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Abstract
This paper considers the problem of zero-shot
entity linking, in which a link in the test
time may not present in training. Following
the prevailing BERT-based research efforts,
we find a simple yet effective way is to ex-
pand the long-range sequence modeling. Un-
like many previous methods, our method does
not require expensive pre-training of BERT
with long position embeddings. Instead, we
propose an efficient position embeddings ini-
tialization method called Embedding-repeat,
which initializes larger position embeddings
based on BERT-Base. On Wikia’s zero-shot
EL dataset, our method improves the SOTA
from 76.06% to 79.08%, and for its long
data, the corresponding improvement is from
74.57% to 82.14%. Our experiments suggest
the effectiveness of long-range sequence mod-
eling without retraining the BERT model. 1

1 Introduction

Entity linking (EL) is the task of grounding en-
tity mentions by linking them to entries in a given
database or dictionary of entities. Traditional EL
approaches often assume that entities linked at the
test time are present in the training set. Neverthe-
less, many real-world applications prefer the zero-
shot setting, where there is no external knowledge
and a short text description provides the only in-
formation we have for each entity (Sil et al., 2012;
Wang et al., 2015). For zero-shot entity linking (Lo-
geswaran et al., 2019), it is crucial to consider the
context of entity description and mention, so that
the system can generalize to unseen entities. How-
ever, most of the BERT-based models are based
on a context window with 512 tokens, limited to
capturing the long-range of context. This paper de-
fines a model’s Effective-Reading-Length (ER-
Length) as the total length of the mention contexts

1Our code are publicly available. https://github.
com/seasonyao/Zero-Shot-Entity-Linking.

Figure 1: Only models with large ERLength can solve
this entity linking problem because only they can get
valuable critical information in the mention contexts
and entity description.

and entity description that it can read. Figure 1
demonstrates an example where long ERlengths
are more preferred than short ones.

Many existing methods that can be used to
expand ERLength (Sohoni et al., 2019; Dai
et al., 2019), however, often need to completely
re-do pre-training with the masked language
modeling objective on the vast general corpus (like
Wikipedia), which is not only very expensive but
also impossible in many scenarios.

This paper proposes a practical way,
Embeddings-repeat, to expand BERT’s ER-
Length by initializing larger position embeddings,
allowing reading all information in the context.
Note our method differs from previous works since
it can directly use the larger position embeddings
initialized from BERT-Base to do fine-tuning
on downstream tasks without any retraining.
Extensive experiments are conducted to compare
different ways of expanding ERLength, and the
results show that Embeddings-repeat can robustly

https://github.com/seasonyao/Zero-Shot-Entity-Linking
https://github.com/seasonyao/Zero-Shot-Entity-Linking
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improve performance. Most importantly, we
improve the accuracy from 76.06% to 79.08% in
Wikia’s zero-shot EL dataset, from 74.57% to
82.14% for its long data. Since our method is
effective and easy to implement, we expect our
method will be useful for other downstream NLP
tasks.

2 Related work

Zero-shot Entity Linking Most state-of-the-art
entity linking methods are composed of two steps:
candidate generation (Sil et al., 2012; Vilnis et al.,
2018; Radford et al., 2018) and candidate ranking
(He et al., 2013; Sun et al., 2015; Yamada et al.,
2016). Logeswaran et al. (2019) proposed the zero-
shot entity linking task, where mentions must be
linked to unseen entities without in-domain labeled
data. For each mention, the model first uses BM25
(Robertson and Zaragoza, 2009) to generate 64 can-
didates. For each candidate, BERT (Devlin et al.,
2018) will read a sequence pair combining mention
contexts and entity description and produce a vec-
tor representation for it. Then, the model will rank
the candidates based on these vectors. This paper
discusses how to improve Logeswaran et al. (2019)
by efficiently expanding the ERLength.

Modeling long documents The simplest way to
work around the 512 limit is to truncate the docu-
ment(Xie et al., 2019; Liu et al., 2019). It suffers
from severe information loss, which does not meet
sufficient information in the zero-shot entity link-
ing. Recently there has been an explosive amount
of efforts to improve long-range sequence model-
ing (Sukhbaatar et al., 2019; Rae et al., 2019; Child
et al., 2019; Ye et al., 2019; Qiu et al., 2019; Lam-
ple et al., 2019; Lan et al., 2019). However, they
all need to initialize new position embeddings and
do expensive retraining on the general corpus (like
Wikipedia) to learn the positional relationship in
longer documents before fine-tuning downstream
tasks. Moreover, the exploration of the impact of
long-range sequence modeling on entity linking
is still blank. So in this study, we will explore a
different approach, which initializes larger posi-
tion embeddings based on the existing small one
in BERT-Base, and can be used directly in the fine-
tuning without expensive retraining.

Figure 2: BERT doing entity linking with larger posi-
tion embeddings

3 Method

3.1 Overview
Figure 2 describes how to use BERT for zero-

shot entity linking tasks with larger position em-
beddings. Following Logeswaran et al. (2019),
we adopt a two-stage pipeline consisting of a fast
candidate generation stage, followed by a more
expensive but powerful candidate ranking stage
(Ganea and Hofmann, 2017; Kolitsas et al., 2018;
Wu et al., 2019). We use BM25 for the candi-
date generation stage and get 64 candidate enti-
ties for every mention. For the candidate rank-
ing stage, as in BERT, the mention contexts m
and candidate entity description e are concatenated
as a sequence pair together with special start and
separator tokens: ([CLS] m [SEP] e [SEP]). The
Transformer (Vaswani et al., 2017) will encode this
sequence pair, and the position embeddings inside
will capture the position information of individual
words. At the last hidden layer, the Transformer
produces a vector representation hm,e of the input
pair through the special pooling token [CLS]. And
then entities in a given candidate set are scored as
softmax(ω>hm,e) where ω is a learned parame-
ter vector.

Since the size of position embeddings is limited
to 512 in BERT, how to capture position informa-
tion beyond this size is what we hope to improve.
In general, for new and larger position embeddings,
we often need to re-initialize it with the larger size,
and then retrain on general corpus like Wikipedia
to learn the positional relationship in longer doc-
uments. However, we found that the relationship
between different positions in the text is related.
We can initialize larger position embeddings from
the small ones in BERT-Base, and then without any
expensive retraining, directly use it to complete the
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Method ERLength
eval

test
set1 set2 set3 set4 avg long

Logeswaran et al. (2019) 256 83.40 79.00 73.03 68.82 76.06 74.57 75.06
BERT 512 83.45 80.03 71.88 72.53 76.97 78.54 -
Logeswaran et al. (2019) (DAP) 256 82.82 81.59 75.34 72.52 78.07 76.89 77.05
Erepeat 1024 87.02 81.52 73.48 74.37 79.08 82.14 77.58
Erepeat + DAP 1024 89.67 83.53 75.37 74.96 80.88 82.14 79.64

Table 1: Our methods with long ERlength outperform state of the art. Especially, the accuracy of the long data
increases from 74.57% to 82.14% compared with the benchmark. Here, we call all data whose DLength exceeds
512 (the maximum number BERT can read) as long data. If we also use DAP, the best accuracy is 80.88% in
validation data, and 79.64% in test data. Note: set1: Coronation street, set2: Muppets, set3: Ice hockey, set4:
Elder scrolls, DAP: Domain Adaptive Pre-training (Logeswaran et al., 2019).

fine-tuning on the downstream tasks.

3.2 Position embeddings initialization

Figure 3: BERT model with larger position embed-
dings which initialized from different method

It is reasonable to assume that the larger position
embeddings have similar first 512 values with the
small one since they all express the corresponding
relationship between tokens when the input length
is less than 512. For those positions over 512, we
introduce a particular method Embeddings-repeat
(Erepeat) to initialize larger position embeddings
by repeating the small one from BERT-Base as
analysis of BERT’s attention heads shows a strong
learned bias to attend to the local context, including
the previous or next token (Clark et al., 2019). We
assume using Erepeat preserves this local structure
everywhere except at the partition boundaries. For
example, for a 1024 position embeddings model,
we will initialize the first 512 positions and the last
512 positions, respectively, from BERT-Base.

To verify the rationality of Erepeat, we also pro-
posed two other methods as the comparison. Ehead

assumes only the first 512 positions in the larger
position embeddings are similar to that in the small
one, so it initializes the first 512 positions from
BERT-Base and randomly initializes those exceed-
ing 512. Econstant also uses position embeddings
in BERT-Base to initialize its first 512 positions.

However, it uses the value of position 512 to ini-
tialize those exceeding 512, since it assumes the
relationship between two tokens over a long dis-
tance tend to be constant. In the following experi-
mental part, we show that at least in this task, using
Erepeat to expand the ERLength of BERT is most
effective.

4 Experiments

4.1 Dataset and experiment setup

We use Wikia’s zero-shot EL dataset constructed
by Logeswaran et al. (2019), which to our knowl-
edge, is the best zero-shot EL benchmark. To show
the importance of long-range sequence modeling,
we define the data’s DLength as the total length
of the mention contexts and entity description
and examine the distribution of DLength on the
dataset. As shown in Table 2, We found about half
of the data have a DLength exceeding 512 tokens.
Furthermore, 93% of them are less than 1024. So
we set the model’s ERLength range from 0 to
1024, with which we explore how continuously
expanding the model’s ERLength will affect its
performance on Wikia’s zero-shot EL dataset.
When we increase ERLength, we will assign the
same size growth to the mention contexts and
entity description, which we find is the most
reasonable through our related experiments.

For all experiments, we follow the most recent
work in studying zero-shot entity linking. We
use the BERT-Base model architecture in all our
experiments. The Masked LM objective (Devlin
et al., 2018) is used for unsupervised pre-training.
For fine-tuning language models (in the case of
multi-stage pre-training) and fine-tuning on the
Entity-Linking task, we use a small learning rate
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Proportion of data in different DLength intervals

DLength (0,200) [200,300) [300,400) [400,500) [500,600) [600,700) [700,800) [800,900) [900,1000) [1000,+∞)

% Of total 10.62 14.62 11.92 9.96 15.18 14.11 8.56 4.91 3.39 6.83
Accuracy for model with different ERLength on different DLength interval

E
R

L
en

gt
h

64 60.76 62.10 62.20 58.61 64.18 61.50 62.45 60.52 65.41 62.57
128 73.57 70.57 71.31 67.64 72.34 69.34 70.87 70.12 68.49 71.69
256 75.52 74.16 75.50 73.34 75.35 75.47 75.11 73.71 77 74.34
384 75.72 77.11 78.44 74.03 78.00 75.84 77.07 78.44 75.51 78.96
512 76.64 75.81 78.00 74.68 77.99 77.33 78.97 81.34 75.48 79.49
768 75.56 75.66 79.08 75.15 77.87 78.54 78.54 82.11 78.22 79.96

1024 75.80 76.40 80.54 75.47 77.7 77.51 79.65 81.60 81.27 83.58

Table 2: The table shows the proportion of different DLength data and the accuracy of different ERLength models
on different DLength data. Red represents the accuracy of the leading echelon in certain DLength data. It shows
a cascading downward trend, which means that for larger DLength data, only models with larger ERLength can
perform well, and even if ERLength is much larger than DLength, accuracy will not decline.

of 2e-5, following the recommendations from
Devlin et al. (2018). All models are implemented
in Tensorflow and optimized with Adam. All
experiments were conducted with v3-8 TPU on
Google Cloud.

Like Logeswaran et al. (2019), our entity linking
performance is evaluated on the subset of test
instances for which the gold entity is among
the top-k candidates retrieved during candidate
generation. Our IR-based candidate generation has
a top-64 recall of 76% and 68% on the validation
and test sets, respectively. Strengthening the
candidate generation stage improves the final
performance, but this is outside our work scope.
Average performance across a set of domains is
computed by macro-averaging. Performance is
defined as the accuracy of the single-best identified
entity (top-1 accuracy).

4.2 Comparison of different initializations

Figure 4: The accuracy of the model with different po-
sition embeddings initialization methods in long and
short data. Note: We call all data whose DLength ex-
ceeds 512 as long data, otherwise, short data.

The results of different position embeddings ini-
tialization methods are shown in figure 4. It can be
found that for both long and short data, Erepeat has
achieved the best results, especially its performance
on long data is impressive. When the model’s ER-
Length exceeds 512, only using Ehead produces
worse results, which shows the importance of us-
ing the information of the first 512 positions to
initialize the latter part. The model with Econstant

starts to decrease after its ERLength reaches about
768, which shows that its assumption is only rea-
sonable when the model’s ERLength is less than
768. Only when using Erepeat to initialize we will
see a stable and continuous improvement, which
shows that only its ”local structure” assumption ap-
plies to almost all theoretical lengths here (from 0
to about 1024). This also makes it an ideal method
to explore the impact of increasing ERLength.

Table 1 suggests our method improves state of
the art on Wikia’s zero-shot EL dataset. Compared
to Logeswaran et al. (2019), if we use Erepeat to
increase the model’s ERLength to 1024, we im-
prove the accuracy from 76.06% to 79.08%, and
for the long data, the improvement is from 74.57%
to 82.14%. What’s more, we also try the Do-
main Adaptive Pre-training (DAP) method in Lo-
geswaran et al. (2019). The combination of DAP
and 1024 ERLength raises the result to 80.88%.

4.3 Impact of increasing ERLlength

We further explore the impact of BERT’s ER-
Length on the zero-shot EL task. The red in the
table 2 represents the accuracies in the first echelon
in each column (for data within a specific DLength
interval). It shows a clear step-down trend, which
means data with a larger DLength often requires a
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model with a larger ERLength. What’s more, for
any column, if we continue to increase the model’s
ERLength, the accuracy will stabilize within a spe-
cific range after the ERLength exceeds most data’s
DLengths. So the last row in the table is always
red, which means that the model with the largest
ERLength can always achieve the best level of ac-
curacy on all data of different DLengths.

Figure 5: The proportion of win/fail cases during the
increase in ERLength. We define win case as the ini-
tially wrong data but is now correct after increasing ER-
Length, and define fail case as the initially correct data
is now wrong after increasing ERLength.

Figure 5 shows the changes of win and fail cases
when expanding the BERT’s ERLength. Generally
speaking, when the model can read more content,
its accuracy will increase for more valuable infor-
mation (win case) and decrease for more noise
(fail case). The results illustrate that BERT can
always use more useful information to help itself
while being less disturbed by noise. This once
again demonstrates the power of the BERT’s full-
attention mechanism. This is also the basis on
which we can continuously expand BERT’s ER-
Length and continue to benefit. Therefore, for a
particular dataset, when we set the ERLength of
the BERT, letting it exceed more data’s DLength
can always bring more improvements.

Also, in the figure 6 we explore the importance
of mention contexts and entity descriptions. On
Wikia’s zero-shot EL dataset, in our settings for
BERT with 1024 ERLength, the mention contexts
and entity description account for 512, respectively.
In figure 6, if we unilaterally reduce the mention
contexts and entity description from 512 to 50, the
change of accuracy is shown in the figure. It can be
found that the two are basically equally important,
and no matter which side is reduced, the accuracy
will gradually decrease. Therefore, when increas-

Figure 6: Importance of mention contexts and entity
description

ing the BERT ERLength here, the best way is to
increase the content of mention contexts and entity
description at the same time.

5 Conclusions and future work

We propose an efficient position embeddings
initialization method called Embeddings-repeat,
which initializes larger position embeddings based
on BERT models. For the zero-shot entity linking
task, our method improves the SOTA from 76.06%
to 79.08% on its dataset. Our experiments suggest
the effectiveness of increasing ERLength as large
as possible (e.g., the length of the longest data in
the EL experiments). Our future work will be to
extend our methods to other NLP tasks.
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