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Abstract

Word embedding is an essential building block
for deep learning methods for natural language
processing. Although word embedding has
been extensively studied over the years, the
problem of how to effectively embed numer-
als, a special subset of words, is still under-
explored. Existing word embedding methods
do not learn numeral embeddings well because
there are an infinite number of numerals and
their individual appearances in training cor-
pora are highly scarce. In this paper, we pro-
pose two novel numeral embedding methods
that can handle the out-of-vocabulary (OOV)
problem for numerals. We first induce a finite
set of prototype numerals using either a self-
organizing map or a Gaussian mixture model.
We then represent the embedding of a numeral
as a weighted average of the prototype num-
ber embeddings. Numeral embeddings repre-
sented in this manner can be plugged into exist-
ing word embedding learning approaches such
as skip-gram for training. We evaluated our
methods and showed its effectiveness on four
intrinsic and extrinsic tasks: word similarity,
embedding numeracy, numeral prediction, and
sequence labeling.

1 Introduction

Word embeddings have become an essential build-
ing block for deep learning approaches to natural
language processing (NLP). The quality of pre-
trained word embeddings has been shown to sig-
nificantly impact the performance of neural ap-
proaches to a variety of NLP tasks. Over the
past two decades, significant progress has been
made in the development of word embedding tech-
niques (Lund and Burgess, 1996; Bengio et al.,
2003; Bullinaria and Levy, 2007; Mikolov et al.,
2013b; Pennington et al., 2014). However, existing
word embedding methods do not handle numerals
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adequately and cannot directly encode the numer-
acy and magnitude of a numeral Naik et al. (2019).
Most methods have a limited vocabulary size and
therefore can only represent a small subset of the
infinite number of numerals. Furthermore, most
numerals have very scarce appearances in training
corpora and therefore are more likely to be out-
of-vocabulary (OOV) compared to non-numerical
words. For example, numerals account for 6.15%
of all unique tokens in English Wikipedia, but in
GloVe (Pennington et al., 2014) which is partially
trained on Wikipedia, only 3.79% of its vocabulary
is numerals.

Previous work (Spithourakis et al., 2016) also
shows that the numeral OOV problem is more se-
vere when learning word embeddings from corpora
with abundant numerals such as clinical reports.
Even if a numeral is included in the vocabulary,
its scarcity in the training corpus would negatively
impact the learning accuracy of its embedding. The
inadequate handling of numerals in existing word
embedding methods can be problematic in scenar-
ios where numerals convey critical information.
For instance,

• “Jeff is 190, so he should wear size XXL."
(190 is a reasonable height for size XXL. If we
replace 190 with 160, the sentence becomes
unreasonable.)

• “Jeff is 10, so he should wear size XS." (10 is
an age instead of a height.)

If the numerals in the example are OOV or their
embeddings are not accurately learned, then it be-
comes impossible to judge the categories of the
numerals or the reasonableness of the sentences.
In this paper, we propose two novel methods that
can produce reasonable embeddings for any numer-
als. The key idea is to represent the embedding
of a numeral as a weighted average of a small set
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of prototype number embeddings induced from
the training corpus using either a self-organizing
map (Kohonen, 1990) or a Gaussian mixture model.
The weights are computed based on the differences
between the target numeral and the prototype nu-
merals, reflecting the inductive bias that numerals
with similar quantities are likely to convey similar
semantic information and thus should have similar
embeddings. Numeral embeddings represented in
this manner can then be plugged into a traditional
word embedding method for training. We empir-
ically evaluate our methods on four tasks: word
similarity, embedding numeracy, numeral predic-
tion, and sequence labeling. The results show that
our methods can produce high-quality embeddings
for both numerals and non-numerical words and
improve the performance of downstream tasks.

2 Related Work

Word Embedding Word embeddings are vec-
tor representations of words that carry semantic
meanings implicitly and are trained without super-
vision. Most existing word embedding training
methods can be divided into two classes. The first
class of methods (Lund and Burgess, 1996; Le-
bret and Lebret, 2013) extract word co-occurrence
statistics from the training corpus, compute a word-
word matrix based on measures such as PPMI, and
then apply dimension reduction techniques such
as principle component analysis to produce a low-
dimensional representation for each word. The
second class of methods (Bengio et al., 2003; Col-
lobert and Weston, 2008; Mikolov et al., 2013a,b)
use a simple neural network to model the relation
between a word and its context within a sliding
window in the training corpus. GloVe (Pennington
et al., 2014) has been proposed as a method that
combines the advantages of both classes. All the
above methods have a finite vocabulary size and
use a ‘UNK’ symbol to represent OOV words. Re-
cent work (Naik et al., 2019) shows that these pop-
ular methods do not handle numerals adequately.
Wallace et al. (2019) shows that existing word em-
bedding methods can encode numeracy implicitly
for high-frequency numerals, but the embedding’s
numeracy for OOV numerals is not investigated.
Our goal is to design numeral embedding methods
that can be integrated into traditional word embed-
ding methods and handle the OOV problem for
numerals.

Numeracy in natural language Numeral un-
derstanding has been found important in textual
entailment (Lev et al., 2004; De Marneffe et al.,
2008; Roy et al., 2015) and information extraction
(Intxaurrondo et al., 2015; Madaan et al., 2016),
but existing systems often use manually defined
task-specific features and logic rules to identify nu-
merals, which is hard to generalize to other tasks.
A lot of research has been done trying to solve math
problems, using either manually designed features
and rules (Roy et al., 2015; Upadhyay et al., 2016)
or sequence-to-sequence neural networks (Wang
et al., 2017), but the quantity of numerals is not
important in this task and hence existing methods
often replace numerals by dummy symbols such
as n1 and n2. Spithourakis and Riedel (2018) stud-
ied different strategies to better model numerals
in language models. Chen et al. (2019) created
Numeracy-600K dataset and studied the ability of
neural network models to learn numeracy. Our
work differs from previous work in that we aim to
produce general-purpose numeral embeddings that
can be employed in any neural NLP approach.

3 Methods

Given a training corpus C, we first extract all the
numerals using regular expressions and form a
dataset X containing all the numbers represented
by these numerals. A number (e.g., 2000) may
appear for multiple times in X if its correspond-
ing numerals (e.g., ‘2000’, ‘2,000’, etc.) appear
for multiple times in C. We then induce a finite
set P of typical numerals (i.e., prototypes) from X
using a self-organizing map (Kohonen, 1990) or a
Gaussian mixture model. We also define a function
sim(n1, n2) outputting the similarity between two
arbitrary numbers n1 and n2. Now we represent the
embedding of any target numeral n as a weighted
average of the prototype number embeddings with
the weights computed by the similarity function:

e(n) =
∑
p∈P

α · sim(n, p) · e(p) (1)

We use e(·) to denote the embedding of a num-
ber, α is the normalization factor where

∑
p∈P α ·

sim(n, p) = 1. This formulation satisfies the intu-
ition that numerals with similar quantities are likely
to convey similar semantic information and should
have similar embeddings.

Our numeral embeddings can be integrated into
traditional word embedding methods such as skip-
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gram for training. During training, we back-
propagate the error gradient to update the prototype
embeddings. In this way, the prototype embeddings
(and hence all the numeral embeddings) are learned
jointly with non-numerical word embeddings.

3.1 Squashing numbers to log-space
Inspired by psychological evidence that our brain
compresses large quantities nonlinearly using a log-
arithmic scale on the mental number line (Nieder
and Miller, 2003; Dehaene, 2011), we design the
following squashing function to transform all the
numbers in X into the log-space before prototype
induction. Alternatively, we can apply the function
only in the similarity function. Squashing is also
necessary for our methods to avoid overflow during
training when there are very large numbers such as
1015 in the training corpus.

f(x) =


log(x) + 1, if x > 1

x, if x ∈ [−1, 1]
− log(−x)− 1, if x < −1

(2)

3.2 Prototype Induction
We develop two methods for inducing a a small set
P of m prototypes from the number dataset X .

Self-Organizing Map A self-organizing map
(SOM) (Kohonen, 1990) is an neural network can
be viewed as a clustering method. After training a
SOM on the dataset X , we regard each cluster cen-
troid as a prototype. One advantage of using a SOM
in comparison with traditional clustering methods
is that it distributes prototypes more evenly on the
number line and may assign prototypes to number
ranges with few training samples, which we expect
would lead to better generalizability.

Gaussian Mixture Model Inspired by psycho-
logical study of the mental number line (Dehaene
et al., 2003) and previous work on language mod-
eling (Spithourakis and Riedel, 2018), we train a
Gaussian mixture model (GMM) to induce number
prototypes. A GMM is defined as follows.

p(U = n) =
m∑
k=1

P (Z = k)P (U = n|Z = k)

=
m∑
k=1

πkN (n;µk, σ
2
k)

(3)
where Z is a latent variable representing the mix-
ture component for random variable U , and N is

the probability density function of a normal distri-
bution, and πk, µk, σk ∈ R represent the mixing
coefficient, mean and standard deviation of the k-th
Gaussian component. We train a GMM on the num-
ber dataset X using the expectation-maximization
(EM) or hard-EM algorithm and regard the means
of the learned Gaussian components as prototypes
P = {µ1, · · · , µm}. We use three GMM initializa-
tion methods described Appendix.A.

3.3 Similarity Function
For SOM-induced prototypes, we define the fol-
lowing similarity function:

sim(p, n) = |g(p)− g(n)|−β, β > 0, p ∈ P (4)

where function g is equal to the squashing function
f defined in Eq.2 if we do not apply log transforma-
tion before prototype induction and is the identity
function I otherwise. β is a hyper-parameter set to
1.0 by default.

For GMM-induced prototypes, we can naturally
use the posterior probability of the component as-
signment to define the similarity function, for all
pk ∈ P,

sim(pk, n) ∝ P (Z = k|U = n)

=
πkN (n;µk, σ

2
k)∑m

k=1 πkN (n;µk, σ
2
k)

(5)

3.4 Embedding Training
We now describe how to integrate our numeral em-
beddings into traditional word embedding methods
for training. We choose skip-gram with negative
sampling (Mikolov et al., 2013b) as the word em-
bedding method here, but many other word em-
bedding methods such as CBOW (Mikolov et al.,
2013a), HAL (Lund and Burgess, 1996) and GloVe
(Pennington et al., 2014) can be used as well.
Skip-gram is a word embedding method based on
the idea of context word prediction. The train-
ing corpus C is regarded as a sequence of words
(x1, . . . , xT ). For token xt, we define the preced-
ing and following c tokens as the context of xt.
Skip-gram aims to maximize p(xt+j |xt) (−c ≤
j ≤ c), the probability of a context word given
the center word xt. To formulate p(xt+j |xt), skip-
gram associates each word xi with two vector repre-
sentations: the input embedding vixt for being a cen-
ter word and the output embedding voxt for being a
context word. The input and output embeddings of
all the words in the vocabulary V constitute matri-
ces EI ∈ RD×|V| and EO ∈ RD×|V| respectively,
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Figure 1: The computational graph when the center word is ‘is’ and the context words are ‘he’ and the numeral
‘190’. We look up the embedding vectors of non-numerical words directly from the embedding matrices and use
the weighted average of prototype embeddings as the numeral embedding. Negative sampling is not shown in the
figure.

where D is the embedding dimension. The con-
ditional probability p(xt+j |xt) is then defined to
based on the dot product s(xt+j |xt) = vixt

T
voxt+j

.
Nagative sampling is used to approximate the nor-
malization factor for the conditional probability.

log p(xt+j |xt) ≈ log σ(voxt+j

Tvixt)

+

k∑
i=1

E
xi∼Pn(x)

[log σ(−voxi
Tvixt)]

(6)

where σ denotes the sigmoid function, and Pn(x)
is the sampling distribution used to draw k neg-
ative word samples. We modify skip-gram by
computing numeral embeddings differently from
non-numerical word embeddings. We associate
each prototype number with an input embedding
and an output embedding. The input and output
embeddings of all the prototypes constitute ma-
trices MI ∈ RD×|P| and MO ∈ RD×|P| respec-
tively. For any numeral, we can compute its in-
put and output embeddings by taking a weighted
average of the prototype input and output embed-
dings respectively based on Eq.1 and use them in
exactly the same way as the embeddings of non-
numerical words to compute the learning objective
(Eq.6). When drawing negative samples, we first
set the ratio of numerals and non-numerical words
to their actual ratio in the training corpus, to guar-
antee a sufficient number of numeral negative sam-
ples. Then we sample numerals and non-numerical
words separately from their respective distributions
in the training corpus raised to the power of 3

4 . Dur-
ing training, we optimize the objective function
Eq.6 by back-propagating the gradient of the er-
ror to update both the non-numerical word embed-

ding matrices EI , EO and the prototype number
embedding matrices MI , MO. In this way, the
embeddings of non-numerical words and numerals
are learned jointly in the same space. We show an
example in Figure 1.

4 Experiments and Results

We evaluate our methods on four intrinsic and ex-
trinsic tasks: word similarity, embedding numeracy,
numeral prediction, and sequence labeling. We re-
port the results of our methods based on SOM and
GMM separately. We choose the hyper-parameters
(e.g., the number of prototypes, GMM initialization
and training methods) using validation sets and re-
port the best hyper-parameters for each experiment
in Appendix.B.

4.1 Baselines

NumAsTok This baseline treats numerals and
non-numerical words in the same way, which is
very similar to the original skip-gram. The vocabu-
lary includes both high-frequency words and high-
frequency numerals. OOV non-numerical words
are replaced with symbol UNKword and OOV nu-
merals are replaced with symbol UNKnum.

D-LSTM Character-level RNNs are often used
to encode OOV words (Graves, 2013). Here we ap-
ply an LSTM (Hochreiter and Schmidhuber, 1997)
to the digit sequence of a numeral and use the last
hidden state of the LSTM as the embedding of the
numeral. We use the embedding to compute the
skip-gram objective function and propagate the gra-
dients back to update the LSTM. The vocabulary
of digits is: {0-9, ‘.’, ‘+’, ‘−’, ‘e’}.
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Non-numerical
Word Vocabulary

Numeral
Vocabulary

SOM, GMM,
D-LSTM, Fixed

{In-vocab words}
UNKword

all numerals

NumAsTok
{In-vocab words}

UNKword

{In-vocab nums}
UNKnum

Table 1: Vocabularies of different methods.

Methods WS353 MEN SIM999
SOM 64.40 71.79 36.09
GMM 64.90 71.89 36.29

NumAsTok 65.30 71.83 35.85
D-LSTM 63.60 71.82 34.58

Fixed 64.35 72.17 36.27
SG GoogleNews-100B 70.00 74.10 44.20

GloVe Wiki-6B 52.20 73.70 37.10

Table 2: Results on word similarity tasks trained on
Wiki-1B. For reference, we also show the results of the
official skip-gram and GloVe trained on larger corpora.

Fixed This baseline fixed embeddings for numer-
als with no training. We define the embedding a
numeral with value n as [f(n);1]/Z where f is the
squashing function defined in Eq.2, 1 ∈ RD−1 is
an all-ones vector, and Z is a constant used to keep
the vector norm close to those of non-numerical
words and is set to 2×D by default.

We compare the vocabularies of different meth-
ods in Table 1. Our methods, D-LSTM, and Fixed
have finite non-numerical vocabularies but infinite
numeral vocabularies. In contrast, the NumAsTok
baseline has a finite numeral vocabulary and treats
all the OOV numerals as UNKnum.

4.2 Word Similarity for Non-numerical
Words

To ensure that our methods can still generate high
quality embeddings for non-numerical words, we
evaluate our trained embeddings on classical in-
trinsic word similarity tasks, including WordSim-
353, (Finkelstein et al., 2001), MEN (Bruni et al.,
2014) and Simplex-999 (Hill et al., 2014). We
train 300-dimensional word embeddings on the 1B
Wikipedia dump and set the context window size
to 5, the number of negative samples to 5, and the
vocabulary size to 3 × 105. We use the evalua-
tion tools1 provided by Jastrzebski et al. (2017).
Note that while the training data contains numer-
als, the evaluation tasks do not involve numerals
and are only designed to evaluate the quality of

1https://github.com/kudkudak/
word-embeddings-benchmarks

non-numerical word embeddings. The results are
shown in Table 2.

It can be seen that our methods can achieve
scores comparable to those of the baselines. The
performance of SG trained on 100B GoogleNews
is much better than all the other methods probably
because of its much larger training corpus. The
results show that adding our numeral embedding
methods into skip-gram does not harm the quality
of non-numerical word embeddings. We also show
some examples of prototypes and their nearest non-
numerical words in Table 3, and some additional
results of our methods in Appendix.C. The results
show that our embedding method learns the seman-
tic of numerals. We use the embedding trained by
the SOM model with 200 prototypes on Wikipedia-
1B.

Prototype Most Related Non-numerical Words

8186446.58 million, billion, total, budget, funding, dollars
10372.49 approximately, thousands, millions, roughly
2000.06 millennium, decade, internet, twentieth, worldwide, latest
1598.79 renaissance, giovanni, dutch, baroque, vii, shakespeare
10.00 ten, six, eleven, pm, seconds, eight

Table 3: Examples of prototypes and their nearest non-
numerical words.

4.3 Magnitude and Numeration of
Embeddings

Naik et al. (2019) propose a framework for evalu-
ating the ability of numeral embeddings to capture
magnitude and numeration. Given a target numeral,
its embedding is evaluated against a set of numer-
als using the OVA (One-vs-All), SC (Strict Con-
trastive) and BC (Broad Contrastive) tests:
OVA: The embedding vector distance between the
target and its nearest neighbor on the number line
should be smaller than that between the target and
any other numeral in the set.
SC: The embedding vector distance between the
target and its nearest neighbor on the number line
should be smaller than that between the target and
its second nearest neighbors on the number line.
BC: The embedding vector distance between the
target and its nearest neighbor on the number line
should be smaller than that between the target and
its furthest neighbors on the number line.

We follow the settings described by Naik et al.
(2019): for the magnitude evaluation, we run the
tests using a set of 2342 numerals that are most
frequent in Wikipedia-1B, whose embeddings are
well learned by all the methods; and for the numer-

https://github.com/kudkudak/word-embeddings-benchmarks
https://github.com/kudkudak/word-embeddings-benchmarks
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ation evaluation, we run the tests using 113 English
words that represent numbers (e.g., ‘three’, ‘bil-
lion’) sampled from the same corpus and we mea-
sure the distance between the target numeral em-
bedding and the word embeddings of these words.
We report the accuracy of various embedding mod-
els on these three tests, along with the average rank
(denoted as AVGR) of the target numeral’s nearest
neighbor among all the candidates based on their
vector distances to the target. We use the embed-
dings trained on Wikipedia-1B.

Table 4 shows the results. The Fixed baseline
has the best performance in the magnitude evalua-
tion, which is unsurprising because the numeral em-
bedding vector explicitly contains the (squashed)
magnitude. NumAsTok performs very well in
the numeration evaluation, which is because the
number-representing words used in the evaluation
are high-frequency words and their embeddings are
adequately trained. Except for these two special
cases, our methods can be seen to outperform the
baselines with a large margin.

Wallace et al. (2019) recently show that classic
embeddings of numerals may contain magnitude in-
formation that can be extracted by neural networks.
Following their methodology, we conduct a nonlin-
ear decoding test on our 2342 numerals. We first
randomly sample 80% of the numerals for training
and 20% for test. Then we train an MLP with 2 hid-
den layers to predict the value of a numeral given
its embedding by minimizing the mean squared
error. The root mean squared error (RMSE) result
on the test set is shown in the last column of Table
4, which shows that our embeddings are better at
capturing the magnitude information non-linearly.

4.4 Numeral Prediction

To evaluate the quality of numeral embeddings, we
design a new numeral prediction task: choosing the
right numeral from a set of candidates given the
context of the numeral in a sentence. We randomly
sample 2000 sentences containing numerals from
a subset of Wikipedia that is not used in training,
with 600 for validation and 1400 for testing. For
each sentence, we use the five words preceding
and following the target numeral as its context. An
example is shown below, where the ten bold words
are the context and 2.31 is the target numeral.

In Hollywood, the average household
size was [2.31] and the average family
size was 3.00.

We use all the 1400 numerals in the test set as the
candidates from which one has to select the right
numeral for each test sentence. Given the learned
word and numeral embeddings, we define two score
functions to rank candidate numerals given the con-
text. Following the skip-gram model, we first de-
fine the score of center numeral n predicting con-
text word cj as s(cj |n) = vocj

Tvin and the score
of context word cj predicting the center numeral n
as s(n|cj) = von

Tvicj . Our first candidate-ranking
score function SA is the sum of log probabilities of
center numeral n predicting each context word cj .
We use softmax here to calculate the probability.

SA(n) =
∑
j

log p(cj |n) ≈
∑
j

log
es(cj |n)∑

ck∈Vt
es(ck|n)

=
∑
j

s(cj |n)−
∑
j

logZ(n)

(7)

where Vt is the vocabulary of non-numerical words
and Z(n) is the normalization factor. The other
candidate-ranking score function SB is the sum of
log probabilities of each context word cj predicting
center numeral n.

SB(n) =
∑
j

log p(n|cj) ≈
∑
j

log
es(n|cj)∑

nk∈Vn

es(nk|cj)

=
∑
j

s(n|cj)− Constant

(8)

where Vn is the set of numerals in the dataset.
There are a few other possible score functions, but
we find that they lead to results similar to SA and
SB.

We use three metrics to evaluate numeral predic-
tion (Spithourakis and Riedel, 2018). MdAE is the
median of the absolute errors between the predicted
and true numerals, MdAPE is the median of the
absolute percentage errors between the predicted
and true numerals, and AVGR is the average rank
of the true numeral among the candidates.

We train embeddings on Wikipedia-1B and re-
port the evaluation results in the left part of Table
5. Our methods significantly outperform the Nu-
mAsTok and Fixed baselines on all three metrics.
D-LSTM also performs well but needs more pa-
rameters and computing time than our methods.

For reference, we also test the mixture-
of-Gaussians numerate language model2 (Sp-
ithourakis and Riedel, 2018) on the same task. Al-
though the numerate language model does not learn

2https://github.com/uclnlp/numerate-language-models
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Magnitude Numeration Non-linear Decoding
Metrics OVA SC BC AVGR OVA SC BC AVGR RMSE
SOM 67.72 71.86 99.40 15.91 3.54 62.83 100.00 28.98 2724.12
GMM 57.86 58.63 100.00 1.75 4.42 65.49 100.00 25.97 678.78

NumAsTok 12.17 51.02 95.99 144.13 7.08 61.95 99.12 27.08 14878.73
D-LSTM 7.26 51.79 92.83 158.82 1.77 54.87 89.38 53.55 20949.66

Fixed 83.90 78.22 100.00 1.17 0.89 49.56 99.12 56.00 5550.97

Table 4: Magnitude, numeration, and non-linear decoding results for our methods and baselines. Accuracies of
OVA, SC and BC are expressed as percentages. Lower AVGR indicates better performance. Numbers indicating
top-2 performance are highlighted.

numeral embeddings, it is shown to produce accu-
rate numeral prediction. We use a smaller vocab-
ulary size (3× 104) for the model compared with
our methods and the baselines (3 × 105) because
we find it requires unacceptable GPU memory and
training time with a large vocabulary size. The
default prediction method of the model predicts
a numeral from its preceding context and the pre-
dicted numeral may not belong to the candidate
set (hence no AVGR result). A second prediction
method is to use the log-likelihood of the whole
sentence computed by the model to score and rank
the candidates. As shown in the last row of table
5, the numerate language model reaches slightly
better MdAE but worse MdAPE and AVGR than
our methods.

We also conduct a slightly different numeral pre-
diction task on the recently released Numeracy-
600K dataset (the Article Title part) (Chen et al.,
2019). This dataset contains 600k sentences with
numerals and in each sentence, a numeral is se-
lected and tagged with its order of magnitude.
There are eight possible orders of magnitude and
the goal is to predict the correct one for the target
numeral from its context. To solve this classifica-
tion problem, we sample 100 numerals for each
magnitude order and use the mean of their numeral
embeddings to create a ‘meta’ embedding; we then
use these ‘meta’ embeddings to replace the nu-
meral embeddings in the score functions SA and
SB and the highest-scoring order of magnitude is
returned. We split the dataset to 450k sentences
for training, 50k for validation and 100k for test-
ing. We use micro-F1 and macro-F1 in addition
to AVGR as the evaluation metrics. The result is
shown in the right part of Table 5. The result shows
that our methods achieve much better performance
compared to the baselines.

4.5 Sequence Labeling on Customer Service
Data

To verify the effectiveness of our methods in prac-
tice, we evaluate our methods with a sequence la-
beling task on a dataset of customer service chat
logs from an online apparel shopping website. This
dataset contains a large number of numerals related
to height, weight, foot length, etc., and therefore is
a good testbed for evaluating numeral embeddings.
The task is to assign a label to each word or nu-
meral in the dataset indicating its information type.
We shows two examples below:

W O H O O O O O O W H O O O
82 kg 177 cm what size shall I choose 82 177 what size ?

W, H, O are labels representing weight, height
and ordinary word respectively. We show the statis-
tics of the dataset in Appendix.E. To better evalu-
ate the generalizability, we create two additional
test sets. The first one is created by ‘augmenting’
the original test set with new sentences contain-
ing slightly perturbed numerals. For example, we
can create new sentences by replacing ‘177’ in the
above example with ‘176’ and ‘178’. The second
one contains ‘hard’ sentences from the original test
set that do not have explicit cues for label predic-
tion. For example, the first sentence above contains
‘kg’ and ‘cm’ that can greatly facilitate the predic-
tion of W and H, but the second sentence above
does not contain such cues and hence is a ‘hard’
sentence. Finally, we also test the low-resource
settings in which only 30% or 10% of the training
set is used. We described the augmented and hard
test set Appendix.D more detailedly.

We learn embeddings from the training set using
our methods and the baselines and use a validation
set to do model selection. We plug the learned
embeddings into the Neural-CRF model (Yang and
Zhang, 2018) 3 to do sequence labeling without
using part-of-speech and character-level features

3https://github.com/jiesutd/NCRFpp

https://github.com/jiesutd/NCRFpp
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Wikipedia-1B, dim 300 Numeracy-600k, dim 300
Metrics AVGR MdAE MdAPE AVGR MdAE MdAPE AVGR Mi-F1 Ma-F1 AVGR Mi-F1 Ma-F1

SA SB SA SB

SOM 381.41 825.79 0.9836 455.01 1184.60 0.9880 2.91 37.99 13.50 2.02 42.74 13.66
GMM 343.50 1184.85 0.9450 444.15 1081.50 0.9866 2.19 41.86 18.47 2.02 44.07 13.77

NumAsTok 600.17 1918.00 0.9965 600.28 32772.50 19.07 4.21 9.74 5.47 6.16 24.28 4.88
D-LSTM 357.45 1310.65 0.9369 466.81 1080.5 0.9908 3.98 27.98 8.80 4.49 16.49 8.42

Fixed 685.58 50371.50 42.82 672.47 50525.00 61.59 3.23 0.00 0.01 3.23 0.00 0.00
Default Likelihood Scoring

Numerate-LM - 795.00 0.9923 571.37 890.00 0.9937

Table 5: The results of the numeral prediction tasks. Numerate-LM represents the language model of Spithourakis
and Riedel (2018), shown here for reference.

Original Augmented Hard
Acc P R F1 Acc P R F1 Acc P R F1

100%

GMM 97.12 91.19 90.46 90.83 97.02 91.28 90.18 90.72 96.19 86.66 85.91 86.28
SOM 97.04 90.74 90.45 90.60 97.03 91.19 90.43 90.81 96.06 86.18 85.93 86.06

D-LSTM 96.72 89.84 88.80 89.32 96.72 90.40 88.99 89.69 95.52 84.19 83.30 83.74
Fixed 95.75 86.19 87.42 86.80 95.86 87.13 87.65 87.39 93.97 78.39 80.18 79.27

NumAsTok 96.88 91.37 89.29 90.32 96.36 90.99 87.39 89.15 96.00 87.11 85.12 86.10

30%

GMM 96.21 89.55 86.07 87.78 95.92 89.07 85.33 87.16 95.27 84.42 81.62 82.99
SOM 96.20 89.50 86.18 87.81 95.88 89.12 85.29 87.16 95.23 84.44 81.50 82.94

D-LSTM 95.55 86.83 83.88 85.33 95.30 86.22 83.13 84.64 94.32 80.10 78.17 79.12
Fixed 94.67 83.51 82.69 83.10 94.48 83.40 82.02 82.71 92.92 75.03 75.18 75.10

NumAsTok 95.58 89.18 83.55 86.27 94.57 88.39 79.94 83.95 94.65 84.42 79.06 81.65

10%

GMM 93.43 82.36 75.01 78.51 92.78 81.48 72.85 76.92 93.19 80.26 72.71 76.30
SOM 93.48 82.13 75.11 78.46 92.87 80.96 73.22 76.89 93.24 79.47 73.04 76.11

D-LSTM 92.53 77.71 71.45 74.45 91.99 76.24 69.96 72.96 92.10 73.26 68.72 70.92
Fixed 91.90 75.39 71.41 73.34 91.48 73.96 70.20 72.02 91.06 69.50 67.47 68.46

NumAsTok 92.31 81.98 70.51 75.81 90.77 80.10 64.95 71.73 92.00 79.64 67.95 73.32

Table 6: The results of sequence labeling. We report the accuracy, precision, recall, F1 score for the original,
augmented, and harder test sets with different training data sizes. Accuracy is in the token level and the other
metrics are in the entity level. All the results are very stable and their standard deviations are often much smaller
than the differences between our methods and the baselines.

and embedding fine-tuning.

The results are shown in Table 6. We also
include the table with standard deviation in Ap-
pendix.F. Our methods consistently outperform all
the baselines on the Accuracy, Recall, and F1 met-
rics in different configurations. NumAsTok trained
with 100% training samples has the highest pre-
cision on the original and hard test sets probably
because it learns high-quality embeddings for high-
frequency numerals included in its vocabulary; but
its recall is lower than that of our methods, most
likely because of its numeral OOV problem. Com-
paring the results on the original and augmented
test sets, we see that NumAsTok shows a more sig-
nificant drop in performance than the other meth-
ods, which suggests that NumAsTok does not gen-
eralize well because of the numeral OOV problem.
In the low-resource settings, the advantage of our
methods over the baselines becomes even larger, in-
dicating better generalizability and less annotation
required for our methods to achieve a promising
performance.

5 Conclusion

In this paper, we propose two novel numeral em-
bedding methods that represent the embedding
of a numeral as a weighted average of a set
of prototype numeral embeddings. The meth-
ods can be integrated into traditional word em-
bedding approaches such as skip-gram for train-
ing. We evaluate our methods on four intrinsic
and extrinsic tasks, including word similarity, em-
bedding numeracy, numeral prediction, and se-
quence labeling, and show that our methods can
improve the performance of numeral-related tasks
and has better generalizability. Our code and sam-
ple data can be found at https://github.com/jeffchy/
Learning-Numeral-Embeddings.

An important future direction is to handle nu-
meral polysemy. For example, the numeral “2019”
may denote either a year or an ordinary number.
One potential method is to assign a different embed-
ding to each sense of a numeral. In this way, “2019”
would have one embedding for representing a year
and another for representing an ordinary quantity.

https://github.com/jeffchy/Learning-Numeral-Embeddings
https://github.com/jeffchy/Learning-Numeral-Embeddings
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The similarity function would treat different senses
of a numeral differently. For example, the year
sense of “2019” would be similar to the year sense
of “19” but dissimilar to the sole sense of “2019.5”,
while the quantity sense of “2019” would be simi-
lar to that of “2019.5”. Our methods also have the
potential to apply to contextual word embedding
methods, so this would be another future direction.
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A GMM Initialization

Both EM and hard-EM are sensitive to initialization
and we use the initialization methods described in
(Blömer and Bujna, 2013). We first initialize the
mean µk of the k-th Gaussian component using one
of the following three strategies:

Random initialization choose µk from X ran-
domly. This is suitable when X contains a wide
range of numbers, e.g., numbers collected from
Wikipedia.

SOM-based initialization initialize µk to pk ∈
P produced by the SOM method.

K-means initialization run randomly initialized
k-means on X and then use k-means centroids to
initialize µk.

We then assign the data samples to their closest
means. The standard deviation of the data samples
assigned to the k-th mean becomes σk.

B Hyper-parameters

We list all of the important hyper-parameters we
tune for each model.

General hyper-parameters embedding dimen-
sion, context window size, SGD learning rate,
batch size, vocabulary size, etc.

SOM hyper-parameters number of prototypes,
stage of applying the log-squashing function (stage
1: before prototype induction; stage 2: only in the
similarity function).

GMM hyper-parameters number of prototypes,
whether we apply the log-squashing function to the
numerals, EM initialization (from SOM, random
initialization, or k-means initialization), type of
EM (hard-EM or soft-EM).

We show the values of the SOM and GMM
hyper-parameters in Table 7 and the values of the
general hyper-parameters of all the methods in Ta-
ble 8. We find that the general hyper-parameters
influence the performance of our methods and the
baselines in the same way, so in most cases, these
hyper-parameters are set to be identical for all
the methods. For large training corpora (Wiki1B,
Numeracy-600k), we use 2048 as the batch size
for D-LSTM, because D-LSTM consumes much
more GPU memory. We set the batch size of the
other methods to 4096. For the sequence label-
ing tasks, because the data is relatively small and
confined to a very specific domain (chat log from
online apparel shops), we set a small vocabulary
size of 500 for all the methods except NumAsTok
and set the vocabulary size of NumAsTok to 550
to ensure that different methods have similar num-
bers of parameters for word embedding training.
Consequently, our methods have (500 + |P|)×D
parameters for word embedding training and Nu-
mAsTok has 550×D parameters, where P is the
prototype set, whose size is typically smaller than
50, and D is the embedding dimension.

Table 7 also shows that the optimal number of
prototypes is around 200–500 for the Wiki1B cor-
pus and 10–25 for the much smaller sequence label-
ing dataset. As a rule of thumb, we suggest setting
the number of prototypes to (logN)2, where N
is the number of distinct numerals in the training
corpus.

C More Results on Wikipedia-1B

We show the histograms of numerals in the
Wikipedia-1B dataset and the prototypes learned
by SOM and GMM in Fig.2. It can be seen that the
prototypes induced by our methods have a similar
distribution compared to the original numerals.

In addition, we select several typical numerals
and non-numerical words and project their em-
beddings to 2D using t-SNE (Maaten and Hinton,
2008) (Figure 3). We use embeddings learned on
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SOM GMM
prototype number log transform stage prototype number log transform initialization EM

Word similarity (Wiki1B) 200 dataset 200 True random hard
Magnitude (Wiki1B) 200 dataset 300 True random soft
Numeration (Wiki1B) 300 similarity function 500 True random soft

Numeral Prediction (Wiki1B) 300 similarity function 300 False random hard
Numeral Prediction (Numeracy-600k) 50 dataset 200 False random hard

Sequence Labeling 100 % 15 dataset 30 False random soft
Sequence Labeling 30 % 10 dataset 15 False k-means soft
Sequence Labeling 10 % 25 similarity function 20 False from-som soft

Table 7: Hyper-parameter values for GMM and SOM based methods for each experiment.

embed
dim

context
window

negative
samples

epoch batch size learning
rate

vocabulary
size

Word similarity (Wiki1B) 300 5 5 1 4096, 2048 5× 10−3 3× 105

Magnitude (-MAG) (Wiki1B) 300 5 5 1 4096, 2048 5× 10−3 3× 105

Numeration (-NUM) (Wiki1B) 300 5 5 1 4096, 2048 5× 10−3 3× 105

Numeral Prediction (Wiki1B) 300 5 5 1 4096, 2048 5× 10−3 3× 105

Numeral Prediction (Numeracy-600k) 300 2 5 10 4096, 2048 5× 10−3 1× 105

Sequence Labeling 100% 30% 10% 50 2 5 10 50 5× 10−2 500, 550

Table 8: Values of general hyper-parameters for each experiment.

Wikipedia-1B corpus using the SOM and GMM
methods. The examples and the figures show that
our model does capture some semantic relations
between numeral quantities and normal words.

We show the training speed of each embedding
method on the Wikipedia-1B dataset in Table 9.
The batch size is set to 2048 for all the methods.
Our methods are slower than NumAsTok but are
faster than D-LSTM.

D Augmented and Hard Test Sets in
Sequence Labeling

The augmented test set is created by reasonably per-
turbing the numerals in a sentence. For example,
for a numeral ‘173’ that describes height, we gen-
erate new samples by changing ‘173’ to ‘174’ or
‘175’ while keeping the other non-numerical words
in the sentence unchanged. For a decimal such as
‘1.7 meters’, we change it to ‘1.6’ or ‘1.8’. The
perturbation will not change the decimal places of
numerals and will only change the quantity slightly,
which makes the generated sentences reasonable.

The hard test set is created by manually collect
‘hard’ samples in the original test set. Hard samples
do not have explicit patterns, meaning that a nu-
meral’s tag cannot be easily inferred by its adjacent
words. For example, tags of numerals followed by
units like ‘cm’, ‘m’, ‘kg’, ‘years’ and ‘feet’ can
be figured out easily, so we exclude them from the
hard test set. Customers are very likely to use am-
biguous expressions like: ‘I’m 16.5, can I buy 24?’,
where 16.5 is about foot length and 24 is the shoe

size. These ambiguous sentences are included in
the hard test set.

E Statistics of Sequence Labeling Dataset

We show the statistics of the customer-service
dataset in the Table 10. The vocabulary is small
because the dataset is confined to a specific domain:
online customer service chat log about apparel pur-
chase. In this dataset, most of the sentences are
about sizes of various kinds of clothes and are very
short and ambiguous.

F Sequence labeling result with standard
deviation.

We also show the sequence labeling result with
standard deviation in Table 11. The standard devia-
tion is small, so the result is stable.
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(a) Numerals in Wikipedia 1B (b) Prototypes of SOM-500 (c) Prototypes of GMM-500-soft

Figure 2: Histograms of numerals and learned prototypes that range from 0 to 1013. The horizontal axis repre-
sents the numeral quantity and the vertical axis represents the number of occurrences, ‘500’ means the number of
prototypes, ‘soft’ means soft-EM.

Method SOM GMM NumAsTok D-LSTM Fixed

Speed (sent/s) 13590.93 12691.18 22907.97 8421.66 13055.08

Table 9: Training speed for each methods.

Number of Sentences
Train Dev Original Test Augmented Test Hard Test
1389 793 1802 8052 726

Statistics of Training Set
Token Vocab Numeral Vocab Avg sent length Numeral Ratio labels

505 234 10.42 15.89 % 21

Table 10: Statistics of customer-service dataset.
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(a) t-SNE plot for embedding trained by the SOM-based method with 200 prototypes.

(b) t-SNE plot for embedding trained by the GMM-based method with 300 prototypes,
random initialization and soft-EM training.

Figure 3: 2D t-SNE results for the SOM-based and GMM-based methods.



2599

Original Augmented Hard
Acc P R F1 Acc P R F1 Acc P R F1

100%

GMM
97.12
±0.05

91.19
±0.11

90.46
±0.17

90.83
±0.14

97.02
±0.06

91.28
±0.17

90.18
±0.19

90.72
±0.18

96.19
±0.05

86.66
±0.13

85.91
±0.36

86.28
±0.24

SOM
97.04
±0.04

90.74
±0.15

90.45
±0.10

90.60
±0.12

97.03
±0.03

91.19
±0.14

90.43
±0.11

90.81
±0.13

96.06
±0.09

86.18
±0.14

85.93
±0.32

86.06
±0.23

D-LSTM
96.72
±0.06

89.84
±0.26

88.80
±0.24

89.32
±0.25

96.72
±0.07

90.40
±0.29

88.99
±0.23

89.69
±0.26

95.52
±0.14

84.19
±0.66

83.30
±0.55

83.74
±0.60

Fixed
95.75
±0.11

86.19
±0.38

87.42
±0.21

86.80
±0.29

95.86
±0.10

87.13
±0.25

87.65
±0.28

87.39
±0.26

93.97
±0.16

78.39
±0.46

80.18
±0.43

79.27
±0.45

NumAsTok
96.88
±0.07

91.37
±0.40

89.29
±0.09

90.32
±0.21

96.36
±0.05

90.99
±0.41

87.39
±0.09

89.15
±0.20

96.00
±0.10

87.11
±0.52

85.12
±0.03

86.10
±0.26

30%

GMM
96.21
±0.07

89.55
±0.15

86.07
±0.32

87.78
±0.24

95.92
±0.09

89.07
±0.32

85.33
±0.40

87.16
±0.36

95.27
±0.13

84.42
±0.41

81.62
±0.47

82.99
±0.43

SOM
96.20
±0.03

89.50
±0.17

86.18
±0.29

87.81
±0.08

95.88
±0.08

89.12
±0.16

85.29
±0.41

87.16
±0.13

95.23
±0.02

84.44
±0.30

81.50
±0.22

82.94
±0.09

D-LSTM
95.55
±0.08

86.83
±0.29

83.88
±0.36

85.33
±0.32

95.30
±0.12

86.22
±0.41

83.13
±0.50

84.64
±0.46

94.32
±0.07

80.10
±0.33

78.17
±0.39

79.12
±0.35

Fixed
94.67
±0.06

83.51
±0.21

82.69
±0.18

83.10
±0.12

94.48
±0.08

83.40
±0.23

82.02
±0.26

82.71
±0.17

92.92
±0.05

75.03
±0.06

75.18
±0.38

75.10
±0.17

NumAsTok
95.58
±0.03

89.18
±0.25

83.55
±0.31

86.27
±0.10

94.57
±0.07

88.39
±0.40

79.94
±0.16

83.95
±0.21

94.65
±0.03

84.42
±0.39

79.06
±0.23

81.65
±0.10

10%

GMM
93.43
±0.12

82.36
±0.17

75.01
±0.52

78.51
±0.21

92.78
±0.03

81.48
±0.25

72.85
±0.36

76.92
±0.14

93.19
±0.04

80.26
±0.41

72.71
±0.09

76.30
±0.19

SOM
93.48
±0.11

82.13
±0.26

75.11
±0.41

78.46
±0.21

92.87
±0.10

80.96
±0.25

73.22
±0.37

76.89
±0.19

93.24
±0.10

79.47
±0.07

73.04
±0.49

76.11
±0.30

D-LSTM
92.53
±0.19

77.71
±0.38

71.45
±0.82

74.45
±0.61

91.99
±0.26

76.24
±0.40

69.96
±0.11

72.96
±0.80

92.10
±0.16

73.26
±0.26

68.72
±0.70

70.92
±0.40

Fixed
91.90
±0.05

75.39
±0.46

71.41
±0.58

73.34
±0.17

91.48
±0.12

73.96
±0.64

70.20
±0.73

72.02
±0.40

91.06
±0.06

69.50
±0.78

67.47
±0.27

68.46
±0.25

NumAsTok
92.31
±0.12

81.98
±0.44

70.51
±0.56

75.81
±0.29

90.77
±0.14

80.10
±0.65

64.95
±0.66

71.73
±0.23

92.00
±0.06

79.64
±0.64

67.95
±0.38

73.32
±0.20

Table 11: The results of sequence labeling. We report the accuracy, precision, recall, F1 score for the original,
augmented, and harder test sets with different training data sizes. Accuracy is in the token level and the other
metrics are in the entity level.


