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Abstract

This work focuses on analyzing the form and
extent of syntactic abstraction captured by
BERT by extracting labeled dependency trees
from self-attentions.

Previous work showed that individual BERT
heads tend to encode particular dependency
relation types. We extend these findings by
explicitly comparing BERT relations to Uni-
versal Dependencies (UD) annotations, show-
ing that they often do not match one-to-one.
We suggest a method for relation identification
and syntactic tree construction. Our approach
produces significantly more consistent depen-
dency trees than previous work, showing that
it better explains the syntactic abstractions in
BERT.

At the same time, it can be successfully ap-
plied with only a minimal amount of supervi-
sion and generalizes well across languages.

1 Introduction and Related Work

In recent years, systems based on Transformer ar-
chitecture achieved state-of-the-art results in lan-
guage modeling (Devlin et al., 2019) and machine
translation (Vaswani et al., 2017). Additionally, the
contextual embeddings obtained from the interme-
diate representation of the model brought improve-
ments in various NLP tasks. Multiple recent works
try to analyze such latent representations (Linzen
et al., 2019), observe syntactic properties in some
Transformer self-attention heads, and extract syn-
tactic trees from the attentions matrices (Raganato
and Tiedemann, 2018; Mareček and Rosa, 2019;
Clark et al., 2019; Jawahar et al., 2019).

In our work, we focus on the comparative anal-
ysis of the syntactic structure, examining how the
BERT self-attention weights correspond to Uni-
versal Dependencies (UD) syntax (Nivre et al.,
2016). We confirm the findings of Vig and Be-
linkov (2019) and Voita et al. (2019) that in Trans-

former based systems particular heads tend to cap-
ture specific dependency relation types (e.g. in one
head the attention at the predicate is usually focused
on the nominal subject).

We extend understanding of syntax in BERT by
examining the ways in which it systematically di-
verges from standard annotation (UD). We attempt
to bridge the gap between them in three ways:

• We modify the UD annotation of three lin-
guistic phenomena to better match the BERT
syntax (§3)

• We introduce a head ensemble method, com-
bining multiple heads which capture the same
dependency relation label (§4)

• We observe and analyze multipurpose heads,
containing multiple syntactic functions (§7)

Finally, we apply our observations to improve
the method of extracting dependency trees from
attention (§5), and analyze the results both in a
monolingual and a multilingual setting (§6).

Our method crucially differs from probing (Be-
linkov et al., 2017; Hewitt and Manning, 2019; Chi
et al., 2020; Kulmizev et al., 2020). We do not use
treebank data to train a parser; rather, we extract
dependency relations directly from selected atten-
tion heads. We only employ syntactically annotated
data to select the heads; however, this means esti-
mating relatively few parameters, and only a small
amount of data is sufficient for that purpose (§6.1).

2 Models and Data

We analyze the uncased base BERT model for En-
glish, which we will refer to as enBERT, and the
uncased multilingual BERT model, mBERT, for
English, German, French, Czech, Finnish, Indone-
sian, Turkish, Korean, and Japanese 1. The code

1Pretrained models are available at https://github.
com/google-research/bert

https://github.com/google-research/bert
https://github.com/google-research/bert
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shared by Clark et al. (2019) 2 substantially helped
us in extracting attention weights from BERT.

To find syntactic heads, we use: 1000 EuroParl
multi parallel sentences (Koehn, 2004) for five Eu-
ropean languages, automatically annotated with
UDPipe UD 2.0 models (Straka and Straková,
2017); Google Universal Dependency Treebanks
(GSD) for Indonesian, Korean, and Japanese (Mc-
Donald et al., 2013); the UD Turkish Treebank
(IMST-UD) (Sulubacak et al., 2016).

We use another PUD treebanks from the CoNLL
2017 Shared Task for evaluation of mBERT in all
languages (Nivre et al., 2017)3.

3 Adapting UD to BERT

Since the explicit dependency structure is not used
in BERT training, syntactic dependencies captured
in latent layers are expected to diverge from an-
notation guidelines. After initial experiments, we
have observed that some of the differences are sys-
tematic (see Table 1).

UD Modified Example

Copula at-
taches to a
noun

Copula is
a root. 4 cat is an animal

root

cop

nsubj

nsubj

root
obj

Expletive
is not a
subject

Expletive
is treated
as a
subject

there is a spoon
expl

nsubj

nsubj
obj

In mul-
tiple
coordina-
tion, all
conjuncts
attach to
the first
conjunct

Conjunct
attaches to
a previous
one

apples , oranges and pears

conj
conj

conj conj

Table 1: Comparison of original Universal Dependen-
cies annotations (edges above) and our modification
(edges below).

Based on these observations, we modify the UD
annotations in our experiments to better fit the

2https://github.com/clarkkev/
attention-analysis

3Mentioned treebanks are available at the
Universal Dependencies web page https://
universaldependencies.org

4Certain dependents of the original root (e.g., subject,
auxiliaries) are rehanged and attached to the new root – copula
verb.

BERT syntax, using UDApi5 (Popel et al., 2017).
The main motivation of our approach is to get

trees similar to structures emerging from BERT,
which we have observed in qualitative analysis of
attention weights. We note that for copulas and
coordinations, BERT syntax resembles Surface-
syntactic UD (SUD) (Gerdes et al., 2018). Never-
theless, we decided to use our custom modification,
since some systematic divergences between SUD
and the latent representation occur as well. It is not
our intention to compare two annotation guidelines.
A comprehensive comparison between extracting
UD and extracting SUD trees from BERT was per-
formed by (Kulmizev et al., 2020). However, they
used a probing approach, which is noticeably dif-
ferent from our setting.

4 Head Ensemble

In line with Clark et al. (2019) and other studies
Voita et al. (2019); Vig and Belinkov (2019), we
have noticed that a specific syntactic relation type
can often be found in a specific head. Additionally,
we observe that a single head often captures only a
specific aspect or subtype of one UD relation type,
motivating us to combine multiple heads to cover
the full relation.

Figure 1 shows attention weights of two syntactic
heads (right columns) and their average (left col-
umn). In the top row (purple), both heads identify
the parent noun for an adjectival modifier: Head 9
in Layer 3 if their distance is two positions or less,
Head 10 in Layer 7 if they are further away (as in
“a stable , green economy”).

Similarly, for an object to predicate relation (blue
bottom row), Head 9 in Layer 7 and Head 8 in Layer
3 capture pairs with shorter and longer positional
distances, respectively.

4.1 Dependency Accuracy of Heads

To quantify the amount of syntactic information
conveyed by a self-attention head A for a depen-
dency relation label l in a specific direction d (for
instance predicate→ subject), we compute:

DepAccl,d,A =
|{(i, j) ∈ El,d : j = argmaxA[i]}|

|El,d|

where El,d is a set of all dependency tree edges
with the label l and with direction d, i.e., in de-
pendent to parent direction (abbreviated to p2d)

5https://udapi.github.io

https://github.com/clarkkev/attention-analysis
https://github.com/clarkkev/attention-analysis
https://universaldependencies.org
https://universaldependencies.org
https://udapi.github.io
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Figure 1: Examples of two enBERT’s attention heads covering the same relation label and their average. Gold
relations are marked by red letters.

the first element of the tuple i is dependent of the
relation and the second element j is the governor;
A[i] is the ith row of the attention matrix A.

In this article, when we say that head with at-
tention matrix A is syntactic for a relation type l,
we mean that its DepAccl,d,A is high in one of the
directions (parent to dependent p2d or dependent
to parent d2p).

4.2 Method

Having observed that some heads convey only par-
tial information about a UD relation, we propose a
method to connect knowledge of multiple heads.

Our objective is to find a set of heads for each
directed relation so that their attention weights af-
ter averaging have a high dependency accuracy.
The algorithm is straightforward: we define the
maximum number N of heads in the subset; sort
the heads based on their DepAcc on development
set; starting from the most syntactic one we check
whether including head’s attention matrix in the av-
erage would increase DepAcc; if it does the head is
added to the ensemble. When there are already N
heads in the ensemble, the newly added head may
substitute another added before, so to maximize

DepAcc of the averaged attention matrices.6

We set N to be 4, as allowing larger ensembles
does not improve the results significantly.

5 Dependency Tree Construction

To extract dependency trees from self-attention
weights, we use a method similar to Raganato and
Tiedemann (2018), which employs a maximum
spanning tree algorithm (Edmonds, 1966) and uses
gold information about the root of the syntax tree.

We use the following steps to construct a labeled
dependency tree:

1. For each non-clausal UD relation label, syn-
tactic heads ensembles are selected as de-
scribed in Section 4. Attention matrices in
the ensembles are averaged. Hence, we obtain
two matrices for each label (one for each di-
rection: "dependent to parent" and "parent to
dependent")

2. The "dependent to parent" matrix is trans-
posed and averaged with "parent to depen-
dent" matrix. We use a weighted geometric

6The code is available at GitHub: https://github.
com/Tom556/BERTHeadEnsembles

https://github.com/Tom556/BERTHeadEnsembles
https://github.com/Tom556/BERTHeadEnsembles
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average with weights corresponding to depen-
dency accuracy values for each direction.

3. We compute the final dependency matrix by
max-pooling over all individual relation-label
matrices from step 2. At the same time, we
save the syntactic-relation label that was used
for each position in the final matrix.

4. In the final matrix, we set the row correspond-
ing to the gold root to zero, to assure it will be
the root in the final tree as well.

5. We use the Chu-Liu-Edmond’s algorithm (Ed-
monds, 1966) to find the maximum spanning
tree. For each edge, we assign the label saved
in step 3.

It is important to note that the total number of
heads used for tree construction can be at most
4 ∗ 12 ∗ 2 = 96, (number of heads per ensemble
∗ number of considered labels ∗ two directions).
However, the number of used heads is typically
much lower (see Table 3). That means our method
uses at most 96 integer parameters (indices of the
selected heads), considerably less than projection
layers in fine-tuning or structural probing, consist-
ing of thousands of real parameters.

As far as we know, we are first to construct la-
beled dependency trees from attention matrices
in Transformer. Moreover, we have extended the
previous approach by using an ensemble of heads
instead of a single head.

6 Results

6.1 Dependency Accuracy
In Table 2, we present results for the dependency
accuracy (Section 4.1) of a single head, four heads
ensemble, and the positional baseline.10

Noticeably, a single attention head surpasses the
baseline for every relation label in at least one di-
rection. The average of 4 heads surpasses the base-
line by more than 10% for every relation.

Ensembling brings the most considerable im-
provement for nominal subjects (p2d: +13.3 pp)
and noun modifiers (p2d: +13.2 pp). The relative

7Objects also include indirect objects (iobj).
8Open clausal complements and clausal complements.
9Dep relations and all relations not included in this table.

10The positional baseline looks at the most frequent relative
position for each dependency label (Voita et al., 2019).

Relation Base- 1 Head 4 Heads
label line d2p p2d d2p p2d

amod 78.3 90.6 77.5 93.8 79.5
advmod 48.7 53.3 62.0 62.1 63.6
aux 69.2 90.9 86.9 94.5 88.0
case 36.4 83.0 67.1 88.4 68.9
compound 75.8 83.2 75.8 87.0 79.1
conjunct 31.7 47.4 41.6 58.8 51.3
det 56.5 95.2 62.3 97.2 69.4
nmod 25.4 34.3 41.5 49.1 54.7
nummod 57.9 75.9 64.6 79.3 72.6
mark 53.7 66.2 54.7 73.5 65.9
obj7 39.2 84.9 68.6 89.3 78.5
nsubj 45.8 56.2 62.7 57.8 76.0

⇑ AVG.
NON-CLAUSAL 52.8 67.8 74.1

acl 27.9 41.5 36.5 50.5 43.8
advcl 9.3 26.3 26.7 40.7 26.3
csubj 20.0 20.7 31.0 24.1 31.0
x/ccomp8 34.8 60.4 47.9 66.9 52.1
parataxis 10.4 17.6 12.1 23.1 24.2

⇑ AVG. CLAUSAL 20.5 32.1 38.3

punct 9.4 21.1 40.3 28.4 44.0
dep9 18.8 21.6 33.1 25.1 37.0

Table 2: Dependency accuracy for single heads, 4 heads
ensembles, and positional baselines. The evaluation
was done using the pretrained model enBERT and
modified UD as described in Section 3.

change of accuracy is more evident for clausal re-
lations than non-clausal. Dependent to parent di-
rection has higher accuracy for modifiers (except
adverbial modifiers), functional relations, and ob-
jects, whereas parent to dependent favors other
nominal relations (nominal subject and nominal
modifiers).

Introducing the UD modifications (Section 3)
had a significant effect for nominal subject. With-
out such modifications, the accuracy for parent to
dependent direction would drop from 76.0% to
70.1%

Selection Supervision The selection of syntactic
heads requires annotated data for accuracy evalu-
ation. In Figure 2, we examine what number of
annotated sentences is sufficient, using 1, 10, 20,
50, 100 or 1000 sentences.

For non-clausal relations (Figure 2a), head se-
lection on just 10 annotated sentences allows us
to surpass the positional baseline. Using over 20
examples brings only a minor improvement. For
clausal relations (Figure 2b), the score improves
steadily with more data. However, even for the full
corpus, it is relatively low, since the clausal rela-
tions are less frequent in the corpus and harder to
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(b) Clausal relations

Figure 2: Dependency accuracy against the number of
sentences used for selection.

identify due to longer distances between dependent
and parent.

6.2 Dependency Tree Construction

In Table 3, we report the evaluation results on the
English PUD treebank (Nivre et al., 2017) using
unlabeled and labeled attachment scores (UAS and
LAS). For comparison, we also include the left-
and right-branching baseline with gold root infor-
mation, and the highest score obtained by Raganato
and Tiedemann (2018) who used the neural ma-
chine translation Transformer model and extracted
whole trees from a single attention head. Also, they
did not perform direction averaging. The results
show that ensembling multiple attention heads for
each relation label allows us to construct much bet-

ter trees than the single-head approach.11

The number of unique heads used in the process
turned out to be two times lower than the maxi-
mal possible number (96). This is because many
heads appear in multiple ensembles. We examine it
further in Section 7.

Furthermore, to the best of our knowledge, we
are the first to produce labeled trees and report both
UAS and LAS.

Just for reference, the recent unsupervised
parser (Han et al., 2019) obtains 61.4% UAS. How-
ever, the results are not comparable since the parser
uses information about gold POS tags, and the re-
sults were measured on different evaluation data
(WSJ Treebank).

Ablation We analyze how much the particular
steps described in Section 5 influenced the quality
of constructed trees. We also repeat the experimen-
tal setting proposed by Raganato and Tiedemann
(2018) on enBERT model to see whether a lan-
guage model is better suited to capture syntax than
a translation system. Additionally, we alter the pro-
cedure described in Section 5 to analyze which
decision influenced our results the most, i.e., we
change:

• Size of head ensembles

• Number of sentences used for head selection

• Use the same head ensemble for all relation
labels in each direction. Hence we do not
conduct max-pooling described in section 5,
point 3.

In Table 3, we see that the method by Raganato
and Tiedemann (2018) applied to enBERT pro-
duces slightly worse trees than the same method
applied to neural machine translation. If we do not
use ensembles and only one head per each rela-
tion label and direction is used, our pipeline from
Section 5 offers only 0.2 pp rise in UAS and poor
LAS. The analysis shows that the introduction of
head ensembles of size four has brought the most
significant improvement in our method of tree con-
struction, which is roughly +15 pp for both the
variants (with and without labels).

Together with the findings in Section 6.1 this
supports our claim that syntactic information is
spread across many Transformer’s heads. Interest-
ingly, max-pooling over labeled matrices improve

11To assure comparability we do not modify the UD anno-
tation for the results in this table.
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Setting Use labels Model Selection Heads per Heads UAS LAS
sentences ensemble used

Left branching baseline — — — — — 11.0 —
Right branching baseline — — — — — 35.5 —

Raganato+ (paper) no NMT 1000* — 1 38.9 —
Raganato+ no enBERT 1000* — 1 37.2 —

Our method

no enBERT 1000 1 2 36.0 —
yes enBERT 1000 1 15 37.4 9.5
yes enBERT 20 4 36 43.6 14.5
no enBERT 1000 4 8 51.2 —

Our method yes enBERT 1000 4 48 52.0 21.7

Table 3: Evaluation results for different settings of dependency trees extraction. UD modifications were not applied
here. (*In Raganato+ experimens, the trees were induced from each encoder head, but we report only the results
for the head with the highest UAS on 1000 test sentences.)

Lang- Features DepAcc UAS LAS
uage b-line Our b-line Our Our

EN SVO, AN 52.8 73.2 35.5 51.0 21.8
DE —12, AN 42.3 72.9 32.9 45.5 19.5
FR SVO, NA 50.6 72.8 34.7 48.3 18.0
CS SVO, AN 44.3 69.7 34.0 40.1 17.1
FI SVO, AN 55.6 77.0 35.5 45.8 15.9
ID SVO, NA 47.0 64.2 29.7 36.9 14.6
TR SOV, AN 60.0 68.0 38.8 29.3 7.9
KO SOV, AN 41.8 32.4 49.3 28.8 8.0
JA SOV, AN 56.9 69.5 35.9 39.0 14.3

Mean SVO 50.1 71.4 33.9 44.4 17.5
Mean SOV 52.8 56.7 34.1 32.4 13.9

Mean AN 50.6 66.1 34.3 39.9 16.6
Mean NA 48.8 68.5 32.2 42.6 16.3

Table 4: Average dependency accuracy for non-clausal
relations (with UD modification) compared with po-
sitional baseline. UAS, LAS of constructed trees (w/o
UD modification) compared with UAS of left or right
branching tree with gold root, whichever is higher.
mBERT was used for all languages.

UAS only by 0.8 pp. Nevertheless, this step is nec-
essary to construct labeled trees. The performance
is competitive, even with as little as 20 sentences
used for head selection, which is in line with our
findings from Section 6.1.

Multilingual Setting In table 4 we present the
results of our methods applied to mBERT and eval-
uated on Parallel Universal Dependencies in nine
languages. Comparison of the results for English
with table 3 shows that the dependency accuracy
and UAS decreased only slightly by changing the

12No dominant order

A small town with two minarets glides by .
. .

.
. .

.
. .

. . . . . . ..

Sejak itu Danevirke tetap menjadi milik Jerman .
.

. . . . . .

. . . .
. . .

フランス に 対する 評判 は 良く ない 。

.
. .

.
. . .

. . . . . .

.

Figure 3: English, Indonesian, and Japanese examples
of mBERT extracted trees edges below compared with
the correct trees edges above. For Japanese sentence
predicted structure is a left branching chain, which is
a strong baseline for this language. English transla-
tion of the sentences: from Indonesian: “The Danevirke
has remained in German possession ever since.”; from
Japanese: “France doesn’t have a good reputation.”

model from enBERT to mBERT, while LAS saw
0.1 pp increase. The model captures syntax com-
parably well in German, French, and Finnish.

We observe that results for languages following
Subject-Object-Verb (SOV) order (Turkish, Korean,
Japanese) are significantly lower than for SVO lan-
guages (English, French, Czech, Finnish, Indone-
sian) in both Dependency Accuracy (14.7 pp) and
the UAS (10.5 pp). Our methods outperform the
baselines in the latter group by 17.2 pp to 25.4
pp for Dependency Accuracy and from 6.1 pp to
15.5 pp for UAS. The influence of Adjective and
Noun order is less apparent. On average, the NA
languages results are higher than for the AN lan-
guages by 2.4 pp in Dependency Accuracy and 2.7
pp in UAS.
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The disparity in the results for SVO and SOV
languages was previously observed by (Pires et al.,
2019), who fine-tuned mBERT for part of speech
tagging and evaluated zero-shot accuracy across
typologically diverse languages. We hypothesize
that worse performance for SOV languages may
be due to their lower presence in mBERT’s pre-
training corpus.

7 Multipurpose Heads

In this experiment, we examine whether a sin-
gle mBERT’s head can perform multiple syntactic
functions in a multilingual setting. We choose an
ensemble for each syntactic relation for each lan-
guage. Figure 4 presents the sizes of intersections
between head sets for different languages and de-
pendency labels.

Except from Japanese, we observe an overlap
of the heads pointing to the governor of adjec-
tive modifiers, auxiliaries, and determiners. Shared
heads tend to find the root of the syntactic phrase.
Interestingly, common heads occur even for re-
lations typically belonging to a verb and noun
phrases, such as auxiliaries and adjective modi-
fiers. In our other experiments, we have noticed
that these heads do not focus their attention on any
particular part of speech. Similarly, objects and
noun modifiers share at least one head for all lan-
guages. They have a similar function in a sentence;
however, they connect with the verb and noun, re-
spectively. Such behavior was also observed in a
monolingual model. Figure 5 presents attention
weights of two heads that belong to the intersection
of the adjective modifier, auxiliary, and determiner
dependent to parent ensembles.

7.1 Cross-lingual intersections

Representation of mBERT is language independent
to some extent (Pires et al., 2019; Libovickỳ et al.,
2019). Thus, a natural question is whether the same
mBERT heads encode the same syntactic relations
for different languages. In particular, subject rela-
tions tend to be encoded by similar heads in differ-
ent languages, which rarely belong to an ensemble
for other dependency labels. Again Japanese is an
exception here, possibly due to different Object-
Verb order.

For adjective modifiers, the French ensemble
has two heads in common with the German and
one with other considered languages, although the
preferred order of adjective and noun is different.
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(a) Nominal relations P2D

JA
 A

M
O

D

C
S 

A
M

O
D

FR
 A

M
O

D

D
E
 A

M
O

D

E
N

 A
M

O
D

JA
 A

U
X

C
S 

A
U

X

FR
 A

U
X

D
E
 A

U
X

E
N

 A
U

X

JA
 D

E
T

C
S 

D
E
T

FR
 D

E
T

D
E
 D

E
T

E
N

 D
E
T

JA AMOD

CS AMOD

FR AMOD

DE AMOD

EN AMOD

JA AUX

CS AUX

FR AUX

DE AUX

EN AUX

JA DET

CS DET

FR DET

DE DET

EN DET

1

1
1

2
1
1
2

1
1
1
1
2
2
1
1

1
1
4
2
1
1

1
1
1

1
1

1
1
2
4
2

1
1
2
2
1
1
2
1
1

2
1
2
4

1
1
2
2
2
2
3
2
3

1

4

1

1
1

3

1
1
1

1
1
1

1
1
1
1

4
1
2

1
2
1

1
1
2
2

1
1
3
2
1
1
2
1
1

1
1
2
2

1
2
2
4
1
1
3
2
1

1

1
2

1

1
1
2
1
2
2
2

2
1
1
2

1
1
1
1
3
2
1
1

2
1
2
3

1
2
2
3
2
2
4
3
2

1

1
2

1
1
1
2
2
1
3
4
2

1

1
3
1
1

1
1
2
1
2
2
4

(b) Adjective modifiers, auxiliaries, determiners D2P

Figure 4: Number of mBERT’s heads shared between
relations, both within and across languages.

This phenomenon could be explained by the fact
that only a few frequent French adjectives precede
modified nouns (e.g. “bon”, “petit”, “grand” ). At-
tention weights of a head capturing adjective mod-
ifiers in French, German, English, and Czech are
presented in Figure 6.

8 Conclusion

We have expanded the knowledge about the rep-
resentation of syntax in self-attention heads of the
Transformer architecture. We modified the UD an-
notation to fit the BERT syntax better. We analyzed
the phenomenon of information about one depen-
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Figure 6: A single mBERT head which identifies noun heads of French adjective modifiers. It also partially captures
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dency relation type being split among many heads
and the opposite situation where one head has mul-
tiple syntactic functions.

Our method of head ensembling improved the
previous results for dependency relation retrieval
and extraction of syntactic trees from self-attention
matrices. As far as we know, this is the first work
that conducted a similar analysis for languages
other than English. We have shown that the method
generalizes well across languages, especially those
following Subject Verb Object order.

We also hypothesize that the proposed method
could improve dependency parsing in a low super-
vision setting.
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A Technical Details

A.1 Computing Infrastructure
We have used one CPU core Intel(R) Xeon(R) CPU
E5-2630 v3 for both head ensemble selection and
dependency tree construction. The attention ma-
trices were computed on one GPU core GeForce
GTX 1080 Ti.

A.2 Components and Runtimes
Our pipeline consists of four steps. We provide
the average runtime of processing a file of 1000
sentence file for each of them:

• Attention matrices computation is con-
ducted on GPU for both selection and evalua-
tion sets. 144 self-attention matrices are com-
puted for each sentence and saved in npz file.
This step takes approximately 25 minutes.

• Modification of Universal Dependencies is
applied on heads selection and evaluation
test (in the latter case only for evaluation of
DepAcc). We use UDApi with our custom
extension (https://udapi.github.io). The
conversion of a CoNLL-U file takes a few
seconds.

• Head selection is done on head selection set.
The approximate runtime is 3 minutes.

• Tree extraction is performed on evaluation
set. The approximate runtime is 10 minutes.

The code is available at GitHub: https:

//github.com/Tom556/BERTHeadEnsembles. For
details, please refer to the README.

A.3 Data
Our pipeline requires CoNLL-U files as input. Eu-
roParl parsed sentences used for head selection in
English, German, French, Czech, and Finnish are
provided in a zip file.

All other treebanks mentioned in this paper
are available at Universal Dependencies webpage
https://universaldependencies.org.

We perform head selection on the development
part of data for Indonesian, Turkish, on train part
for Korean and Japanese, due to small amount of
development sentences for these two languages.

B Original UD Results

Dependency Accuracy results for English PUD
treebank without our modification are presented
in the table 5.

Relation Base- Orginal Modified
label line d2p p2d d2p p2d

amod 78.3 93.8 79.5 93.8 79.5
advmod 48.6 62.1 62.6 62.1 63.6
aux 65.2 93.4 83.1 94.5 88.0
case 36.2 88.4 68.9 88.4 68.9
compound 75.8 87.0 79.1 87.0 79.1
conjunct 27.8 59.0 47.1 58.8 51.3
det 56.5 97.2 69.4 97.2 69.4
nmod 25.7 49.1 54.7 49.1 54.7
nummod 57.5 79.3 72.6 79.3 72.6
mark 53.7 73.5 65.9 73.5 65.9
obj 39.2 90.8 80.7 89.3 78.5
nsubj 24.6 56.9 70.1 57.8 76.0

⇑ AVG.
NON-CLAUSAL 49.1 73.4 74.1

acl 29.7 50.5 49.0 50.5 43.8
advcl 8.2 40.4 27.7 40.7 26.3
csubj 23.3 58.6 34.5 24.1 31.0
x/ccomp 35.0 64.6 54.9 66.9 52.1
parataxis 4.1 16.5 13.2 23.1 24.2

⇑ AVG. CLAUSAL 24.7 41.0 38.3

punct 9.3 27.7 41.6 28.4 44.0
dep 14.2 31.7 28.1 25.1 37.0

Table 5: Comparison of dependency accuracy for orig-
inal and modified UD. Positional baseline was calcu-
lated on original UD. The evaluation was done using
enBERT’s head ensembles of size 4.
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Figure 7: Dependency accuracy on the test set for dif-
ferent sizes of ensembles.

C Head Ensemble Size

In the Figure 7, we see that ensembles of just two
heads have significantly higher dependency accu-
racy than single heads. For the most relation labels
adding more heads does not affect the score, while
for a few (object dependent to parent), it grows
only slightly. As mentioned in the article, we set
the number of heads in ensemble N to 4.

D Heads Visualization

This appendix contains an extended version of the
Figure 1 from the article.

https://udapi.github.io
https://github.com/Tom556/BERTHeadEnsembles
https://github.com/Tom556/BERTHeadEnsembles
https://universaldependencies.org
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Figure 8: enBERT head ensembles for four dependency types: adjective modifier (d2p); object (d2p); nominal
subject (p2d); auxiliary (d2p). The top row presents averaged attention. UD relations are marked by red crosses. The
sentence: ”There is considerable energy saving potential inpublic buildings, for example, which would facilitatethe
transition towards a stable, green economy.”


