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Abstract

This paper presents a new sequence-to-

sequence pre-training model called Prophet-

Net, which introduces a novel self-supervised

objective named future n-gram prediction and

the proposed n-stream self-attention mech-

anism. Instead of optimizing one-step-

ahead prediction in the traditional sequence-

to-sequence model, the ProphetNet is opti-

mized by n-step ahead prediction that pre-

dicts the next n tokens simultaneously based

on previous context tokens at each time step.

The future n-gram prediction explicitly encour-

ages the model to plan for the future tokens

and prevent overfitting on strong local cor-

relations. We pre-train ProphetNet using a

base scale dataset (16GB) and a large-scale

dataset (160GB), respectively. Then we con-

duct experiments on CNN/DailyMail, Giga-

word, and SQuAD 1.1 benchmarks for abstrac-

tive summarization and question generation

tasks. Experimental results show that Prophet-

Net achieves new state-of-the-art results on all

these datasets compared to the models using

the same scale pre-training corpus.

1 Introduction

Large-scale pre-trained language models (Devlin

et al., 2018; Radford et al., 2019; Yang et al., 2019)

and sequence-to-sequence models (Lewis et al.,

2019; Song et al., 2019; Raffel et al., 2019) have

achieved remarkable success in downstream tasks.

Autoregressive (AR) language modeling, which

estimates the probability distribution of the text

corpus, is widely used for sequence model-

ing and sequence-to-sequence (Seq2Seq) learn-

ing (Sutskever et al., 2014). Recently, it also be-

comes one of the successful self-supervised objec-

tives for large-scale pre-training as used in GPT-
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2 (Radford et al., 2019). Specifically, given a

text sequence x = (x1, . . . , xT ), AR language

modeling factorizes the likelihood into a product

p(x) =
∏T

t=1 p(xt|x<t). In this manner, language

models (LMs) and Seq2Seq models are usually

trained by teacher forcing. The models are opti-

mized to predict the next token given all previous

context tokens at each time step.

However, as discussed in previous works (Pas-

canu et al., 2013; Gulcehre et al., 2017; Serdyuk

et al., 2018), AR-based models may prefer to fo-

cus on the latest tokens rather than capture long-

term dependencies for the next token prediction.

The reasons are as follows: (a) Local correlations

such as bigram combination are usually stronger

than long-term dependencies. (b) Teacher forcing,

where the model focus on one-step-ahead predic-

tion for each time step, has no explicit bias toward

future token planning and modeling. As a result,

the model may learn a bias for language modeling;

that is, the local token combinations’ modeling is

overfitting, but the global coherence and long-term

dependency are underfitting (Krueger et al., 2016;

Merity et al., 2017; Serdyuk et al., 2018). During

inference, the generations tend to maintain local

coherence but lack meaningful global structure (Li

et al., 2017; Serdyuk et al., 2018), especially when

we use greedy decoding instead of beam search.

In this paper, we present a new large-scale pre-

trained Seq2Seq model called ProphetNet with

a novel self-supervised objective future n-gram

prediction. In addition to the traditional language

model (LM) or Seq2Seq model that optimizes one-

step-ahead prediction, the ProphetNet also learns n-

step ahead predictionThis future n-gram prediction

is served as extra guidance that explicitly encour-

ages the model to plan for future tokens and pre-

vents overfitting on strong local correlations. The

hidden states of ProphetNet are forced to contain

useful information for the next token and further
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help predict multiple future tokens.

There are two goals when designing ProphetNet:

(a) the model should be able to simultaneously

predict the future n-gram at each time step in an

efficient way during the training phase, and (b) the

model can be easily converted to predict the next

token only as original Seq2Seq model for inference

or fine-tuning phase. To achieve that, we extend the

two-stream self-attention proposed in XLNet (Yang

et al., 2019) to n-stream self-attention. Prophet-

Net contains a main stream self-attention, which is

the same as the self-attention in the original Trans-

former. Besides, we introduce n extra self-attention

predicting streams for future n-gram prediction,

respectively. During training, the i-th predicting

stream attends to the main stream’s hidden states to

predict the next i-th future token, which guarantees

every n continuous tokens in the target sequence

are trained to predict at one time step. Since the

main stream parameters are shared with every pre-

dicting stream, we can disable the n-stream self-

attention during inference. Only the next first token

is predicted for each time step, which is same as

the original Transformer Seq2Seq model.

For experiments, we use the proposed future n-

gram prediction with the mask based auto-encoder

denoising task (Song et al., 2019; Lewis et al.,

2019) which has been proved to be effective for

Seq2Seq pre-training as compared in Raffel et al.

(2019) for ProphetNet pre-training. We use two

scale pre-trained datasets to pre-train ProphetNet,

respectively: the base scale (16GB) dataset as used

in BERT (Devlin et al., 2018), and the large scale

(160GB) similar to BART (Lewis et al., 2019).

The pre-trained ProphetNet is further fine-tuned

on several NLG tasks. Experimental results show

that ProphetNet has achieved the best performance

on CNN/DailyMail, Gigaword, and SQuAD 1.1

question generation tasks compared to the mod-

els using the same base scale pre-training dataset.

For the large scale dataset pre-training experiment,

ProphetNet achieves new state-of-the-art results on

CNN/DailyMail and Gigaword, using only about

1/3 pre-training epochs of BART and about 1/5

pre-training corpus of T5 (Raffel et al., 2019) and

PEGASUS (Zhang et al., 2019).

2 ProphetNet

We propose a new Seq2Seq pre-training model

called ProphetNet, which is based on Trans-

former (Vaswani et al., 2017) encoder-decoder ar-

chitecture. Compared to the original Transformer

Seq2Seq model, ProphetNet introduces three modi-

fications: (a) The novel self-supervised objective

called future n-gram prediction as described in

§ 2.2. (b) The n-stream self-attention mechanism

as described in § 2.3. (c) The mask based auto-

encoder denoising task for Seq2Seq pre-training

as described in § 2.4. Figure 1 shows the archi-

tecture of ProphetNet. Before we describe our

model in detail, we first introduce the notations

and sequence-to-sequence learning.

2.1 Sequence-to-Sequence Learning

Given a text sequence pair (x, y), x =
(x1, . . . , xM ) is the source sequence with M to-

kens, and y = (y1, . . . , yT ) is the target se-

quence with T tokens. The Seq2Seq model

aims to model the conditional likelihood p(y|x),
which can be further factorized into a product

p(y|x) =
∏T

t=1 p(yt|y<t, x) according to the chain

rule, where y<t denotes the proceeding tokens be-

fore the position t. In general, the Seq2Seq model

employs an encoder that aims to encode the source

sequence representations and a decoder that mod-

els the conditional likelihood with the source rep-

resentations and previous target tokens as inputs.

Teacher forcing is usually used for model training.

The model is optimized to predict the next target

token yt given the previous golden context tokens

y<t and x at each time step.

2.2 Future N-gram Prediction

ProphetNet mainly changes the original Seq2Seq

optimization of predicting next single token as

p(yt|y<t, x) into p(yt:t+n−1|y<t, x) at each time

step t, where yt:t+n−1 denotes the next continuous

n future tokens. In other words, the next n future

tokens are predicted simultaneously.

Based on Transformer Seq2Seq architecture,

ProphetNet contains a multi-layer Transformer en-

coder with the multi-head self-attention mecha-

nism (Vaswani et al., 2017) and a multi-layer Trans-

former decoder with the proposed multi-head n-

stream self-attention mechanism. Given a source

sequence x = (x1, . . . , xM ), ProphetNet encodes

the x into a sequence representation, which is the

same as the original Transformer encoder:

Henc = Encoder(x1, . . . , xM ), (1)

where Henc denotes the source sequence represen-

tations. On the decoder side, instead of predicting
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Figure 1: The architecture of ProphetNet. For simplicity, we take bigram (n = 2) as an example to introduce

ProphetNet, whose modeling target is p(yt, yt+1|y<t, x) for each time step. The left part shows the encoder of

the ProphetNet which is the same as the original Transformer encoder. The right part presents the decoder of the

ProphetNet which incorporates the proposed n-stream self-attention. For Seq2Seq pre-training, we present the

example of inputs and outputs of the mask based auto-encoder denoising task. The token “ ” represents the mask

symbol [M]. Note that each xi and yi are the same in this task. The layer normalization and residual connection

are ignored.

only the next token at each time step, ProphetNet

decoder predicts n future tokens simultaneously as

we mentioned above:

p(yt|y<t, x), . . . , p(yt+n−1|y<t, x) = Decoder(y<t, Henc),

(2)

where the decoder outputs n probability at each

time step. The future n-gram prediction objective

can be further formalized as

L =−

n−1∑

j=0

αj ·

(
T−j
∑

t=1

log pθ(yt+j |y<t, x)

)

=− α0 ·

(
T∑

t=1

log pθ(yt|y<t, x)

)

︸ ︷︷ ︸

language modeling loss

−
n−1∑

j=1

αj ·

(
T−j
∑

t=1

log pθ(yt+j |y<t, x)

)

︸ ︷︷ ︸

future n-gram loss

. (3)

The above future n-gram prediction objective can

be seen to consist of two parts: (a) the conditional

LM loss which is the same as the original teacher

forcing, and (b) the n− 1 future token prediction

losses which force the model to predict the future

target tokens. The future n-gram prediction loss

explicitly encourages the model to plan for future

token prediction and prevent overfitting on strong

local correlations. αj is set to balance the weights

between the traditional language modeling and fu-

ture n-gram prediction. For now we set the αj with

a power attenuation function as:

αj =
γj

∑n−1
i=0 γi

, (4)

where the γ is the attenuation coefficient.

2.3 N-Stream Self-Attention

Ideally, we want the ProphetNet decoder to meet

two requirements described in the introduction:

trained to predict future n-grams simultaneously

and easily disable them in inference. In addition

to the masked multi-head self-attention (Vaswani

et al., 2017) of the original transformer decoder,

which is called main stream self-attention, the n-

stream self-attention mechanism incorporates n
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Figure 2: N-stream self-attention mechanism which contains a main stream self-attention and n predicting stream

self-attention. For simplicity sake, we take 2-stream self-attention (n = 2) as an example here. Figure (a) presents

the attention process of the main stream self-attention. Figure (b) and Figure (c) show the attention process of 1-st

predicting stream and 2-nd predicting stream, respectively.

extra self-attention predicting streams to predict

next n continuous future tokens respectively at

each time step. To be concrete, the i-th predicting

stream is responsible for modeling the probability

p(yt+i−1|y<t, x).
The n-stream self-attention mechanism is shown

in Figure 2. In this example, h stream is the main

stream, g stream and s stream are the next 1st and

2nd token predicting stream. As shown in Figure 2

(a), the attention mechanism of the main stream is

the same as the masked multi-head self-attention in

the traditional Transformer decoder, where a lower

triangular matrix is set to control that each position

can only attend to their previous tokens:

H(k+1) = MultiHead(H(k), H(k), H(k)), (5)

here we use Hk = (h
(k)
0 , . . . , h

(k)
T ) to denote the

sequence of the k-th layer hidden state of the main

stream. Implement of MultiHead can be refer-

enced to Transformer (Vaswani et al., 2017).

The i-th predicting stream predicts the next i-th

token based on the previous main stream hidden

states at each time step. In other words, the i-

th predicting stream predicts the yt based on the

previous tokens y<t−i+1. In this bigram (n = 2)

example, Figure 2 (b) shows the 1-st predicting

stream and its hidden state is calculated as:

g
(k+1)
t−1 = MultiHead(g

(k)
t−1, H

(k)
<t ⊕ g

(k)
t−1, H

(k)
<t ⊕ g

(k)
t−1),

(6)

where g
(k+1)
t−1 denotes the k + 1-th layer hidden

state of the 1-st predicting stream at time step t−1,

and ⊕ denotes concatenation operation. To cal-

culate g
(k+1)
t−1 , g

(k)
t−1 is taken as the attention query

while the attention value and key are previous t

hidden states of the main stream. Besides we take

g
(k)
t−1 as attention value and key to make the g

(k+1)
t−1

be position-aware. The g
(k+1)
t−1 is finally used to

predict yt.

Similarly, the hidden state of the 2-nd predicting

stream is calculated by:

s
(k+1)
t−1 = MultiHead(s

(k)
t−1, H

(k)
<t ⊕ s

(k)
t−1, H

(k)
<t ⊕ s

(k)
t−1),

(7)

where s
(k+1)
t−1 denotes the k + 1-th layer hidden

state of the 2-nd predicting stream at time step

t − 1, which will be finally used to predict yt+1.

Although the calculations of gt−1 for yt predic-

tion and st−1 for yt+1 prediction are very similar,

they are distinguished by different initialization

tokens, absolute position embedding, and relative

positional calculations.

We share the parameters of each predicting

stream and main stream during training. There-

fore, we can easily convert the ProphetNet decoder

to the traditional Transformer decoder by disabling

all the predicting streams during inference or fine-

tuning. Besides, since each predicting stream is

initialized with special tokens rather than the pre-

vious token, we combine the absolute positional

embedding and T5 (Raffel et al., 2019) proposed

bucket relative positional calculation to enhance

the positional information in our decoder.

2.4 Seq2Seq Pre-training on Denoising Task

We pre-train the ProphtNet on the large-scale unla-

beled text corpus with the auto-encoder denoising

task widely used for Seq2Seq pre-training (Song

et al., 2019; Lewis et al., 2019; Raffel et al., 2019).

This paper uses token span masking as our de-

noising task, which is the same as the MASS (Song

et al., 2019). As shown in Figure 1, we mask out

some token spans of the original text as the encoder

input, and the model learns to recover the masked
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tokens. Besides, unlike MASS learns to recover

one next token at each time step, ProphetNet learns

to recover the next n future tokens within each

masked token span.

3 Experiments and Results

In this section, we describe the experimental details

and results. We first describe the details of Prophet-

Net pre-training in § 3.1. Then we fine-tune the

ProphetNet on two downstream NLG tasks, includ-

ing text summarization as described in § 3.2 and

question generation as reported in § 3.3. We re-

port the experiment of large-scale pre-training in

§ 3.4. Results without pre-training are compared in

§ 3.5. We set predicting future gram length into 2

according to the analysis in § 3.6.

3.1 ProphetNet Pre-training

Model Configuration Our model is based on

Transformer (Vaswani et al., 2017) encoder-

decoder structure. We pre-train the ProphetNet,

which contains a 12-layer encoder and 12-layer de-

coder with 1024 embedding/hidden size and 4096

feed-forward filter size. The batch size and training

steps are set to 1024 and 500K, respectively. We

use Adam optimizer (Kingma and Ba, 2015) with

a learning rate of 3 × 10−4 for pre-training. The

implement of ProphetNet is also uploaded in the

attachment. Considering the training cost, we set

the n to be 2 for ProphetNet in the following exper-

iments. Further discussions are shown in § 3.6.

Pre-Training Dataset Following BERT (Devlin

et al., 2018), we use BookCorpus (Zhu et al., 2015)

and English Wikipedia (16GB in total) to pre-train

ProphetNet. We pre-train ProphetNet on this 16GB

dataset with 16×32GB NVIDIA V100 GPUs. Note

that we also pre-train ProphetNet on a larger scale

dataset described in § 3.4.

Pre-Training Setting The input length of

ProphetNet is set to 512. We randomly mask a con-

tinuous span in every 64 tokens. 80% of the masked

tokens are replaced by [M], 10% replaced by ran-

dom tokens, and 10% unchanged. The masked

length is set to 15% of the total number of to-

kens. Considering the computational cost, we fol-

low MASS (Song et al., 2019), where the decoder

only predicts the masked fragment. The attenuation

coefficient γ is set to 1.0.

3.2 Fine-tuning on Text Summarization

As a typical NLG task, abstractive text summariza-

tion aims to generate a short and fluent summary

of a long text document. We fine-tune and evaluate

ProphetNet on the two widely used text summariza-

tion datasets: (a) the non-anonymized version of

the CNN/DailyMail dataset (See et al., 2017), and

(b) Gigaword corpus (Rush et al., 2015).

CNN/DailyMail We use Adam opti-

mizer (Kingma and Ba, 2015) with a peak

learning rate 1 × 10−4. The batch size, warmup

steps, and the total fine-tune epoch are set to 512,

1000, and 10. We limit the length of the output

to between 45 and 110 tokens with a 1.2 length

penalty during inference. We set beam size to

5 and remove the duplicated trigrams in beam

search (Fan et al., 2017).

We compare our ProphetNet against following

baselines: LEAD-3 (Nallapati et al., 2016) which

takes the first three sentences as the summary; PT-

GEN (See et al., 2017) which is Seq2Seq model

incorporated with the pointer-generator network;

PTGEN+Coverage (See et al., 2017) which intro-

duce a coverage mechanism to PTGEN; Bottom-

Up (Gehrmann et al., 2018) which employs a

bottom-up content selector based on Seq2Seq

model; S2S-ELMo (Edunov et al., 2019) which

uses the pre-trained ELMo (Peters et al., 2018)

representations. Besides, we also compare our

method with several pre-training based strong base-

lines: BERTSUMABS (Liu and Lapata, 2019),

MASS (Song et al., 2019), and UniLM (Dong

et al., 2019). These pre-training-based strong base-

lines are all pre-trained on the same 16GB Book-

Corpus + English Wikipedia dataset as ProphetNet.

Following See et al. (2017), we report the F1

scores of ROUGE-1, ROUGE-2 and ROUGE-

L (Lin, 2004). Du et al. (2017) The results are

presented in Table 1. From the results, we can see

that the ProphetNet achieves the best performances

on all metrics.

Gigaword We use Adam optimizer with a peak

learning rate 1× 10−4. The batch size is set to 128

and warm up steps to 1000. We fine-tune model

10 epochs with future bigram prediction training.

During inference, we set the length penalty to 1.0

and beam size to 4. We set the hyper-parameters

according to the performance on the dev set.

We compare our ProphetNet against following

baselines: OpenNMT (Klein et al., 2017) which
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Method ROUGE-1 ROUGE-2 ROUGE-L

LEAD-3 (Nallapati et al., 2017) 40.42 17.62 36.67
PTGEN (See et al., 2017) 36.44 15.66 33.42
PTGEN+Coverage (See et al., 2017) 39.53 17.28 36.38
S2S-ELMo (Edunov et al., 2019) 41.56 18.94 38.47
Bottom-Up (Gehrmann et al., 2018) 41.22 18.68 38.34
BERTSUMABS (Liu and Lapata, 2019) 41.72 19.39 38.76
BERTSUMEXTABS (Liu and Lapata, 2019) 42.13 19.60 39.18
MASS (Song et al., 2019) 42.12 19.50 39.01
UniLM (Dong et al., 2019) 43.33 20.21 40.51

ProphetNet 43.68 20.64 40.72

Table 1: Results on the CNN/DailyMail test set.

Method R-1 R-2 R-L

OpenNMT (Klein et al., 2017) 36.73 17.86 33.68
Re3Sum (Cao et al., 2018) 37.04 19.03 34.46
MASS (Song et al., 2019) 38.73 19.71 35.96
UniLM (Dong et al., 2019) 38.45 19.45 35.75

ProphetNet 39.55 20.27 36.57

Table 2: Results on Gigaword test set. R is short for

ROUGE.

implements the standard Seq2Seq model with at-

tention mechanism; Re3Sum (Cao et al., 2018)

which employs an extended Seq2Seq model to

generate summaries based on the retrieved can-

didate summaries. And two pre-training based

strong baselines: MASS (Song et al., 2019), and

UniLM (Dong et al., 2019). The results are pre-

sented in Table 2. It can be observed that Prophet-

Net outperforms previous models on all metrics.

Method B4 MTR R-L

CorefNQG (Du and Cardie, 2018) 15.16 19.12 -
SemQG (Zhang and Bansal, 2019) 18.37 22.65 46.68
UniLM (Dong et al., 2019) 21.63 25.04 51.09
ProphetNet 23.91 26.60 52.26

MP-GSN (Zhao et al., 2018) 16.38 20.25 44.48
SemQG (Zhang and Bansal, 2019) 20.76 24.20 48.91
UniLM (Dong et al., 2019) 23.08 25.57 52.03
ProphetNet 25.80 27.54 53.65

Table 3: Results on SQuAD 1.1 test set (with reference

of Du et al. (2017) tokenized). B4 is short for BLEU-

4, MTR is short for METEOR, and R-L is short for

ROUGE-L. The same model is used to evaluate on the

two different data splits.

3.3 Fine-tuning on Question Generation

The answer-aware question generation task (Zhou

et al., 2017) aims to generate a question that asks

towards the given answer span based on a given text

passage or document. We conduct experiments on

this task to further evaluate the ProphetNet model.

Following Du et al. (2017), we split the SQuAD

1.1 (Rajpurkar et al., 2016) dataset into training, de-

velopment and test sets. We also report the results

on the data split as did in Zhao et al. (2018), which

reverses the development set and test set.

The question generation task is typically formu-

lated as a Seq2Seq problem. The input passage

and the answer are packed as “answer [SEP] input

passage” as input, and the question is used as the

target output sequence. We fine-tune the Prophet-

Net model 10 epochs in the training set and report

the results of the two kinds of data splits as men-

tioned above. The first 512 tokens of the passage

are fed to the model. The peak learning rate is

1× 10−5 and the batch size is set to 28.

We compare ProphetNet against the following

models: CorefNQG (Du and Cardie, 2018) which

employs a feature-rich encoder based on Seq2Seq

model; MP-GSN (Zhao et al., 2018) which incor-

porates a gated self-attention encoder with max-

out pointer; SemQG (Zhang and Bansal, 2019)

which introduces two semantics-enhanced rewards

for Seq2Seq model training. Besides, we also com-

pare our model with UniLM (Dong et al., 2019),

which is the previous state-of-the-art on this task.

The results, according to the references provided

by Du et al. (2017) is shown in Table 3. The same

model and inference hyper-parameters are used for

the two different data split with swapped dev and

test set. It can be seen that ProphetNet outperforms

all previous methods with significant improvement.

3.4 Large-scale Pre-training

Recent works show that the pre-trained model’s

performance on the downstream task can be im-

proved when using larger scaled pre-training cor-

pora (Lewis et al., 2019; Raffel et al., 2019). We
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Dataset Method Corpus R-1 R-2 R-L

CNN/DailyMail

T5 (Raffel et al., 2019) 750GB 43.52 21.55 40.69
PEGASUSLARGE (C4) (Zhang et al., 2019) 750GB 43.90 21.20 40.76
PEGASUSLARGE (HugeNews) (Zhang et al., 2019) 3800GB 44.17 21.47 41.11
BART (Lewis et al., 2019) 160GB 44.16 21.28 40.90
ProphetNet 160GB 44.20 21.17 41.30

Gigaword
PEGASUSLARGE (C4) (Zhang et al., 2019) 750GB 38.75 19.96 36.14
PEGASUSLARGE (HugeNews) (Zhang et al., 2019) 3800GB 39.12 19.86 36.24
ProphetNet 160GB 39.51 20.42 36.69

Table 4: Results on the CNN/DailyMail and Gigaword test sets of large-scale pre-training models. R is short for

ROUGE, and Corpus denotes the size of the pre-training data.

also pre-train ProphetNet on the 160GB English

language corpora of news, books, stories, and

web text, which is similar1 to the corpus used

in BART (Lewis et al., 2019). The model con-

figuration is the same as described in § 3.1. We

fine-tune the ProphetNet on two downstream tasks

CNN/DailyMail and Gigaword after pre-training,

where the setting is the same as described in § 3.2.

We compare ProphetNet (160GB) against the fol-

lowing strong baselines: T5 (Raffel et al., 2019)

which is pre-trained on the text corpus of 750GB;

PEGASUSLARGE (Zhang et al., 2019) which is pre-

trained on the text corpus of 750GB and 3800GB,

respectively; And BART (Lewis et al., 2019) which

is pre-trained on the similar dataset as the Prophet-

Net (160GB).

We pre-train our model on 16 × 32GB NVIDIA

V100 GPUs with 14 epochs. We can see

that the performance increase as ProphetNet pre-

trains for more epochs on 160GB large-scale

dataset. The results on test set are shown in Ta-

ble 4. Our model achieves state-of-the-art per-

formance on CNN/DailyMail compared to other

baselines. It can be observed that the ROUGE-1

and ROUGE-L of ProphetNet on CNN/DailyMail

are the highest. Moreover, ProphetNet (160GB)

outperforms PEGASUSLARGE (C4 750GB) and

PEGASUSLARGE (HugeNews 3800GB) on Giga-

word using only about 1/5 and 1/20 of the pre-

training corpus, respectively. To the best of our

knowledge, ProphetNet also achieves new state-of-

the-art results on the Gigaword.

3.5 ProphetNet without Pre-training

ProphetNet achieves significant results improve-

ment after pre-training, we also curious about the

performance of ProphetNet when directly applied

1Due to CC-News is not officially released, we use similar
public news corpus REALNEWS (Zellers et al., 2019)

it to downstream tasks without pre-training. There-

fore, we evaluate the ProphetNet model without

pre-training on CNN/DailyMail. The ProphetNet

model without pre-training consists of 12-layer

encoder and 12-layer decoder with 768 embed-

ding/hidden size and 3072 feed-forward filter size.

We compare the ProphetNet model with the origi-

nal Seq2Seq Transformer which has the same archi-

tecture hyper-parameters of the ProphetNet. The

training and evaluation details are the same as de-

scribed in § 3.2. The results are shown in Table 5.

Experimental results show that our method can

significantly improve the model performance even

without pre-training.

Setting R-1 R-2 R-L

Transformer (Raffel et al., 2019) 39.19 17.60 36.69
ProphetNetw/o pre-train 40.66 18.05 37.79

Table 5: Results on CNN/DailyMail dev set without

pre-training

3.6 ProphetNet N-gram Comparison

ProphetNet predicts next contiguous n-gram to-

kens simultaneously for each time step. To ex-

plore the effectiveness of predicting n gram, we

compare our ProphetNet model with n=1, 2, and

3. We also compare the MASSbase which is very

similar to ProphetNetbase-1gram. The architec-

ture hyper-parameter of all the models is set to

6-layer encoder, 6-layer decoder, 768 hidden size,

and 12 attention heads, which are the same as

MASSbase. These models are also pre-trained

on the Wikipedia+BookCorpus dataset with 125k

steps. Other hyper-parameters are the same as the

description in § 3.1. As we mentioned in § 2.2, we

set different attenuation coefficient for the power

attenuation function. For ProphetNetbase-2gram, γ

is set to 1.0. For ProphetNetbase-3gram model, the
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attenuation coefficient γ is set to 0.5.

The pre-trained models are then fine-tuned on

CNN/DailyMail. We report the F1 scores of

ROUGE-1, ROUGE-2 and ROUGE-L. The re-

sults are shown in Table 6. We can see that

the performance of ProphetNetbase-3gram and

ProphetNetbase-2gram is comparable. Both of them

perform better than MASSbase and ProphetNetbase-

1gram. Considering the computational and time

cost, we use ProphetNetbase-2gram in other experi-

ments due to its training speed is 15% faster than

ProphetNetbase-3gram.

Setting R-1 R-2 R-L

MASSbase 42.12 19.50 39.01
ProphetNetbase-1gram 42.21 19.54 39.06
ProphetNetbase-2gram 42.52 19.78 39.59
ProphetNetbase-3gram 42.61 19.83 39.67

Table 6: n-gram comparison results on CNN/DailyMail

test set

4 Related Work

Unsupervised pre-training has been successfully ap-

plied to various natural language processing tasks.

GPT (Radford et al., 2018) takes plain text as pre-

training data to predict the next tokens with left-

ward tokens. It is based on the left-to-right lan-

guage model and can be used to generate stories

and continue to write for a given text. BERT (De-

vlin et al., 2018) and SpanBERT (Joshi et al., 2019)

use a Bi-directional language model to recover

masked tokens/spans for a given sentence. Bi-

directional information flow can be used to recover

the masked positions, but no left-to-right language

model dependency is learned. As a result, BERT

and SpanBERT bring significant improvement for

NLU tasks but are not suitable for generation tasks.

XLNet (Yang et al., 2019) predicts the tokens with

given positions and some tokens with their posi-

tions in the sentence in an AR manner. Although

it uses AR to build a permuted-ordered language

model, it is also not suitable for NLG tasks because

it brought too much noise for a left-to-right lan-

guage model. MASS (Song et al., 2019) pre-trains

the sequence-to-sequence model by dropping a con-

tinuous token span to corrupt the original text and

learns to recover it. T5 (Raffel et al., 2019) investi-

gates different model structures and different pre-

training tasks, and is pre-trained on a large scale

corpus named C4 which is 750GB. BART (Lewis

et al., 2019) uses the encoder-decoder structure to

generate the original sentence with its spoiled input

to denoise. In the BART decoder, the undamaged

language model is learned thus brings improvement

to NLG tasks.

Natural language generation methods are typi-

cally based on the left-to-right or right-to-left lan-

guage models and generate one token in each time

step. These methods can not capture the informa-

tion of future tokens. Recently, incorporating fu-

ture information into language generation tasks has

attracted the attention of researchers (Li et al., 2017;

Serdyuk et al., 2018; Lawrence et al., 2019; Oord

et al., 2018). Li et al. (2017) propose an actor-critic

model which designs a value function as a critic

to estimate the future success. In their method,

they not only consider the MLE-based learning

but also incorporate an RL-based value function

into the decoder process. (Oord et al., 2018) do not

predict future tokens directly but tried to model a

density ratio to preserve the mutual information

between context and future token. Serdyuk et al.

(2018) point out traditional Recurrent Neural Net-

works (RNNs) may prefer to generate each token

based on the recent tokens, it is hard to learn the

long-term dependencies. To capture the future in-

formation and learn the long-term dependencies,

they run the forward RNN and backward RNN in

parallel. Lawrence et al. (2019) concatenates the

source and target to train an encoder instead of

encoder-decoder architecture. They use special

placeholder tokens to replace some tokens of the

target for the model training process. At the infer-

ence process, they generate the target by replacing

each placeholder token.

5 Conclusion

In this paper, we introduce ProphetNet, a sequence-

to-sequence pre-training model that learns to pre-

dict future n-gram at each time step. ProphetNet

achieves the best performance on both abstractive

summarization and question generation tasks. Fur-

thermore, ProphetNet achieves new state-of-the-art

results on CNN/DailyMail and Gigaword using

only about 1/3 the pre-training epochs of the previ-

ous model.
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