 Training Procedure

We train our one-layer 200-dim LSTM with a
learning rate set at 1 throughout and gradients
clipped at 0.25. We found momentum and weight
decay to slow rule learning in this setting, so they
are not used.

4.2 Long Range Dependencies

First, we describe long-range rules whose acqui-
sition will illuminate compositional learning dy-

5In fact, learning simple rules early on might inhibit the
learning of more complex rules through gradient starvation
(Combes et al., 2018), in which more frequent features dom-
inate the gradient directed at rarer features. Shorter famil-
iar patterns could slow down the process for learning longer
range patterns by trapping the model in a local minimum
which makes the long-distance rule harder to reach.
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47 306 71 287 87 660 892 645 768 472 332 482 171 786
833 271 595 421 527 392 328 648 581 709 549 107 279 115
324 595 467 352 23 484 388 543 996 176 8 748 677 833
137 467 852 4 450 830 178 535 743 339 903 48 170 891
657 379 704 791 516 255 782 173 384 88 723 975 498 698
181 562 14 35 139 881 ((( 424 363 677 173 404 381 443
145))) 685 700 995 391 791 153 710 615 590 996 168 897
943 981 156 438 726 146 754 671 92 657 521 467 822 100

(a) unfamiliar-scaffold training set

370 292 935 528 567 662 464 964 758 331 480 808 152 23
454 ((( 432 729 356 669 260 434 364 757 ))) 166 900 223
122 339 25 116 989 662 24 983 323 110 82 370 961 508

280 638 934 752 583 23 425 919 216 654 538 805 808 646
32 276 585 303 849 21 372 376 568 906 896 ((( 215 102
614 389 485 454 723 16 ))) 352 546 408 983 578 847 15
953 992 844 410 63 104 283 115 218 879 0 223 596 138
822 361 125 28 74 ((( 79 906 922 607 667 784 548 988 )))

(c) out-domain test set

47 306 71 424 363 677 173 404 381 443 145 482 171 786
833 271 595 421 527 392 328 648 581 709 549 107 279 115
324 595 467 352 23 484 388 543 424 363 677 173 404 381
443 145 852 4 450 830 178 535 743 339 903 48 170 891
657 379 704 791 516 255 782 173 384 88 723 975 498 698
181 562 14 35 139 881 ((( 424 363 677 173 404 381 443
145))) 685 700 995 391 791 153 710 615 590 996 168 897
943 981 156 438 726 146 754 671 92 657 521 467 822 100

(b) familiar-scaffold training set

370 292 935 528 567 662 464 964 758 331 480 808 152 23
454 ((( 424 363 677 173 404 381 443 145))) 166 900 223
122 339 25 116 989 662 24 983 323 110 82 370 961 508

280 638 934 752 583 23 425 919 216 654 538 805 808 646
32 276 585 303 849 21 372 376 568 906 896 ((( 424 363
677 173 404 381 443 145 ))) 352 546 408 983 578 847 15
953 992 844 410 63 104 283 115 218 879 0 223 596 138

822 361 125 28 74 ((( 424 363 677 173 404 381 443 145)))

(d) in-domain test set

Figure 6: Caricatured train and test datasets for exploring the effect of scaffold familiarity on learning longer
distance relations. We have highlighted rule boundaries « and w in red, and scaffold ¢ € Qy in green.

namics. Consider how “either” predicts “or”, of-
ten interceded by a closed constituent. To learn
this rule, a language model must backpropagate
information from the occurrence of “or” through
the intervening span of words, which we will call a
scaffold. Perhaps the scaffold is recognizable as a
particular type of constituent: in “Either Socrates
is mortal or not”, “or” becomes predictable after a
constituent closes. But what if the scaffold is unfa-
miliar and its structure cannot be effectively repre-
sented by the model? For example, if the scaffold
includes unknown tokens: “Either slithy toves gyre
or not”. How will the gradient carried from “or” to
“either” be shaped according to the scaffold, and
how will the representation of that long-range con-
nection change accordingly?

A familiar scaffold like “Socrates is mortal”
could be used by a bottom-up training process as
a short constituent on which to build longer-range
representations, so the meaning of “Either” will
depend on a similar constituent. Conversely, if
training is not biased to be compositional, the con-
nection will be made regardless of the scaffold®,
so the rule will generalize to test data: “either”
will always predict “or”. This either/or association
might later develop a dependency on the interven-
ing span due to the nature of the data, but it will
initially learn to predict without such scaffolding.
We use a synthetic corpus to test these predictions.

In our synthetic corpus, we generate data uni-

%Such behavior does reflect another aspect of composi-
tionality, that of systematicity (Hupkes et al., 2020).

formly at random from a vocabulary >.. We insert
n instances of the long-distance rule aX*w, with
scaffold ¥ of length &, open symbol o, and close
symbol w, with o, w ¢ 3 (with « as “either” and
w as “or”). Relating to our running example, a
stands for “either” and w stands for “or”. We use
a corpus of 1m tokens with |X| = 1k types, which
leaves a low probability that any scaffold sequence
longer than 1 token appears elsewhere by chance.

4.3 The Effect of Scaffold Familiarity

To create a dataset of long-range connections with
predictable scaffolds, we modify the original syn-
thetic data (Figure 6a) so each scaffold appears
frequently outside of the «/w rule (Figure 6b).
The scaffolds are sampled from a randomly gen-
erated vocabulary of 100 phrases of length &, so
each unique scaffold ¢ appears in the training set
10 times in the context aqw. This repetition is nec-
essary in order to fit 1000 occurrences of the rule
in all settings.

In the familiar-scaffold setting, we randomly
distribute 1000 occurrences of each scaffold
throughout the corpus outside of the rule patterns.
Therefore each scaffold is seen often enough to
be memorized (see Appendix B). In the original
unfamiliar-scaffold setting, ¢ appears only as a
scaffold, so it is not memorized independently.

We also use two distinct test sets. Our in-
domain test set (Figure 6d) uses the same set of
scaffolds as the train set. In Figure 7a, the model
learns to predict the close symbol faster if the scaf-
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Figure 7: Mean marginal target probability of the close symbol in a rule. Solid lines are trained in the unfamiliar-
scaffold set, dashed lines on familiar-scaffold. Color is specified by scaffold length (k). Scale of y-axis is matched

among graphs.

folds are otherwise memorized. However, this ef-
fect may be due to vanishing gradients, discussed
below.

These familiar scaffolds do not teach the gen-
eral long distance dependency rule. If the test set
scaffolds are sampled uniformly at random (Fig-
ure 6¢), Figure 7b shows that the familiar-scaffold
training setting never teaches the model to gener-
alize the a/w rule. For a model trained on the fa-
miliar domain, a familiar scaffold is required to
predict the close symbol.

Vanishing Gradients: A familiar intervening
span is predictably a less effective scaffold, be-
cause the familiarity will limit longer distance in-
formation due to vanishing gradients. Consider in
a simple RNN, as the gradient of the error e’ at
timestep ¢ backpropagates k timesteps through the
hidden state h:

8t
Ohy—p,

Oht—i+1
8ht—z

3 H

The backpropagated message is multiplied repeat-
edly by the gradient at each timestep in the scaf-
fold. If the recurrence derivatives 8g,+1 are large
at some weight, the correspondingly larger back-
propagated gradient 8,?5; will accelerate descent
at that parameter. In other words, an unpredictable
scaffold associated with a high error will domi-
nate the gradient’s sum over recurrences, delaying
the acquisition of the symbol-matching rule. In
the case of an LSTM, Kanuparthi et al. (2018) ex-
pressed the backpropagated gradient as an iterated
addition of the error from each timestep, leading
to a similar effect.
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Figure 8: Mean target probability of w at its correct
timestep based on CD with « in focus, on out-domain
test set. Solid lines are trained in the unfamiliar-
scaffold set, dashed lines on familiar-scaffold.

See Appendix C for confirmation of the differ-
ence in gradients between familiar and unfamiliar
scaffolds. The speed of acquisition of the depen-
dency rule in a familiar-scaffold training environ-
ment therefore has an explanation other than hier-
archical composition. Therefore, in order to con-
firm our proposed compositional bias, we observe
the interactions between scaffold and superstruc-
ture (long distance dependency) using DI.

4.3.1 Isolating the Effect of the Open-Symbol

Raw predictions in the out-domain test setting ap-
pear to suggest that the familiar-scaffold training
setting fails to teach the model to associate o and
w. However, the changing domain makes this an
unfair assertion: the poor performance may be at-
tributed to wholesale memorization of ag. To il-
lustrate that the rule is learned regardless of train-
ing scaffolds, we use CD to isolate the contribu-
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CD on rules with original conduits

conduit length considered

Figure 9: The predicted P(x; = w|xi—k ... Tr—g+i)
according to CD, varying ¢ as the x-axis and with
Ti(—r, = o and k = 8. Solid lines are trained in
the unfamiliar-scaffold set, dashed lines on familiar-
scaffold.

tions of the open symbol in the out-domain test
setting (Figure 8). Furthermore, we confirm that
the familiar-scaffold training setting enables ear-
lier acquisition of this rule.

To what, then, can we attribute the failure to
generalize out-domain? Figure 9 illustrates how
the unfamiliar-scaffold model predicts the close
symbol w with high probability based only on the
contributions of the open symbol . Meanwhile,
the familiar-scaffold model probability increases
substantially with each symbol consumed until the
end of the scaffold, indicating that the model is re-
lying on interactions between the open symbol and
the scaffold rather than registering only the effect
of the open symbol. Note that this effect cannot
be because the scaffold is more predictive of w.
Because each scaffold appears frequently outside
of the specific context of the rule in the familiar-
scaffold setting, the scaffold is less predictive of w
based on distribution alone.

These results indicate that predictable patterns
play a vital role in shaping the representations of
symbols around them by composing in a way that
cannot be easily linearized as a sum of the compo-
nent parts. In particular, as seen in Figure 10, the
DI between open symbol and scaffold is substan-
tially higher for the familiar-setting model and in-
creases throughout training. Long-range connec-
tions are not learned independently from scaffold
representations, but are built compositionally us-
ing already-familiar shorter subsequences as scaf-
folding.
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Figure 10: Mean DI(q, scaffold) on the in-domain test
set. Solid lines are trained in the unfamiliar-scaffold
set, dashed lines on familiar-scaffold.

5 Discussion & Related Work

Humans learn by memorizing short rote phrases
and later mastering the ability to construct deep
syntactic trees from them (Lieven and Tomasello,
2008). LSTM models learn by backpropagation
through time, which is unlikely to lead to the same
inductive biases, the assumptions that define how
the model generalizes from its training data. It
may not be expected for an LSTM to exhibit sim-
ilarly compositional learning behavior by build-
ing longer constituents out of shorter ones during
training, but we present evidence in favor of such
learning dynamics.

LSTMs have the theoretical capacity to encode
a wide range of context-sensitive languages, but
in practice their ability to learn such rules from
data is limited (Weiss et al., 2018). Empirically,
LSTMs encode the most recent noun as the subject
of a verb by default, but they are still capable of
learning to encode grammatical inflection from the
first word in a sequence rather than the most recent
(Ravfogel et al., 2019). Therefore, while inductive
biases inherent to the model play a critical role in
the ability of an LSTM to learn effectively, they
are neither necessary nor sufficient in determining
what the model can learn. Hierarchical linguistic
structure may be learned from data alone, or be
a natural product of the training process, with nei-
ther hypothesis a foregone conclusion. We provide
a more precise lens on how LSTM training is itself
compositional, beyond the properties of data.

There is a limited literature on compositionality
as an inductive bias of neural networks. Saxe et al.
(2019) explored how hierarchical ontologies are
learned by following their tree structure in 2-layer
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feedforward networks. LSTMs also take advan-
tage of some inherent trait of language (Liu et al.,
2018) . The compositional training we have ex-
plored may be the mechanism behind this biased
representational power.

Synthetic data, meanwhile, has formed the ba-
sis for analyzing the inductive biases of neu-
ral networks and their capacity to learn compo-
sitional rules. Common synthetic datasets in-
clude the Dyck languages (Suzgun et al., 2019;
Skachkova et al., 2018), SPk (Mahalunkar and
Kelleher, 2019), synthetic variants of natural lan-
guage (Ravfogel et al., 2019; Liu et al., 2018), and
others (Mul and Zuidema, 2019; Liska et al., 2018;
Korrel et al., 2019). Unlike these works, our syn-
thetic task is not designed primarily to test the bi-
ases of the neural network or to improve its per-
formance in a restricted setting, but to investigate
the internal behavior of an LSTM in response to
memorization.

Investigations into learning dynamics like ours
may offer insight into selecting training curricula.
The application of a curriculum is based on the
often unspoken assumption that the representation
of a complex pattern can be reached more easily
from a simpler pattern. However, we find that
effectively representing shorter scaffolds actually
makes a language model /ess effective at general-
izing a long-range rule, as found by Zhang et al.
(2018). This less generalizable representation is
still learned faster, which may be why Zhang et al.
(2017) found higher performance after one epoch.
Our work suggests that measures of length, includ-
ing syntactic depth, may be inappropriate bases for
curriculum learning.

6 Future Work

While we hope to isolate the role of long range de-
pendencies through synthetic data, we must con-
sider the possibility that the natural predictabil-
ity of language data differs in relevant ways from
the synthetic data, in which the scaffolds are pre-
dictable only through pure memorization. Be-
cause LSTM models take advantage of linguistic
structure, we cannot be confident that predictable
natural language exhibits the same cell state dy-
namics that make a memorized scaffold promote
or inhibit long-range rule learning. Future work
could test our findings on the learning process
through carefully selected natural language, rather
than synthetic, data.

Our natural language results could lead to DI as
a structural probe for testing syntax. Such a probe
can be computed directly from an LSTM without
learning additional parameters as required in other
methods (Hewitt and Manning, 2019). In this way,
it is similar to the probes that have been developed
using attention distributions (Clark et al., 2019).
By computing associations naturally through DI,
we can even escape the need to augment models
with attention just to permit analysis, as Kuncoro
et al. (2017).

Some effects on our natural language experi-
ments may be due to the predictable nature of En-
glish syntax, which favors right-branching behav-
ior. Future work could apply similar analysis to
other languages with different grammatical word
orders.

7 Conclusions

Using our proposed tool of Decompositional In-
terdependence, we illustrate how information ex-
changed between words aligns roughly with syn-
tactic structure, indicating LSTMs compose mean-
ing bottom-up. Synthetic experiments then illus-
trate that a memorized span intervening between
a long distance dependency promotes early learn-
ing of the dependency rule, but fails to generalize
to new domains, implying that these memorized
spans are used as scaffolding in a bottom-up learn-
ing process.

This combination of behaviors is similar to
a syntactic language model, suggesting that the
LSTM’s demonstrated inductive bias towards hi-
erarchical structures is implicitly aligned with our
understanding of language and emerges from its
natural learning process.

Acknowledgements

We thank Ida Szubert, Annabelle Michael Carrell,
Seraphina Goldfarb-Terrant, Craig Innes, Kate
McCurdy, Yevgen Matusevych, Andreas Grivas,
Nikolay Bogoychev, Sameer Bansal, Matthew
Summers, and Denis Emelin for comments on
early drafts of this paper.

References

Samira Abnar, Mostafa Dehghani, and Willem
Zuidema. 2020. Transferring Inductive Biases
through Knowledge Distillation. arXiv:2006.00555
[cs, stat]. ArXiv: 2006.00555.

2805


http://arxiv.org/abs/2006.00555
http://arxiv.org/abs/2006.00555

Terra Blevins, Omer Levy, and Luke Zettlemoyer.
2018. Deep RNNs Encode Soft Hierarchical Syn-
tax. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 14-19, Melbourne,
Australia. Association for Computational Linguis-
tics.

Samuel R. Bowman, Jon Gauthier, Abhinav Ras-
togi, Raghav Gupta, Christopher D. Manning, and
Christopher Potts. 2016. A fast unified model for
parsing and sentence understanding. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 14661477, Berlin, Germany. Associa-
tion for Computational Linguistics.

Hanjie Chen, Guangtao Zheng, and Yangfeng Ji. 2020.
Generating Hierarchical Explanations on Text Clas-
sification via Feature Interaction Detection. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5578—
5593, Online. Association for Computational Lin-
guistics.

N. Chomsky. 1956. Three models for the description of
language. IRE Transactions on Information Theory,
2(3):113-124.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 276-286, Florence, Italy. Association
for Computational Linguistics.

Remi Tachet des Combes, Mohammad Pezeshki,
Samira Shabanian, Aaron Courville, and Yoshua
Bengio. 2018. On the Learning Dynamics of Deep
Neural Networks. arXiv:1809.06848 [cs, stat].
ArXiv: 1809.06848.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 334-343, Beijing, China. Associa-
tion for Computational Linguistics.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. CoRR, abs/1602.07776.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless
green recurrent networks dream hierarchically. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1195-1205, New
Orleans, Louisiana. Association for Computational
Linguistics.

John Hewitt and Christopher D Manning. 2019. A
Structural Probe for Finding Syntax in Word Rep-
resentations. In NAACL.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Dieuwke Hupkes, Verna Dankers, Elia Bruni, and
Mathijs Mul. 2020. Compositionality Decomposed:
How do Neural Networks Generalise? (Extended
Abstract). In Proceedings of the Twenty-Ninth Inter-
national Joint Conference on Artificial Intelligence,
IJCAI-20, volume 5, pages 5065-5069. ISSN:
1045-0823.

Dieuwke Hupkes and Willem Zuidema. 2018. Visual-
isation and ’Diagnostic Classifiers’ Reveal how Re-
current and Recursive Neural Networks Process Hi-
erarchical Structure (Extended Abstract). Proceed-
ings of the Twenty-Seventh International Joint Con-
ference on Artificial Intelligence, IJCAI-18, pages
5617-5621.

Tomasz Jetka, Karol Nienaltowski, Tomasz Winarski,
Stawomir Blonski, and Michal Komorowski. 2019.
Information-theoretic analysis of multivariate
single-cell signaling responses. PLOS Computa-
tional Biology, 15(7):e1007132. Publisher: Public
Library of Science.

Jaap Jumelet, Willem Zuidema, and Dieuwke Hupkes.
2019. Analysing Neural Language Models: Con-
textual Decomposition Reveals Default Reasoning
in Number and Gender Assignment. arXiv preprint
arXiv:1909.08975.

Bhargav Kanuparthi, Devansh Arpit, Giancarlo Kerg,
Nan Rosemary Ke, loannis Mitliagkas, and Yoshua
Bengio. 2018. h-detach: Modifying the LSTM Gra-
dient Towards Better Optimization. In ICLR.

Kris Korrel, Dieuwke Hupkes, Verna Dankers, and Elia
Bruni. 2019. Transcoding compositionally: Us-
ing attention to find more generalizable solutions.
In Proceedings of the 2019 ACL Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 1-11, Florence, Italy. Asso-
ciation for Computational Linguistics.

Adhiguna Kuncoro, Chris Dyer, Miguel Ballesteros,
Graham Neubig, Lingpeng Kong, and Noah A.
Smith. 2017. What Do Recurrent Neural Network
Grammars Learn About Syntax? In EACL.

Yair Lakretz, German Kruszewski, Theo Desbordes,
Dieuwke Hupkes, Stanislas Dehaene, and Marco
Baroni. 2019. The emergence of number and syn-
tax units in LSTM language models. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 11-20, Minneapo-
lis, Minnesota. Association for Computational Lin-
guistics.

2806


https://doi.org/10.18653/v1/P18-2003
https://doi.org/10.18653/v1/P18-2003
https://doi.org/10.18653/v1/P16-1139
https://doi.org/10.18653/v1/P16-1139
https://doi.org/10.18653/v1/2020.acl-main.494
https://doi.org/10.18653/v1/2020.acl-main.494
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
http://arxiv.org/abs/1809.06848
http://arxiv.org/abs/1809.06848
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.3115/v1/P15-1033
http://arxiv.org/abs/1602.07776
http://arxiv.org/abs/1602.07776
https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.24963/ijcai.2020/708
https://doi.org/10.24963/ijcai.2020/708
https://doi.org/10.24963/ijcai.2020/708
https://www.ijcai.org/Proceedings/2018/796
https://www.ijcai.org/Proceedings/2018/796
https://www.ijcai.org/Proceedings/2018/796
https://www.ijcai.org/Proceedings/2018/796
https://doi.org/10.1371/journal.pcbi.1007132
https://doi.org/10.1371/journal.pcbi.1007132
https://openreview.net/forum?id=ryf7ioRqFX
https://openreview.net/forum?id=ryf7ioRqFX
https://doi.org/10.18653/v1/W19-4801
https://doi.org/10.18653/v1/W19-4801
https://doi.org/10.18653/v1/N19-1002
https://doi.org/10.18653/v1/N19-1002

Elena Lieven and Michael Tomasello. 2008. Children’s
first language acquisition from a usage-based per-
spective. Routledge.

Adam Liska, German Kruszewski, and Marco Baroni.
2018. Memorize or generalize? searching for a
compositional rnn in a haystack. arXiv preprint
arXiv:1802.06467.

Nelson F. Liu, Omer Levy, Roy Schwartz, Chenhao
Tan, and Noah A. Smith. 2018. LSTMs Exploit Lin-
guistic Attributes of Data. arXiv:1805.11653 [cs].
ArXiv: 1805.11653.

Abhijit Mahalunkar and John Kelleher. 2019. Multi-
element long distance dependencies: Using SPk
languages to explore the characteristics of long-
distance dependencies. In Proceedings of the Work-
shop on Deep Learning and Formal Languages:
Building Bridges, pages 34-43, Florence. Associa-
tion for Computational Linguistics.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843.

Mathijs Mul and Willem H. Zuidema. 2019. Siamese
recurrent networks learn first-order logic reasoning
and exhibit zero-shot compositional generalization.
CoRR, abs/1906.00180.

W. James Murdoch, Peter J. Liu, and Bin Yu. 2018. Be-
yond Word Importance: Contextual Decomposition
to Extract Interactions from LSTMs. In ICLR.

Shauli Ravfogel, Yoav Goldberg, and Tal Linzen.
2019. Studying the inductive biases of rnns with
synthetic variations of natural languages. CoRR,
abs/1903.06400.

Naomi Saphra and Adam Lopez. 2019. Understand-
ing learning dynamics of language models with
SVCCA. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 3257-3267, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Andrew M. Saxe, James L. McClelland, and Surya
Ganguli. 2019. A mathematical theory of se-
mantic development in deep neural networks.
Proceedings of the National Academy of Sci-
ences, 116(23):11537-11546. Publisher: National
Academy of Sciences Section: PNAS Plus.

Lloyd S Shapley. 1953. A value for n-person games.
Contributions to the Theory of Games, 2(28):307—
317.

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel Bowman, Miriam Connor,
John Bauer, and Christopher D. Manning. 2014. A
gold standard dependency corpus for English. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC-
2014).

Natalia Skachkova, Thomas Trost, and Dietrich
Klakow. 2018. Closing brackets with recurrent neu-
ral networks. In Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpret-
ing Neural Networks for NLP, pages 232-239, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Mirac Suzgun, Yonatan Belinkov, Stuart Shieber, and
Sebastian Gehrmann. 2019. LSTM networks can
perform dynamic counting. In Proceedings of
the Workshop on Deep Learning and Formal Lan-
guages: Building Bridges, pages 44-54, Florence.
Association for Computational Linguistics.

Ke Tran, Arianna Bisazza, and Christof Monz. 2018.
The Importance of Being Recurrent for Modeling
Hierarchical Structure. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 4731-4736, Brussels, Bel-
gium. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—6008.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018. On
the practical computational power of finite preci-
sion RNNs for language recognition. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 740-745, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Dakun Zhang, Jungi Kim, Josep Crego, and Jean Senel-
lart. 2017. Boosting Neural Machine Translation. In
Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume
2: Short Papers), pages 271-276, Taipei, Taiwan.
Asian Federation of Natural Language Processing.

Xuan Zhang, Gaurav Kumar, Huda Khayrallah, Ken-
ton Murray, Jeremy Gwinnup, Marianna J. Mar-
tindale, Paul McNamee, Kevin Duh, and Marine
Carpuat. 2018. An Empirical Exploration of Cur-
riculum Learning for Neural Machine Translation.
arXiv:1811.00739 [cs]. ArXiv: 1811.00739.

2807


http://arxiv.org/abs/1805.11653
http://arxiv.org/abs/1805.11653
https://doi.org/10.18653/v1/W19-3904
https://doi.org/10.18653/v1/W19-3904
https://doi.org/10.18653/v1/W19-3904
https://doi.org/10.18653/v1/W19-3904
http://arxiv.org/abs/1906.00180
http://arxiv.org/abs/1906.00180
http://arxiv.org/abs/1906.00180
https://openreview.net/forum?id=rkRwGg-0Z
https://openreview.net/forum?id=rkRwGg-0Z
https://openreview.net/forum?id=rkRwGg-0Z
http://arxiv.org/abs/1903.06400
http://arxiv.org/abs/1903.06400
https://doi.org/10.18653/v1/N19-1329
https://doi.org/10.18653/v1/N19-1329
https://doi.org/10.18653/v1/N19-1329
https://doi.org/10.1073/pnas.1820226116
https://doi.org/10.1073/pnas.1820226116
https://doi.org/10.18653/v1/W18-5425
https://doi.org/10.18653/v1/W18-5425
https://doi.org/10.18653/v1/W19-3905
https://doi.org/10.18653/v1/W19-3905
https://doi.org/10.18653/v1/D18-1503
https://doi.org/10.18653/v1/D18-1503
https://doi.org/10.18653/v1/P18-2117
https://doi.org/10.18653/v1/P18-2117
https://doi.org/10.18653/v1/P18-2117
https://www.aclweb.org/anthology/I17-2046
http://arxiv.org/abs/1811.00739
http://arxiv.org/abs/1811.00739

A Details of Contextual Decomposition

For an output hidden state vector h, CD will de-
compose it into two vectors: the relevant htﬁ, and

: t .

irrelevant h 5.5=p such that:
~ ht to

h g + o

This decomposed form is achieved by lineariz-
ing the contribution of the words in focus at each
gate. This is necessarily approximate, because the
internal gating mechanisms in an LSTM each em-
ploy a nonlinear activation function, either o or
tanh. Murdoch et al. (2018) use a linearized ap-
proximation L, for ¢ and linearized approxima-
tion L,y for tanh such that for arbitrary input

N .
Zj:l Yj-

N N
a(Z yj) = Lo(y;) 4)
j=1 j=1

These approximations are then used to split
each gate into components contributed by the pre-
vious hidden state 2!~! and by the current input
at, for example the input gate 7’

it = U(Wia}t + Vthtil + b;)
Lo(Wizh) + L, (VihE 1) 4+ Lo (bs)

The linear form L, is achieved by computing
the Shapley value (Shapley, 1953) of its param-
eter, defined as the average difference resulting
from excluding the parameter, over all possible
permutations of the input summants. To apply
Formula 4 to o(y; + y2) for a linear approxima-
tion of the isolated effect of the summant y;:

1

Lo(y1) = 5l(o(y1)=0(0))+ (o (y2+y1)—o(y1))]

With this function, we can take a hidden
state from the previous timestep, decomposed as
h1 ~ htﬁ_l + h%fﬂl_,__ 5 and add 2! to the appro-
priate component. For example, if 2! is in focus,
we count it in the relevant function inputs when

computing the input gate:
it = o(Wia' + V'™ + 1)
~ it t—1 t—1 ‘
oc(Wiz" +Vi(hy ™ + hﬁ;ﬁeﬁ_) +b;)
[Lo(Wiz" + Vb ) + Lo (bi)]

t—1
Lo Vil 505)

-t -t
= 5t 15505

%

This provides an expression of the approximate
input gate as the sum of relevant and irrelevant
components. By ignoring the irrelevant compo-
nents while computing the module output hf, we
produce htﬁ. Thus we linearize and isolate the ef-
fect of 3.

B The Effect of Rule Frequency and
Length

Here, we investigate how the frequency of a rule
affects the ability of the model to learn the rule by
varying the number of rule occurrences n and the
rule length k.

The results in Figure 11 illustrate how a longer
scaffold length requires more examples before the
model can learn the corresponding rule. We con-
sider the probability assigned to the close symbol
according to the contributions of the open sym-
bol, excluding interaction from any other token in
the sequence. For contrast, we also show the ex-
tremely low probability assigned to the close sym-
bol according to the contributions of the scaffold
taken as an entire phrase. In particular, note the
pattern when the rule is extremely rare: The prob-
ability of the close symbol /3 as determined by the
open symbol « is low but steady, while the proba-
bility as determined by the scaffold declines with
scaffold length due to the accumulated low proba-
bilities from each element in the sequence.

C Smaller scaffold gradient, faster rule
learning

Figure 12 confirms that a predictable scaffold is
associated with a smaller error gradient. Because
of the mechanics of backpropagation through time
next described, this setting will teach the «/w rule
faster.
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