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Abstract

Answer validation in machine reading compre-
hension (MRC) consists of verifying an ex-
tracted answer against an input context and
question pair. Previous work has looked at
re-assessing the “answerability” of the ques-
tion given the extracted answer. Here we ad-
dress a different problem: the tendency of ex-
isting MRC systems to produce partially cor-
rect answers when presented with answerable
questions. We explore the nature of such er-
rors and propose a post-processing correction
method that yields statistically significant per-
formance improvements over state-of-the-art
MRC systems in both monolingual and mul-
tilingual evaluation.

1 Introduction

Extractive machine reading comprehension (MRC)
has seen unprecedented progress in recent years
(Pan et al., 2019; Liu et al., 2020; Khashabi et al.,
2020; Lewis et al., 2019). Nevertheless, existing
MRC systems—readers, henceforth—extract only
partially correct answers in many cases. At the time
of this writing, for example, the top systems on
leaderboards like SQuAD (Rajpurkar et al., 2016),
HotpotQA (Yang et al., 2018) and Quoref (Dasigi
et al., 2019) all have a difference of 5–13 points
between their exact match (EM) and F1 scores,
which are measures of full and partial overlap with
the ground truth answer(s), respectively. Figure 1
shows three examples of such errors that we ob-
served in a state-of-the-art (SOTA) RoBERTa-large
(Liu et al., 2019) model on the recently released
Natural Questions (NQ) (Kwiatkowski et al., 2019)
dataset. In this paper, we investigate the nature of
such partial match errors in MRC and also their
post hoc correction in context.

∗Work done during AI Residency at IBM Research.
† Corresponding author.

Q: what type of pasta goes in italian wedding soup
GT: usually cavatelli, acini di pepe, pastina, orzo, etc.
Prediction: acini di pepe

Q: when does precipitate form in a chemical reaction
GT: When the reaction occurs in a liquid solution
Prediction: Precipitation is the creation of a solid from 
a solution. When the reaction occurs in a liquid 
solution

Q: what is most likely cause of algal blooms
GT: an excess of nutrients, particularly some 
phosphates
Prediction: Freshwater algal blooms are the result of 
an excess of nutrients

Figure 1: Examples of partially correct MRC predic-
tions and corresponding ground truth (GT) answers.
The reader fails to find a minimal yet sufficient answer
in all three cases.

Recent work on answer validation (Peñas et al.,
2007) has focused on improving the prediction of
the answerability of a question given an already
extracted answer. Hu et al. (2019) look for support
of the extracted answer in local entailments be-
tween the answer sentence and the question. Back
et al. (2020) propose an attention-based model
that explicitly checks if the candidate answer sat-
isfies all the conditions in the question. Zhang
et al. (2020) use a two-stage reading process: a
sketchy reader produces a preliminary judgment
on answerability and an intensive reader extracts
candidate answer spans to verify the answerability.

Here we address the related problem of improv-
ing the answer span, and present a correction
model that re-examines the extracted answer in
context to suggest corrections. Specifically, we
mark the extracted answer with special delimiter
tokens and show that a corrector with architecture
similar to that of the original reader can be trained
to produce a new accurate prediction.

Our main contributions are as follows: (1) We
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Error %
Single-Span GT 67
Prediction ⊂ GT 33
GT ⊂ Prediction 28
Prediction ∩ GT 6= ∅ 6

Multi-Span GT 33

Table 1: Types of errors in NQ dev predictions with a
partial match with the ground truth.

analyze partially correct predictions of a SOTA En-
glish reader model, revealing a distribution over
three broad categories of errors. (2) We show that
an Answer Corrector model can be trained to cor-
rect errors in all three categories given the question
and the original prediction in context. (3) We fur-
ther show that our approach generalizes to other
languages: our proposed answer corrector yields
statistically significant improvements over strong
RoBERTa and Multilingual BERT (mBERT) (De-
vlin et al., 2019) baselines on both monolingual
and multilingual benchmarks.

2 Partial Match in MRC

Short-answer extractive MRC only extracts short
sub-sentence answer spans, but locating the best
span can still be hard. For example, the answer
may contain complex substructures including multi-
item lists or question-specific qualifications and
contextualizations of the main answer entity. This
section analyzes the distribution of broad categories
of errors that neural readers make when they fail to
pinpoint the exact ground truth span (GT) despite
making a partially correct prediction.

To investigate, we evaluate a RoBERTa-large
reader (details in Section 3) on the NQ dev set and
identify 587 examples where the predicted span has
only a partial match (EM = 0, F1 > 0) with the GT.
Since most existing MRC readers are trained to pro-
duce single spans, we discard examples where the
NQ annotators provided multi-span answers con-
sisting of multiple non-contiguous subsequences
of the context. After discarding such multi-span
GT examples, we retain 67% of the 587 originally
identified samples.

There are three broad categories of partial match
errors:

1. Prediction ⊂ GT: As the top example in Fig-
ure 1 shows, in these cases, the reader only ex-
tracts part of the GT and drops words/phrases
such as items in a comma-separated list and

Figure 2: Flow of an MRC instance through the reader-
corrector pipeline. The corrector takes an input, with
special delimiter tokens ([Td]) marking the reader’s pre-
dicted answer in context, and makes a new prediction.

qualifications or syntactic completions of the
main answer entity.

2. GT ⊂ Prediction: Exemplified by the second
example in Figure 1, this category comprises
cases where the model’s prediction subsumes
the closest GT, and is therefore not minimal.
In many cases, these predictions lack syntactic
structure and semantic coherence as a textual
unit.

3. Prediction ∩ GT 6= ∅: This final category con-
sists of cases similar to the last example of Fig-
ure 1, where the prediction partially overlaps
with the GT. (We slightly abuse the set notation
for conciseness.) Such predictions generally
exhibit both verbosity and inadequacy.

Table 1 shows the distribution of errors over all
categories.

3 Method

In this section, we describe our approach to correct-
ing partial-match predictions of the reader.

3.1 The Reader
We train a baseline reader for the standard MRC
task of answer extraction from a passage given a
question. The reader uses two classification heads
on top of a pre-trained transformer-based language
model (Liu et al., 2019), pointing to the start and
end positions of the answer span. The entire net-
work is then fine-tuned on the target MRC training
data. For additional details on a transformer-based
reader, see (Devlin et al., 2019).

3.2 The Corrector
Our correction model uses an architecture that is
similar to the reader’s, but takes a slightly differ-
ent input. As shown in Figure 2, the input to the
corrector contains special delimiter tokens marking
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the boundaries of the reader’s prediction, while the
rest is the same as the reader’s input. Ideally, we
want the model to keep answers that already match
the GT intact and correct the rest.

To generate training data for the corrector, we
need a reader’s predictions for the training set. To
obtain these, we split the training set into five folds,
train a reader on four of the folds and get predic-
tions on the remaining fold. We repeat this process
five times to produce predictions for all (question,
answer) pairs in the training set. The training ex-
amples for the corrector are generated using these
reader predictions and the original GT annotations.
To create examples that do not require correction,
we create a new example from each original ex-
ample where we delimit the GT answer itself in
the input, indicating no need for correction. For
examples that need correction, we use the reader’s
top k incorrect predictions (k is a hyperparameter)
to create an example for each, where the input is
the reader’s predicted span and the target is the GT.
The presence of both GT (correct) and incorrect
predictions in the input data ensures that the cor-
rector learns both to detect errors in the reader’s
predictions and to correct them.

4 Experiments

4.1 Datasets
We evaluate our answer correction model on two
benchmark datasets.

Natural Questions (NQ) (Kwiatkowski et al.,
2019) is an English MRC benchmark which
contains questions from Google users, and requires
systems to read and comprehend entire Wikipedia
articles. We evaluate our system only on the
answerable questions in the dev and test sets. NQ
contains 307,373 instances in the train set, 3,456
answerable questions in the dev set and 7,842
total questions in the blind test set of which an
undisclosed number is answerable. To compute
exact match on answerable test set questions, we
submitted a system that always outputs an answer
and took the recall value from the leaderboard.1

MLQA (Lewis et al., 2019) is a multilingual ex-
tractive MRC dataset with monolingual and cross-
lingual instances in seven languages: English (en),
Arabic (ar), German (de) , Spanish (es), Hindi (hi),
Vietnamese (vi) and Simplified Chinese (zh). It

1ai.google.com/research/NaturalQuestions/leaderboard

Model Dev Test
RoBERTa Reader 61.2 62.4
+ Corrector 62.8 63.7

Table 2: Exact Match results on Natural Questions.

has 15,747 answerable questions in the dev set and
a much larger test set with 158,083 answerable
questions.

4.2 Setup

Our NQ and MLQA readers fine-tune a RoBERTa-
large and an mBERT (cased, 104 languages) lan-
guage model, respectively. Following Alberti
et al. (2019), we fine-tune the RoBERTa model
first on SQuAD2.0 (Rajpurkar et al., 2018) and
then on NQ. Our experiments showed that training
on both answerable and unanswerable questions
yields a stronger and more robust reader for NQ,
even though we evaluate only on answerable ques-
tions. For MLQA, we follow Lewis et al. (2019)
to train on SQuAD1.1 (Rajpurkar et al., 2016), as
MLQA does not contain any training data. We ob-
tain similar baseline results as reported in (Lewis
et al., 2019). All our implementations are based on
the Transformers library by Wolf et al. (2019).

For each dataset, the answer corrector uses the
same underlying transformer language model as
the corresponding reader. While creating training
data for the corrector, to generate examples that
need correction, we take the two (k = 2) highest-
scoring incorrect reader predictions (the value of
k was tuned on dev). Since our goal is to fully
correct any inaccuracies in the reader’s prediction,
we use exact match (EM) as our evaluation metric.
We train the corrector model for one epoch with
a batch size of 32, a warmup rate of 0.1 and a
maximum query length of 30. For NQ, we use
a learning rate of 2e-5 and a maximum sequence
length of 512; the corresponding values for MLQA
are 3e-5 and 384, respectively.

4.3 Results

We report results obtained by averaging over three
seeds. Table 2 shows the results on the answerable
questions of NQ. Our answer corrector improves
upon the reader by 1.6 points on the dev set and 1.3
points on the blind test set.

Results on MLQA are shown in Table 3. We
compare performances in two settings: one with
the paragraph in English and the question in any

https://ai.google.com/research/NaturalQuestions/leaderboard
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En-Context G-XLT
Model Dev Test Dev Test

mBERT Reader 47.5 45.6 35.0 34.7
+ Corrector 48.3 46.4 35.5 35.3

Table 3: Exact match results on MLQA. En-Context
refers to examples with an English paragraph, G-XLT
refers to the generalized cross-lingual transfer task.

of the seven languages (En-Context), and the other
being the Generalized Cross-Lingual task (G-XLT)
proposed in (Lewis et al., 2019), where the final
performance is the average over all 49 (question,
paragraph) language pairs involving the seven lan-
guages.

q\c en es hi vi de ar zh

en 0.2↑ ↓0.1 ↓0.2 ↓0.4 ↓0.1 ↓0.1 ↓0.3
es 0.9↑ ↓0.2 ↓0.1 0.2↑ 0.8↑ 0.5↑ 1.4↑
hi 0.8↑ 0.8↑ 0.8↑ 0.8↑ 0.6↑ 0.4↑ 0.2↑
vi 0.9↑ 1.7↑ 0.7↑ 0.3↑ 1.3↑ 0.9↑ 0.5↑
de 1.7↑ 0.6↑ ↓0.1 0.6↑ 0.1↑ 1.3↑ 0.9↑
ar 0.5↑ 1.0↑ 0.4↑ 0.7↑ 0.9↑ 0.5↑ 0.4↑
zh 0.9↑ 0.1↑ 0.9↑ 0.8↑ 1.3↑ 0.4↑ 0.3↑

AVG 0.8↑ 0.6↑ 0.3↑ 0.4↑ 0.7↑ 0.6↑ 0.5↑

Table 4: Changes in exact match with the answer cor-
rector, for all the language pair combinations in the
MLQA test set. The final row shows the gain for each
paragraph language averaged over questions in differ-
ent languages.

Table 4 shows the differences in exact match
scores for all 49 MLQA language pair combina-
tions, from using the answer corrector over the
reader. On average, the corrector gives perfor-
mance gains for paragraphs in all languages (last
row). The highest gains are observed in English
contexts, which is expected as the model was
trained to correct English answers in context. How-
ever, we find that the approach generalizes well to
the other languages in a zero-shot setting as exact
match improves in 40 of the 49 language pairs.

We performed Fisher randomization tests
(Fisher, 1936) on the exact match numbers to ver-
ify the statistical significance of our results. For
MLQA, we found our reader + corrector pipeline
to be significantly better than the baseline reader on
the 158k-example test set at p < 0.01. For NQ, the
p-value for the dev set results was approximately
0.05.

Model EM
Reader 61.2

Ensemble of Readers 62.1
Reader + Corrector 62.8

Table 5: Error correction versus model ensembling.

5 Analysis

5.1 Comparison with Equal Parameters
In our approach, the reader and the corrector have
a common architecture, but their parameters are
separate and independently learned. To compare
with an equally sized baseline, we build an ensem-
ble system for NQ which averages the output logits
of two different RoBERTa readers. As Table 5
shows, the corrector on top of a single reader still
outperforms this ensemble of readers. These results
confirm that the proposed correction objective com-
plements the reader’s extraction objective well and
is fundamental to our overall performance gain.

5.2 Changes in Answers
We inspect the changes made by the answer correc-
tor to the reader’s predictions on the NQ dev set.
Overall, it altered 13% (450 out of 3,456) of the
reader predictions. Of all changes, 24% resulted in
the correction of an incorrect or a partially correct
answer to a GT answer and 10% replaced the origi-
nal correct answer with a new correct answer (due
to multiple GT annotations in NQ). In 57% of the
cases, the change did not correct the error. On a
closer look, however, we observe that the F1 score
went up in more of these cases (30%) compared to
when it dropped (15%). Finally, 9% of the changes
introduced an error in a correct reader prediction.
These statistics are shown in Table 6.

R\R+C Correct Incorrect
Correct 45 (10%) 43 (9%)

Incorrect 109 (24%) 253 (57%)

Table 6: Statistics for the correction model altering
original reader predictions. The row header refers to
predictions from the reader and the column header
refers to the final output from the corrector.

Table 7 shows some examples of correction
made by the model for each of the three single-
span error categories of Table 1. Two examples
wherein the corrector introduces an error into a pre-
viously correct output from the reader model are
shown in Table 8.
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Error Class Question Passage Prediction
Prediction ⊂ GT who won the king

of dance season 2
... Title Winner : LAAB Crew From
Team Sherif , 1st Runner-up : ADS
kids From Team Sherif , 2nd Runner-up
: Bipin and Princy From Team Jeffery ...

R: LAAB Crew

R+C: LAAB Crew From Team
Sherif

GT ⊂ Prediction unsaturated fats are
comprised of lipids
that contain

... An unsaturated fat is a fat or fatty
acid in which there is at least one dou-
ble bond within the fatty acid chain. A
fatty acid chain is monounsaturated if it
contains one double ...

R: An unsaturated fat is a fat or
fatty acid in which there is at least
one double bond

R+C: at least one double bond
Prediction ∩ GT 6= ∅ what is most likely

cause of algal
blooms

... colloquially as red tides. Freshwater
algal blooms are the result of an excess
of nutrients , particularly some phos-
phates. The excess of nutrients may
originate from fertilizers that are applied
to land for agricultural or recreational ...

R: Freshwater algal blooms are
the result of an excess of nutrients

R+C: an excess of nutrients , par-
ticularly some phosphates

Table 7: Some examples for different error classes in the Natural Questions dev set wherein the answer corrector
corrects a previously incorrect reader output. Ground truth answer is marked in bold in the passage. R and C refer
to reader and corrector, respectively.

Question Passage Prediction
where are the cones
in the eye located

... Cone cells, or cones, are one of three types of
photoreceptor cells in the retina of mammalian
eyes (e.g. the human eye). They are responsible
for color vision and function best in ..

R: in the retina

R+C: retina

who sang the theme
song to step by step

... Jesse Frederick James Conaway (born 1948),
known professionally as Jesse Frederick, is an
American film and television composer and singer
best known for writing ...

R: Jesse Frederick James Conaway
R+C: Jesse Frederick James Conaway
(born 1948), known professionally as
Jesse Frederick

Table 8: Examples from the Natural Questions dev set wherein the answer corrector introduces an error in a
previously correct reader output. The ground truth answer is marked in bold in each passage. R and C refer to
reader and corrector, respectively.

Table 9 shows the percentage of errors corrected
in each error class. Corrections were made in all
three categories, but more in GT ⊂ Prediction and
Prediction ∩ GT 6= ∅ than in Prediction ⊂ GT , in-
dicating that the corrector learns the concepts of
minimality and syntactic structure better than that
of adequacy. We note that most existing MRC sys-
tems that only output a single contiguous span are
not equipped to handle multi-span discontinuous
GT.

6 Conclusion

We describe a novel method for answer span cor-
rection in machine reading comprehension. The
proposed method operates by marking an original,
possibly incorrect, answer prediction in context
and then making a new prediction using a correc-
tor model. We show that this method corrects the
predictions of a state-of-the-art English-language
reader in different error categories. In our experi-
ments, the approach also generalizes well to multi-
lingual and cross-lingual MRC in seven languages.
Future work will explore joint answer span cor-

Error class Total Corrected
GT ⊂ Prediction 165 (28%) 62 (38%)
Prediction ⊂ GT 191 (33%) 18 (9%)

Prediction ∩ GT 6= ∅ 37 (6%) 8 (22%)
Multi-span GT 194 (34%) -

Table 9: Correction statistics for different error cate-
gories in 587 partial match (EM=0, F1>0) reader pre-
dictions.

rection and validation of the answerability of the
question, re-using the original reader’s output repre-
sentations in the correction model and architectural
changes enabling parameter sharing between the
reader and the corrector.
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