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Abstract

Conventional knowledge graph embedding
(KGE) often suffers from limited knowledge
representation, leading to performance degra-
dation especially on the low-resource problem.
To remedy this, we propose to enrich knowl-
edge representation via pretrained language
models by leveraging world knowledge from
pretrained models. Specifically, we present a
universal training framework named Pretrain-
KGE consisting of three phases: semantic-
based fine-tuning phase, knowledge extract-
ing phase and KGE training phase. Extensive
experiments show that our proposed Pretrain-
KGE can improve results over KGE models,
especially on solving the low-resource prob-
lem.

1 Introduction

Knowledge graphs (KGs) constitute an effective
access to world knowledge for a wide variety of
NLP tasks, such as entity linking (Luo et al., 2017),
information retrieval (Xiong et al., 2017), ques-
tion answering (Hao et al., 2017) and recommen-
dation system (Zhang et al., 2016). A typical KG
such as Freebase (Bollacker et al., 2008) and Word-
Net (Miller, 1995), consists of a set of triplets in
the form of (h, r, t) with the head entity h and
the tail entity t as nodes and relation r as edges
in the graph. A triplet represents the relation be-
tween two entities, e.g., (Steve Jobs, founded, Ap-
ple Inc.). To learn effective representation of en-
tities and relations in the graph, knowledge graph
embedding (KGE) models are one of prominent
approaches (Bordes et al., 2013; Ji et al., 2015; Lin
et al., 2015; Sun et al., 2019; Nickel et al., 2011;
Yang et al., 2015; Kazemi and Poole, 2018; Trouil-
lon et al., 2016; Zhang et al., 2019).

However, traditional KGE models often suffer
from limited knowledge representation due to the

sparse and noisy dataset annotations. It leads to
performance degradation, especially on the low-
resource problem. To address this issue, we pro-
pose to enrich knowledge representation via pre-
trained language models (i.e., BERT (Devlin et al.,
2019)) given a semantic description of entities and
relations. We propose to incorporate world knowl-
edge from BERT to the entity and the relation rep-
resentation. Although simply fine-tuning BERT
can enrich the knowledge representation, it suf-
fers from learning inadequate structure informa-
tion observed in training triplets, which we have
demonstrated when we analyze the rationality of
the KGE-training phase.

We propose a model-agnostic training frame-
work for learning knowledge graph embedding con-
sisting of three phases: semantic-based fine-tuning
phase, knowledge extracting phase and KGE train-
ing phase (see Fig. 1). During the semantic-based
fine-tuning phase, we learn knowledge representa-
tion via BERT given the semantic description of
entities and relations as the input sequence. In this
way, we incorporate world knowledge from BERT
into the knowledge representation. Then during the
knowledge extracting phase, we extract the entity
and the relation representations encoded by BERT
and inject them into embeddings of a KGE model.
Finally, during the KGE training phase, we train the
KGE model to learn adequate structure information
of dataset, while reserving partial knowledge from
BERT to learn better knowledge graph embedding.

Extensive experiments show that our proposed
Pretrain-KGE can improve performance over KGE
models on four benchmark KG datasets. Further
analysis and visualization of the knowledge learn-
ing process demonstrate that our method can enrich
knowledge representation via pretrained language
models through the training framework.
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Figure 1: An illustration of our proposed three-phase Pretrain-KGE. “KGE loss” is the score function of an arbi-
trary KGE model, thus our method can be applied to any variant of KGE models. “BERT Encoder” represents the
entity/relation encoder given semantic description of entities and relations.

2 Related Work

KGE models can be roughly divided into transla-
tional models and semantic matching models ac-
cording to the score function (Wang et al., 2017).
Translational models consider the relation between
the head and tail entity as a translation between
the two entity embeddings, such as TransE (Bor-
des et al., 2013), TransH (Wang et al., 2014),
TransR (Lin et al., 2015), TransD (Ji et al., 2015),
RotatE (Sun et al., 2019), and TorusE (Ebisu
and Ichise, 2018); while semantic matching mod-
els define a score function to match latent se-
mantics of the head, tail entity and the relation,
such as, RESCAL (Nickel et al., 2011), Dist-
Mult (Yang et al., 2015), SimplE (Kazemi and
Poole, 2018), ComplEx (Trouillon et al., 2016) and
QuatE (Zhang et al., 2019). QuatE (Zhang et al.,
2019) is the recent state-of-the-art KGE model,
which represents entities as hypercomplex-valued
embeddings and models relations as rotations in
the quaternion space.

In a knowledge graph dataset, the names of each
entity and relation are provided as the semantic
description of entities and relations. Recent works
also leverage semantic description to enrich knowl-
edge representation but ignore contextual infor-
mation of the semantic description (Socher et al.,
2013a; Li et al., 2016; Speer and Havasi, 2012; Xu
et al., 2017; Xiao et al., 2017; Xie et al., 2016; An
et al., 2018). Instead, our method exploits world
information via pretrained models.

Recent approaches to modeling language repre-
sentations offer significant improvements over em-
beddings, such as pretrained deep contextualized
language models (Peters et al., 2018; Devlin et al.,
2019; Radford et al., 2019; Raffel et al., 2019).
KG-Bert (Yao et al., 2019) first utilizes BERT (De-

vlin et al., 2019) for knowledge graph completion,
which treats triplets in knowledge graphs as tex-
tual sequences. However, KG-Bert does not extract
knowledge representations from Bert and thus can-
not provide entity or relation embeddings. In this
work, we leverage world knowledge from BERT
to learn better knowledge representation of entities
and relations given semantic description.

3 Method

3.1 Training Framework

An overview of Pretrain-KGE is shown in Fig. 1.
The framework consists of three phases: semantic-
based fine-tuning phase, knowledge extracting
phase, and KGE training phase.

Semantic-based fine-tuning phase We first en-
code the semantic description by BERT (Devlin
et al., 2019). Define S(e) and S(r) as the semantic
description of entity e and relation r respectively.
BERT(·) converts S(e) and S(r) into the repre-
sentation of entity and relation. We then project
the entity and the relation representations into two
separate vector spaces Fd through linear transfor-
mations, where Fd denotes a vector space on the
number set F. Formally, we get the entity encoder
Ence(·) for each entity e and the relation encoder
Encr(·) for each relation r, then output the entity
and the relation representations as:

Ence(e) = σ(WeBERT(S(e)) + be) (1)

Encr(r) = σ(WrBERT(S(r)) + br) (2)

vh, vr, vt = Ence(h),Encr(r),Ence(t) (3)

where vh, vr, and vt represents encoding vectors
of the head entity, the relation, and the tail en-
tity in a triplet (h, r, t), respectively. We,Wr ∈



261

Fd×n, be, br ∈ Fd, and σ denotes a nonlinear acti-
vation function.

The entity and the relation representations are
used to train the BERT encoder based on a KGE
loss. After fine-tuning, the entity encoder and the
relation encoder are used in the following knowl-
edge extracting phase.

Knowledge extracting phase In this phase, we
extract knowledge representation encoded by
BERT encoder and inject it into embedding of a
KGE model as initialization: the entity embedding
E = [E1;E2; · · · ;Ek] ∈ Fk×d; and the relation
embedding R = [R1;R2; · · · ;Rl] ∈ Fl×d, where
“;” means concatenating column vectors into a ma-
trix, k and l denote the total number of entities and
relations, respectively. Formally, we extract the
knowledge representation encoded by BERT and
inject it into a KGE model by settingEi to Ence(ei)
and Rj to Encr(rj).

KGE training phase After the knowledge ex-
tracting phase, we train a KGE model in the same
way as a traditional KGE model. For example, if
the max-margin loss function with negative sam-
pling are adopted, the loss is calculated as:

L =
[
γ + f(vh, vr, vt)− f(vh′ , vr′ , vt′)

]
+

(4)

where (h, r, t) and (h′, r′, t′) represent a candidate
and a corrupted false triplet respectively, γ denotes
the margin,

[
·
]
+

= max(·, 0), and f(·) denotes
the score function. The KGE training phase is indis-
pensable because simply fine-tuning a pretrained
language model cannot learn adequate structure in-
formation observed in training triplets. We demon-
strate the rationality of the three-phase training
framework in Section 5.2.

4 Experiments

4.1 Implementation of Baseline Models
To evaluate the universality of training framework
Pretrain-KGE, we select multiple public KGE mod-
els as baselines including translational models:

• TransE (Bordes et al., 2013), the translational-
based model which models the relation as
translations between entities;

• RotatE (Sun et al., 2019), the extension of
translational-based models which introduces
complex-valued embeddings to model the re-
lations as rotations in complex vector space;

and semantic matching models:

• DistMult (Yang et al., 2015), a semantic
matching model where each relation is rep-
resented with a diagonal matrix;

• ComplEx (Trouillon et al., 2016), the exten-
sion of semantic matching model which em-
beds entities and relations in complex space.

• QuatE (Zhang et al., 2019), the recent state-
of-the-art KGE model which learns entity and
relation embeddings in the quaternion space.

Our implementations of TransE, DistMult, Com-
plEx, RotatE are based on the framework pro-
vided by Sun et al. (2019)1. Our implementation
of QuatE is based on the framework provided by
Zhang et al. (2019)2. The score functions of base-
lines are listed in Table 1.

Method Score function F
TransE (Bordes et al., 2013) ‖vh + vr − vt‖ R
DistMult (Yang et al., 2015) 〈vh, vr, vt〉 R
ComplEx (Trouillon et al., 2016) Re(〈vh, vr, v̄t〉) C
RotatE (Sun et al., 2019) ‖vh � vr − vt‖ C
QuatE (Zhang et al., 2019) ‖vh ⊗ v̂r � vt‖ H

Table 1: Score functions and corresponding F.
vh, vr, vt denote head, tail and relation embeddings re-
spectively. R,C,H denote real number field, complex
number field and quaternion number division ring re-
spectively. ‖ · ‖ denotes L1 norm. 〈·〉 denotes general-
ized dot product. Re(·) and ·̄ denote the real part and
the conjugate for complex vectors respectively. ⊗ de-
notes circular correlation, � denotes Hadamard prod-
uct. ·̂ denotes the normalized operator.

4.2 Datasets and Evaluation Metrics
We evaluate our proposed training framework
on four benchmark KG datasets: WN18 (Bor-
des et al., 2013), WN18RR (Dettmers et al.,
2018), FB15K (Bordes et al., 2013) and FB15K-
237 (Toutanova and Chen, 2015). Detailed statis-
tics of datasets are in the appendix. WN18 and
WN18RR are two subsets of WordNet (Miller,
1995); FB15K and FB15K-237 are two subsets
of FreeBase (Bollacker et al., 2008). We use en-
tity names and relation names provided by the four
datasets as input semantic descriptions for BERT,
and we also utilize synsets definitions provided
by WordNet as additional semantic descriptions of
entities.

1https://github.com/DeepGraphLearning/
KnowledgeGraphEmbedding

2https://github.com/cheungdaven/QuatE

https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
https://github.com/cheungdaven/QuatE
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Model FB15K FB15K-237 WN18 WN18RR
H@10↑ MRR↑ MR↓ H@10↑ MRR↑ MR↓ H@10↑ MRR↑ MR↓ H@10↑ MRR↑ MR↓

TransE 0.866 0.731 40.3 0.528 0.330 171.6 0.920 0.773 265 0.528 0.223 3372
Pretrain-TransE 0.866 0.731 36.6 0.529 0.332 162.0 0.928 0.757 85 0.557 0.235 1747♠

DistMult 0.887 0.768 37.5 0.484 0.307 175.1 0.931 0.686 282 0.534 0.440 4886
Pretrain-DistMult 0.883 0.764 37.0 0.482 0.306 171.3 0.923 0.660 142 0.527 0.432 3550
ComplEx 0.887 0.771 47.1 0.511 0.322 166.1 0.925 0.893 323 0.555 0.469 5421
Pretrain-ComplEx 0.879 0.763 45.2 0.513 0.323 156.9 0.949 0.859 194 0.553 0.459 4468
RotatE 0.881 0.790♠ 41.7 0.531 0.336 177.0 0.960 0.949 269 0.574 0.474 3363
Pretrain-RotatE 0.881 0.784 38.4 0.534 0.337 168.3 0.962 0.927 125 0.580 0.447 2138
QuatE 0.898 0.778 17.4 0.550 0.349 86.2 0.960 0.951♠ 180 0.581 0.487 2290
Pretrain-QuatE 0.899♠ 0.764 17.2♠ 0.554♠ 0.350♠ 84.4♠ 0.964♠ 0.944 72♠ 0.586♠ 0.488♠ 2085

Table 2: Link prediction results on four KG datasets. The experiments here use entity names and relation names
as the semantic description. ↓ means that a lower metric is better. ↑ means that a higher metric is better. ♠ denotes
state-of-the-art performance.

Dataset Link prediction Class.
FB15K H@10 ↑ H@3 ↑ H@1 ↑ MRR ↑ MR ↓ Acc ↑
QuatE 0.898 0.832♠ 0.704♠ 0.778♠ 17.4 0.927
+Name 0.899♠ 0.832♠ 0.677 0.764 17.2♠ 0.928♠

FB15K-237 H@10 ↑ H@3 ↑ H@1 ↑ MRR ↑ MR ↓ Acc ↑
QuatE 0.550 0.383 0.249 0.349 86.2 0.816
+Name 0.554♠ 0.384♠ 0.250♠ 0.350♠ 84.8♠ 0.817♠

WN18 H@10↑ H@3↑ H@1↑ MRR↑ MR↓ Acc↑
QuatE 0.960 0.954 0.946♠ 0.951♠ 180 0.977
+Name 0.964♠ 0.954♠ 0.931 0.944 72 0.981♠

+Definition 0.963 0.954♠ 0.930 0.943 62♠ 0.980
WN18RR H@10↑ H@3↑ H@1↑ MRR↑ MR↓ Acc↑
QuatE 0.581 0.507 0.438♠ 0.487 2290 0.866
+Name 0.586♠ 0.509♠ 0.437 0.488♠ 2085♠ 0.874
+Definition 0.586♠ 0.509♠ 0.433 0.487 2106 0.876♠

Table 3: Link prediction and triplet classification
(“Class.”) results over QuatE. ↓ means a lower met-
ric is better. ↑ means a higher metric is better. ♠

denotes state-of-the-art performance of KGE models.
“+Name” means Pretrain-KGE uses entity and relation
names as semantic description. “+Definition” means
Pretrain-KGE also adopts definitions of word senses as
additional semantic description.

In our experiments, we perform the link predic-
tion task (filtered setting) mainly with the triplet
classification task. The link prediction task aims to
predict either the head entity given the relation and
the tail entity or the tail entity given the head entity
and the relation, while triplet classification aims to
judge whether a candidate triplet is correct or not.

For the link prediction task, we generate cor-
rupted false triplets (h′, r, t) and (h, r, t′) using
negative sampling. We get ranks of test triplets
and calculate standard evaluation metrics: Mean
Rank (MR), Mean Reciprocal Rank (MRR) and
Hits at N (H@N). For triplet classification, we fol-
low the evaluation protocol in Socher et al. (2013b)
and adopt the accuracy metric (Acc).

4.3 Main Results

We present the main results of our Pretrain-KGE
method in Table 2 and Table 3. As shown in Ta-
ble 2, our universal training framework can be ap-
plied to multiple variants of KGE models despite

different embedding spaces, and achieves improve-
ments over TransE, DistMult, ComplEx, RotatE
and QuatE on most evaluation metrics, especially
on MR but still being competitive on MRR. The
results in Table 3 demonstrate that our method can
facilitate the performance of QuatE on most eval-
uation metrics for link prediction and triplet clas-
sification. The results verify the effectiveness of
our proposed training framework and show that
our universal training framework can be applied
to multiple variants of KGE models and achieves
improvements on most evaluation metrics, which
shows the universality of our Pretrain-KGE.

5 Analysis

In this section, we evaluate our Pretrain-KGE on
the low-resource problem and further verify the
rationality of our training framework.

5.1 Performance on the Low-resource
Problem

We evaluate our training framework in the case of
fewer training triplets on WordNet, and test its per-
formance on OOKB entities as shown in Fig. 2. To
test the performance of our Pretrain-KGE given
fewer training triplets, we conduct experiments on
WN18 and WN18RR by feeding varying numbers
of training triplets as shown in Fig. 2a and 2b. We
also evaluate our Pretrain-KGE on WordNet for
the OOKB entity problem as shown in Fig. 2c and
2d. We use traditional TransE and the word averag-
ing model following Li et al. (2016) as baselines.
Experimental details are in the appendix.

Results show that our training framework
achieves the best performance in the case of fewer
training triplets and OOKB entities. Baseline-
TransE performs the worst when training triplets
are few and cannot address the OOKB entity prob-
lem because it does not utilize any semantic de-
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(a) MR results on WN18.
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(b) MR results on WN18RR.
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(d) OOKB MR on WN18RR.

Figure 2: Performance on the low-resource. “Random” and “Avg” denote a random and word averaging baseline.
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Figure 3: Visualization of knowledge learning process.
Different colors mark different supersenses in Word-
Net. Each point represents an entity. Red (act), yellow
(person) and blue (artifact) refer to word senses rele-
vant to human beings.

Model FB15K FB15K-237
MRR↑ MR↓ MRR↑ MR↓

Pretrain-TransE 0.731 36.6 0.332 162.0
w/o KGE training phase 0.099 462.8 0.073 594.8

Model WN18 WN18RR
MRR↑ MR↓ MRR↑ MR↓

Pretrain-TransE 0.757 85 0.235 1747
w/o KGE training phase 0.086 1020 0.096 1444

Table 4: MRR results of the full Pretrain-KGE method
and the ablation version (“w/o KGE training phase”).
The experiments here use entity names and relation
names as the semantic description.

scription. The word averaging model contributes
to better performance of TransE on fewer training
triplets, yet it does not learn knowledge representa-
tion as well as BERT because the latter can better
understand the semantic description of entities and
relations by exploiting world knowledge in the de-
scription. In contrast, our Pretrain-TransE can fur-
ther enrich knowledge representation by encoding
semantic description of entities and relations via
BERT, and uses the learned representation to initial-
ize the embedding for TransE. In this way, we can
incorporate world knowledge from BERT into the
entity and the relation embedding so that TransE
can perform better given fewer training triplets and
also alleviate the problem of OOKB entities.

5.2 Rationality of the Framework

We visualize the knowledge learning process of
Baseline-TransE and our Pretrain-TransE in Fig. 3.

We select top five common supersenses in WN18:
plant, animal, act, person and artifact, among
which the last three supersenses are all relevant
to the concept of human beings. In Fig. 3a, we
can observe that Baseline-TransE learns the struc-
ture information in training triplets and does not
distinguish plant and animal from the other three
supersenses. In contrast, Fig. 3b shows that our
Pretrain-TransE can distinguish entities belonging
to different supersenses. Especially, entities rele-
vant to the same concept human beings are more
condensed and entities belonging to significantly
different supersenses are more clearly separated.
The main reason is that we introduce knowledge
from BERT to enrich the knowledge representation
of entities and relations.

We also demonstrate the rationality of the KGE-
training phase. Table 4 shows that The full Pretrain-
KGE method outperforms the ablation version
which excludes the KGE training phase.

6 Conclusion

We propose Pretrain-KGE, an efficient pretraining
technique for learning knowledge graph embed-
ding. Pretrain-KGE is a universal training frame-
work that can be applied to any KGE model. It
learns knowledge representation via pretrained lan-
guage models and incorporates world knowledge
from the pretrained model into the entity and the
relation embedding. Extensive experimental results
demonstrate consistent improvements over KGE
models across multiple benchmark datasets. The
knowledge incorporation introduced in Pretrain-
KGE alleviates the low-resource problem and we
justify our three-phase training framework through
an analysis of the knowledge learning process.
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A Appendix

A.1 Dataset Statistics
We evaluate our proposed training framework on
four benchmark KG datasets: WN18, WN18RR,
FB15K and FB15K-237. We list detailed statis-
tics of datasets are in Table 5. Datasets can be
downloaded at this repository3.

Dataset Entities Relations Train Triplets Valid. Triplets Test Triplets
WN18 40943 18 141442 5000 5000
WN18RR 40943 11 86835 3034 3134
FB15K 14951 1345 483142 50000 59071
FB15K-237 14541 237 272115 17535 20466

Table 5: Statisics of datasets.

A.2 Detailed Implementation
A.2.1 Details in Semantic-based Fine-tuning

Phase
In semantic-based fine-tuning phase, we adopt the
following non-linear pointwise function σ(·): for

3https://github.com/DeepGraphLearning/
KnowledgeGraphEmbedding
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FB15K Dim. Dim.R Neg.1 Neg.2. Batch.1. Batch.2 Lr.1 Lr.2 Updates.1 Updates.2. Opt.1 Opt.2
TransE 1000 1000 3 256 8 1024 5e-6 1e-4 150k 150k adam adam
DistMult 2000 2000 3 256 8 1024 5e-6 1e-3 150k 150k adam adam
ComplEx 1000 2000 3 256 8 1024 5e-6 1e-3 150k 150k adam adam
RotatE 1000 2000 3 256 8 1024 5e-6 1e-4 150k 150k adam adam
QuatE 250 1000 10 20 4 50 batches 1e-5 0.1 40k 5000 epochs adam adagrad
FB15K-237 Dim. Dim.R Neg.1 Neg.2. Batch.1. Batch.2 Lr.1 Lr.2 Updates.1 Updates.2. Opt.1 Opt.2
TransE 1000 1000 3 256 8 1024 5e-6 5e-5 150k 150k adam adam
DistMult 2000 2000 3 256 8 1024 5e-6 5e-5 150k 150k adam adam
ComplEx 1000 2000 3 256 8 1024 5e-6 5e-5 150k 150k adam adam
RotatE 1000 2000 3 256 8 1024 5e-6 1e-3 150k 150k adam adam
QuatE 100 400 10 10 6 10 batches 1e-5 0.1 200k 15000 epochs adam adagrad
WN18 Dim. Dim.R Neg.1 Neg.2. Batch.1. Batch.2 Lr.1 Lr.2 Updates.1 Updates.2. Opt.1 Opt.2
TransE 500 500 3 512 8 512 5e-6 1e-4 80k 80k adam adam
DistMult 1000 1000 3 512 8 512 5e-6 1e-3 80k 80k adam adam
ComplEx 500 1000 3 512 8 512 5e-6 1e-3 80k 80k adam adam
RotatE 500 1000 3 512 8 512 5e-6 1e-4 80k 80k adam adam
QuatE 250 1000 10 20 1 10 batches 1e-5 0.1 200k/300k 1500 epochs adam adagrad
WN18RR Dim. Dim.R Neg.1 Neg.2. Batch.1. Batch.2 Lr.1 Lr.2 Updates.1 Updates.2. Opt.1 Opt.2
TransE 500 500 3 512 8 512 5e-6 5e-5 80k 80k adam adam
DistMult 1000 1000 3 512 8 512 5e-6 2e-3 80k 80k adam adam
ComplEx 500 1000 3 512 8 512 5e-6 2e-3 80k 80k adam adam
RotatE 500 1000 3 512 8 512 5e-6 5e-5 80k 80k adam adam
QuatE 100 400 10 20 8 10 batches 1e-5 0.1 60k/10k 40000 epochs adam adagrad

Table 6: Experimental settings. Dim. denotes embedding dimension. Dim.R denotes embedding dimension when
embeddings are flatten into the real number filed. Batch. denotes batch size. Norm. denotes p-norm in score
function, Lr. denotes learning rate. Neg. denotes entity negative sampling rate. 1. denotes in semantic-based fine-
tuning phase and 2. denotes in KGE training phase and during the training of traditional embedding-based models.
In column Batch.2, 50 batches means the dataset are devided into 50 batches. In column Updates.1, 200k/300k
means 200k updates in the proposed model utilizing entity and relation names as semantic description and 300k
in the proposed model utilizing entity and relation names as well as entity definition as semantic description. In
column Updates.2, 5000 epochs means the number of training updates is 5000 epochs.

x = x0 +
K−1∑
i=1

xiei ∈ F (where F can be real num-

ber filed R, complex number filed C or quaternion
number ring H):

σ(x) = tanh(x0) +
K−1∑
i=1

tanh(xi)ei (5)

where xi ∈ R and ei is the K-dimension
hypercomplex-value unit. For instance, when K =
1,F = R; when K = 2,F = C, e1 = i (the imag-
inary unit); when K = 4,F = H, e1,2,3 = i, j,k
(the quaternion units). For example:

σ
( [a+ bi
c+ di

] )
=

[
tanh(a) + tanh(b)i
tanh(c) + tanh(d)i

]
(6)

where i, j,k denote the quaternion units.

A.2.2 Implementation of the Word-averaging
Baseline

We implement the word-averaging baseline to
utilize the entity names and entity definition in
WordNet to represent the entity embedding bet-
ter. Formally, for entity e and its textual descrip-
tion T (e) = w1w2 · · ·wL, where wi denotes the
i-th token in sentence T (e) and T (e) here together
utilizing the entity names and entity definition in

WordNet.

Avg(e) =
1

L

L∑
i=1

ui (7)

where ui denotes the word embedding of token
wi, which is a trainable randomly initialized pa-
rameter and will be trained in the semantic-based
fine-tuning phase.

We also adopt our three-phase training method
to train word-averaging baseline. Similarly,
E = [E1;E2; · · · ;Ek] ∈ Fk×d and R =
[R1;R2; · · · ;Rl] ∈ Fl×d denote entity and rela-
tion embeddings. In semantic-based fine-tuning
phase, for head entity h, tail entity t and relation r,
the score function is calculated as:

vh, vr, vt = Avg(h), Rr,Avg(t) (8)

Score = ‖vh + vr − vt‖ (9)

where Rr denotes the relation embedding of rela-
tion r. In knowledge extracting phase, similar to
our proposed model, we initialize Ei with Avg(ei).
In KGE training phase, we optimize E and R with
the same training method to TransE baseline.

A.3 Experimental Settings
The hyper-parameters are listed in Table 6. Experi-
ments are conducted on a GeForce GTX TITAN X
GPU.


