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Abstract
Complex node interactions are common in
knowledge graphs (KGs), and these inter-
actions can be considered as contextualized
knowledge exists in the topological structure
of KGs. Traditional knowledge representation
learning (KRL) methods usually treat a single
triple as a training unit, neglecting the usage
of graph contextualized knowledge. To uti-
lize these unexploited graph-level knowledge,
we propose an approach to model subgraphs
in a medical KG. Then, the learned knowl-
edge is integrated with a pre-trained language
model to do the knowledge generalization. Ex-
perimental results demonstrate that our model
achieves the state-of-the-art performance on
several medical NLP tasks, and the improve-
ment above MedERNIE indicates that graph
contextualized knowledge is beneficial.

1 Introduction

In 1954, Harris (1954) proposed a distributional
hypothesis that words occur in the same contexts
tend to have similar meanings. Firth (1957) ex-
plained the context-dependent nature of meaning
in linguistics by his famous quotation “you shall
know a word by the company it keeps” . Although
the above-mentioned distributional hypothesis is
proposed for language models, if we look at the
knowledge graph from the perspective of this hy-
pothesis, we can find that similar hypothesis exists
in knowledge graphs (KGs). We call it KG distri-
butional hypothesis: you shall know an entity by
the relationships it involves.

Given this hypothesis, contextualized informa-
tion in language models can be mapped to knowl-
edge graphs, which we call “graph contextualized
knowledge”. Figure 1 illustrates a knowledge sub-
graph that includes several medical entities. In this
figure, four incoming and four outgoing neighbor-
ing nodes (hereinafter called “in-entity” and “out-
entity”) of node “Bacterial pneumonia” are linked

Figure 1: A subgraph extracted from a medical knowl-
edge graph. The rectangles represent entities and di-
rected arrows denote relations.

by various relation paths. These linked nodes and
correlations can be seen as “graph contextualized
information” of entity node “Bacterial pneumo-
nia”. In this study, we will explore how to integrate
graph contextualized knowledge into pre-trained
language models.

Pre-trained language models learn contextual-
ized word representations on large-scale text cor-
pus through self-supervised learning methods, and
obtain new state-of-the-art (SOTA) results on most
downstream tasks (Peters et al., 2018; Radford
et al., 2018; Devlin et al., 2019). This gradually
becomes a new paradigm for natural language pro-
cessing research. Recently, several knowledge-
enhanced pre-trained language models have been
proposed, such as ERNIE-Baidu (Sun et al., 2019),
ERNIE-Tsinghua (Zhang et al., 2019a), WKLM
(Xiong et al., 2019) and K-ADAPTER (Wang et al.,
2020).

In this study, since we need to learn graph contex-
tualized knowledge in a large-scale medical knowl-
edge graph, ERNIE-Tsinghua (hereinafter called
“ERNIE”) is chosen as our backbone model. In
ERNIE, entity embeddings are learned by TransE
(Bordes et al., 2013), which is a popular transition-
based method for knowledge representation learn-
ing (KRL). However, TransE cannot deal with
the modeling of complex relations (Lin et al.,
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2018), such as 1-to-n, n-to-1 and n-to-n relations.
This shortcoming will be amplified in the medical
knowledge graph, in which many entities have a
large number of related neighbors.

Inspired by previous work (Veličković et al.,
2018; Nathani et al., 2019), we propose an ap-
proach to learn knowledge from subgraphs, and
inject graph contextualized knowledge into the pre-
trained language model. We call this model BERT-
MK (a BERT-based language model integrated
with Medical Knowledge), our contributions are as
follows:

• We propose a novel knowledge-enhanced pre-
trained language model BERT-MK for medi-
cal NLP tasks, which integrates graph contex-
tualized knowledge learned from the medical
KG.

• Experimental results show that BERT-MK
achieves better performance than previous
state-of-the-art biomedical pre-trained lan-
guage models on entity typing and relation
classification tasks.

2 Methodology

Our model consists of two modules: the knowl-
edge learning module and the language model pre-
training module. The first module is utilized to
learn graph contextualized knowledge existing in
KGs, and the second one integrates the learned
knowledge into the language model for knowledge
generalization. The details will be described in the
following subsections.

2.1 Learning Graph Contextualized
Knowledge

We denote a knowledge graph as G = (E ,R),
where E represents the entity set and R is the set
of relations between enity pairs. A triple in G is
formalized as (es, r, eo), where es is a subjective
entity, eo is an objective entity, and r is the rela-
tion between es and eo. In Figure 1, two entities
(rectangles) and a relation (arrow) between them
constructs a knowledge triple, for example, (Bacte-
rial pneumonia, causative agent of, Bacteria).

2.1.1 Subgraph Conversion
To enrich the contextualized information in knowl-
edge representations, we extract subgraphs from
the knowlege graph to be the modeling objectives,
and the generation process is described in Algo-
rithm 1. For a given entity, its two 1-hop in-entities

Algorithm 1: Subgraph generation.
Input: Knowledge graph G = (E,R, T ), duplicate number M
Output: Subgraph set S

1 Initial S = [];
2 foreach e ∈ E do
3 din

e = calculate in degree(G, e);
4 dout

e = calculate out degree(G, e);
5 T in

e = extract in triples(G, e);
6 T out

e = extract out triples(G, e);
7 i = 0;
8 while i < (din

e + dout
e ) ∗M/2 do

9 T in
i = random sample(T in

e , 2);
10 T out

i = random sample(T out
e , 2);

11 subgraph = T in
i + T out

i ;
12 S = S + subgraph;
13 i = i + 1;
14 end
15 end
16 return S

Figure 2: Converting a subgraph extracted from the
knowledge graph into the input of the model. (a) e
refers to the entity, and r represents the relation. (b)
Relations are transformed into sequence nodes, and all
nodes are assigned a numeric index. (c) Each row in
the matrix of node position indexes represents the in-
dex list of an triple in (b); the adjacent matrix indicates
the connectivity (the red points equal to 1 and the white
points are 0) between the nodes in (b).

and out-entities are sampled to generate a sub-
graph1, and we repeat the generation process M
times for each entity. Figure 2(a) shows an instance
of the knowledge subgraph, which consists of four
1-hop and four 2-hop relations. In this study, we
propose a Transformer-based (Vaswani et al., 2017)
module to model subgraphs. Relations are learned

1In this study, longer n-hop relations are not involved in
the subgraph generation process, we leave more arbitrary sub-
graph to the future work.
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Figure 3: The model architecture of BERT-MK. The left part is the pre-trained language model, in which entity
information learned from the knowledge graph is incorporated. The right part is GCKE module. The subgraph in
Figure 2 is utilized to describe the learning process. e1, e(1)1 , eO1 is the embedding of the input node, the updated
node and the output node, respectively.

as nodes equivalent to entities in our model, and
the relation conversion process is illustrated in Fig-
ure 2(b). Therefore, knowledge graph G can be
redefined as G = (V,E), where V represents the
nodes in G, involving entities in E and relations
inR, and E denotes the directed edges among the
nodes in V .

Then, subgraphs are converted into sequences
of nodes. The conversion result of a subgraph is
shown in Figure 2(c), including a node sequence, a
node position index matrix and an adjacency ma-
trix. Each row of the node position index matrix
corresponds to a triple in the subgraph. For exam-
ple, the triple (e1, r1, e) is represented as the first
row (0, 1, 4) in this matrix. In the adjacency matrix,
the element Aij equals 1 if the node i is connected
to node j in Figure 2(b), and 0 otherwise.

2.1.2 GCKE

After the subgraph conversion preprocessing, the
input samples to learn graph contextualized knowl-
edge are generated. Formally, we denote the node
sequence as {x1, . . . , xN}, where N is the length
of the input sequence. Besides, the node position in-
dex matrix and the adjacency matrix are defined as
P and A, respectively. Entity embeddings and rela-
tion embeddings are integrated in the same matrix
V, where V ∈ R(ne+nr)×d, ne is the entity number
in E and nr is the relation type number inR. The
node embeddings X = {x1, . . . ,xN} can be gen-

erated by looking up node sequence {x1, . . . , xN}
in embedding matrix V. X, P and A constitute the
input of the graph contextualized knowledge em-
bedding learning module, called GCKE, as shown
in Figure 3.

The inputs are fed into a Transformer-based
model to encode the node information.

x′i =
H⊕

h=1

N∑
j=1

αh
ij · (xj ·Wh

v), (1)

αh
ij =

exp(ahij)√
d/H ·

∑N
n=1 exp(a

h
in)
, (2)

ahij = Masking((xi·Wh
q)·(xj ·Wh

k)
T),Aji+Iij),

(3)
where x′i is the new embedding for node xi.

⊕
denotes the concatenation of the H attention heads
in this layer, αh

ij and Wh
v are the attention weight

of node xj and a linear transformation of node em-
bedding xj in the hth attention head, respectively.
The Masking function in Equation 3 restraints the
contextualized dependency among the input nodes,
only the degree-in nodes and the current node it-
self are involved to update the node embedding.
The subfigure in the lower right corner of Figure 3
shows the contextualized dependencies. Similar to
Wh

v , Wh
q and Wh

k are independent linear transfor-
mations of node embeddings. Then, the updated
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node representations are fed into the feed forward
layer for further encoding. The aforementioned
Transformer blocks are stacked by L times, and the
output hidden states can be formalized as

XO = {xO
1 , . . . ,x

O
N}. (4)

Then, the node position indexes P is utilized to
restore triple representations:

T = TripleRestoration(XO,P), (5)

where Pk = (eks , r
k, eko) is the position index of a

valid knowledge triple, and Tk = (xO
eks
,xO

rk
,xO

eko
)

is the representation of this triple. The subfigure in
the upper right corner of Figure 3 shows the triple
restoration process.

In this study, the translation-based scoring func-
tion (Han et al., 2018) is adopted to measure the
energy of a knowledge triple. The node embed-
dings are learned by minimizing a margin-based
loss function on the training data:

L =
∑
t∈T

max{d(t)− d(f(t)) + γ, 0}, (6)

where t = (ts, tr, to), d(t) = |ts + tr − to|, γ >
0 is a margin hyperparameter, f(t) is an entity
replacement operation that the head entity or the
tail entity in a triple is replaced and the replaced
triple is an invalid triple in the KG.

2.2 Integrating Knowledge into the
Language Model

Given a comprehensive medical knowledge graph,
graph contextualized knowledge representations
can be learned using the GCKE module. We fol-
low the language model architecture proposed in
(Zhang et al., 2019a), and utilize graph contextual-
ized knowledge to enhance medical language rep-
resentations. The pre-training process is shown in
the left part of Figure 3. The Transformer block en-
codes word contextualized representation while the
aggregator block implements the fusion of knowl-
edge and language information.

According to the characteristics of medical NLP
tasks, domain-specific finetuning procedure is de-
signed. Similar to BioBERT (Lee et al., 2019),
symbol “@” and “$” are used to mark the entity
boundary, which indicate the entity positions in a
sample and distinguish different relation samples
sharing the same sentence. For example, the input
sequence for the relation classification task can be

Table 1: Statistics of UMLS.

# Entities # Relations # Triples
2,842,735 874 13,555,037
In-degree Out-degree Median degree

5.05 5.05 4

modified into “[CLS] pain control was initiated
with morphine but was then changed to @ demerol
$, which gave the patient better relief of @ his
epigastric pain $”. In the entity typing task, entity
mention and its context are critical to predict the
entity type, so more localized features of the entity
mention will benefit this prediction process. In our
experiments, the entity start symbol is selected to
represent an entity typing sample.

3 Experiments

3.1 Dataset

3.1.1 Medical Knowledge Graph
The Unified Medical Language System (UMLS)
(Bodenreider, 2004) is a comprehensive knowledge
base in the biomedical domain, which contains
large-scale concept names and relations among
them. The metathesaurus in UMLS involves vari-
ous terminology systems and comprises about 14
million terms covering 25 different languages. In
this study, a subset of this knowledge base is ex-
tracted to construct the medical knowledge graph.
Non-English and long terms are filtered, and the
final statistics is shown in Table 1.

3.1.2 Corpus for Pre-training
To ensure that sufficient medical knowledge can
be integrated into the language model, PubMed ab-
stracts2 and PubMed Central full-text papers3 are
chosen as the pre-training corpus, which are open-
access datasets for biomedical and life sciences
journal literature. Since sentences in different para-
graphs may not have good context coherence, para-
graphs are selected as the document unit for next
sentence prediction. The Natural Language Toolkit
(NLTK)4 is utilized to split the sentences within a
paragraph, and sentences having less than 5 words
are discarded. As a result, a large corpus contain-
ing 9.9B tokens is achieved for language model
pre-training.

2 https://www.ncbi.nlm.nih.gov/pubmed/.
3https://www.ncbi.nlm.nih.gov/pmc/.
4https://www.nltk.org/.

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pmc/
https://www.nltk.org/
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Table 2: Statistics of the datasets. Most of these datasets do not follow a standard train-valid-test set partition, and
we adopt some traditional data partition ways to do model training and evaluation.

Task Dataset # Train # Valid # Test
Entity Typing 2010 i2b2/VA (Uzuner et al., 2011) 16,519 - 31,161

JNLPBA (Kim et al., 2004) 51,301 - 8,653
BC5CDR (Li et al., 2016) 9,385 9,593 9,809

Relation Classification 2010 i2b2/VA (Uzuner et al., 2011) 10,233 - 19,115
GAD (Bravo et al., 2015) 5,339 - -
EU-ADR (Van Mulligen et al., 2012) 355 - -

In our model, medical terms appearing in the cor-
pus need to be aligned to the entities in the UMLS
metathesaurus before pre-training. To make sure
the coverage of identified entities in the metathe-
saurus, the forward maximum matching (FMM)
algorithm is used to extract the term spans from the
corpus aforementioned, and spans less than 5 char-
acters are filtered. Then, BERT vocabulary is used
to tokenize the input text into word pieces, and the
medical entity is aligned with the first subword of
the identified term.

3.1.3 Downstream Tasks
In this study, entity typing and relation classifica-
tion tasks in the medical domain are used to evalu-
ate the models.

Entity Typing Given a sentence with an entity
mention tagged, this task is to identify the seman-
tic type of this entity mention. For example, the
type “medical problem” is used to label the en-
tity mention “asystole” in the sentence “he had
a differential diagnosis of 〈e〉 asystole 〈/e〉”. To
the best of our knowledge, there are no publicly
available entity typing datasets in the medical do-
main. Therefore, three entity typing datasets are
constructed from the corresponding medical named
entity recognition datasets. Entity mentions and
entity types are annotated in these datasets, in this
study, entity mentions are considered as input while
entity types are the output labels. Table 2 shows
the statistics of the datasets for the entity typing
task. Datasets can be download from here5.

Relation Classification Given two entities
within one sentence, this task aims to determine the
relation type between the entities. For example, in
sentence “pain control was initiated with morphine
but was then changed to 〈e1〉 demerol 〈/e1〉, which

5https://drive.google.com/file/d/
1OletxmPYNkz2ltOr9pyT0b0iBtUWxslh/view.

gave the patient better relief of 〈e2〉 his epigastric
pain 〈/e2〉”, the relation type between two entities
is TrIP (Treatment Improves medical Problem). In
this study, three relation classification datasets are
utilized to evaluate our models, and the statistics
of these datasets are shown in Table 2. Datasets
can be download from here6.

3.2 Baselines
In addition to the state-of-the-art models on these
datasets, we have also added the popular BERT-
Base model and another two models pre-trained on
biomedical literature for further comparison.

BERT-Base (Devlin et al., 2019) This is the orig-
inal bidirectional pre-trained language model pro-
posed by Google, which achieves state-of-the-art
performance on a wide range of NLP tasks.

BioBERT (Lee et al., 2019) This model follows
the same model architecture as the BERT-Base
model, but with the PubMed abstracts and PubMed
Central full-text articles (about 18B tokens) used
to do model finetuning upon BERT-Base.

SCIBERT (Beltagy et al., 2019) In this model,
a new wordpiece vocabulary is built based on a
large scientific corpus (about 3.2B tokens). Then,
a new BERT-based model is trained from scratch
using this scientific vocabulary and the scientific
corpus. Since a large portion of the scientific cor-
pus consists of biomedical articles, this scientific
vocabulary can also be regarded as a biomedical
vocabulary, and helps improve the performance of
downstream tasks in the biomedical domain.

3.3 Implementation Details
3.3.1 Graph Contextualized Knowledge
Firstly, UMLS triples are fed into the TransE model
to achieve a basic knowledge representation. We

6https://drive.google.com/file/d/
1-jDKGcXREb2X9xTFnuiJ36PvsqoyHWcw/view.

https://drive.google.com/file/d/1OletxmPYNkz2ltOr9pyT0b0iBtUWxslh/view
https://drive.google.com/file/d/1OletxmPYNkz2ltOr9pyT0b0iBtUWxslh/view
https://drive.google.com/file/d/1-jDKGcXREb2X9xTFnuiJ36PvsqoyHWcw/view
https://drive.google.com/file/d/1-jDKGcXREb2X9xTFnuiJ36PvsqoyHWcw/view
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Table 3: Experimental results on the entity typing and relation classification tasks. Accuracy (Acc), Precision,
Recall, and F1 scores are used to evaluate the model performance. The results reported in previous work are under-
lined. E-SVM is short for Ensemble SVM (Bhasuran and Natarajan, 2018), which achieves SOTA performance in
the GAD dataset. CNN-M stands for CNN using multi-pooling (He et al., 2019), which is the SOTA model in the
2010 i2b2/VA dataset.

Task Dataset Metrics E-SVM CNN-M BERT-Base BioBERT SCIBERT BERT-MK
Entity 2010 i2b2/VA Acc - - 96.76 97.43 97.74 97.70
Typing JNLPBA Acc - - 94.12 94.37 94.60 94.55

BC5CDR Acc - - 98.78 99.27 99.38 99.54
Relation 2010 i2b2/VA P - 73.1 72.6 76.1 74.8 77.6
Classification R - 66.7 65.7 71.3 71.6 72.0

F - 69.7 69.2 73.6 73.1 74.7
GAD P 79.21 - 74.28 76.43 77.47 81.67

R 89.25 - 85.11 87.65 85.94 92.79
F 83.93 - 79.33 81.66 81.45 86.87

EU-ADR P - - 75.45 81.05 78.42 84.43
R - - 96.55 93.90 90.09 91.17
F - - 84.71 87.00 85.51 87.49

use OpenKE toolkit (Han et al., 2018) to learn en-
tity and relation embeddings. Knowledge embed-
ding dimension is set to 100, while training epoch
number is set to 10000.

Following the initialization method used in
(Nguyen et al., 2018; Nathani et al., 2019), the
embeddings produced by TransE are utilized to
initialize knowledge representations of the GCKE
module. We set the layer number to 4, and each
layer contains 4 heads. Due to the median degree
of entities in UMLS is 4 (shown in Table1), we set
the count of in-entities and two out-entities to 4, so
each subgraph contains four 1-hop and four 2-hop
relations. The GCKE module runs 1200 epochs on
a single NVIDIA Tesla V100 (32GB) GPU to learn
graph contextualized knowledge. The batch size is
set to 50000.

3.3.2 Pre-training

In this study, two pre-trained language models are
trained. The first one is MedERNIE, a medical
ERNIE model trained on the UMLS triples and the
PubMed corpus, inheriting the same model hyper-
parameters used in (Zhang et al., 2019a). Besides,
the entity embeddings learned by GCKE module
are integrated into the language model to train the
BERT-MK model. In our work, we align the same
pre-training epochs with BioBERT, which uses the
same pre-training corpus as ours, and finetune the
BERT-Base model on the PubMed corpus for one
epoch.

3.3.3 Finetune

As shown in Table 2, there is no standard valid or
test set in some datasets. For datasets containing

a standard test set, if no standard valid set is pro-
vided, we divide the training set into new train/valid
sets by 4:1. We preform each experiment 5 times
under specific experimental settings with different
random seeds. Besides, 10-fold cross-validation
method is used to evaluate the model performance
for the datasets without a standard test set. Accord-
ing to the maximum sequence length of the sen-
tences in each dataset, the input sequence length
for 2010 i2b2/VA (Uzuner et al., 2011), JNLPBA
(Kim et al., 2004), BC5CDR (Li et al., 2016), GAD
(Bravo et al., 2015) and EU-ADR (Van Mulligen
et al., 2012) are set to 390, 280, 280, 130 and 220,
respectively. The initial learning rate is set to 2e-5.

3.4 Results

3.4.1 Entity Typing
Table 3 presents the experimental results on the
entity typing and relation classification tasks. For
entity typing tasks, all these pre-trained language
models achieve high accuracy, indicating that the
type of a medical entity is not as ambiguous as
that in the general domain. BERT-MK outperforms
BERT-Base and BioBERT on three datasets, and is
competitive with SCIBERT. Without using exter-
nal knowledge in the pre-trained language model,
SCIBERT achieves comparable results to BERT-
MK, which proves that a domain-specific vocab-
ulary is critical to the feature encoding of inputs.
Long tokens are relatively common in the medical
domain, and these tokens will be split into short
pieces when a domain-independent vocabulary is
used, which will cause an overgeneralization of
lexical features. Therefore, a medical vocabulary
generated by the PubMed corpus can be introduced
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into BERT-MK in the following work.

3.4.2 Relation Classification
On the relation classification tasks, BERT-Base
does not perform as well as other models, which in-
dicates that pre-trained language models require a
domain adaptation process when used in restricted
domains. Compared with BioBERT, which utilizes
the same domain-specific corpus as ours for domain
adaptation, BERT-MK improves the F score of
2010 i2b2/VA, GAD and EU-ADR by 1.1%, 5.21%
and 0.49%, respectively, which demonstrates medi-
cal knowledge has indeed played a positive role in
the identification of medical relations.

The following example provides a brief expla-
nation of why medical knowledge improves the
model performance of the relation classification
tasks. “On postoperative day number three , patient
went into 〈e1〉 atrial fibrillation 〈/e1〉 , which was
treated appropriately with 〈e2〉 metoprolol 〈/e2〉
and digoxin and converted back to sinus rhythm”
is a relation sample from the 2010 i2b2/VA dataset,
and the relation label is TrIP. Meanwhile, the above
entity pair can be aligned to a knowledge triple
(atrial fibrillation, may be treated by, metoprolol)
in the medical knowledge graph. Obviously, this
knowledge information is advantageous to identify
the relation type of the aforementioned example.

3.5 Discussion

3.5.1 TransE vs. GCKE
In order to explicitly analyze the improvement ef-
fect of the GCKE module on pre-trained language
models, we compare MedERNIE (TransE-based)
and BERT-MK (GCKE-based) on two relation clas-
sification datasets. Table 4 demonstrates the re-
sults of these two models. As we can see, inte-
grating graph contextualized knowledge into the
pre-trained language model, the performance in-
creases F score by 0.9% and 0.64% on these two
relation classification datasets, respectively.

In Figure 4, as the amount of pre-training data
increases, BERT-MK always outperforms Med-
ERNIE on the 2010 i2b2/VA relation dataset, and

Table 4: TransE vs. GCKE on the 2010 i2b2/VA rela-
tion and GAD datasets.

Dataset MedERNIE BERT-MK

P R F P R F
2010 i2b2/VA 76.6 71.1 73.8 77.6 72.0 74.7
GAD 81.28 91.86 86.23 81.67 92.79 86.87

Figure 4: Model performance comparison with in-
creasing amount of the pre-trained data. The x-axis
represents the proportion of the medical data used for
pre-training. 0 means no medical data is utilized, so the
BERT-Base is used as an initialization parameter for
the model finetuning. 100 indicates the model is pre-
trained on the medical corpus for one epoch. BioBERT
pre-trains on the PubMed corpus for one epoch, which
is drawn with dashed lines in the figure as a comparable
baseline.

the performance gap has an increasing trend. How-
ever, on the GAD dataset, the performance of
BERT-MK and MedERNIE are intertwined. We
link the entities in each relation sample to the med-
ical KG, and find that some entity pairs have a con-
nected relationship in the KG. Statistical analysis
on 2-hop neighbor relationships between these en-
tity pairs shows that there are 136 cases in the 2010
i2b2/VA dataset, while only 1 in GAD. The second
case shown in Table 5 gives an example of the ob-
servation described above. Triple (CAD, member of,
Other ischemic heart disease) and (Other ischemic
heart disease, has member, Angina symptom) are
triples in the medical KG, which indicates entity
pair cad and angina symptoms in the relation sam-
ple have a 2-hop neighbor relationship in the KG.
GCKE learns these 2-hop neighbor relationships
in 2010 i2b2/VA and produces an improvement for
BERT-MK. However, due to the characteristics of
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Table 5: Case study on the 2010 i2b2/VA relation dataset. The bold text spans in two cases are entities. In the
first case, the corresponding triple can help identify the relationship between the entity pair in this relation sample.
NPP, no relation between two medical problems; PIP, medical problem indicates medical problem. MI, myocardial
infarction; CAD, coronary artery disease.

Cases The Corresponding Triples BioBERT MedERNIE BERT-
MK

Ground
Truth

1 ... coronary artery disease, status post mi x0, cabg ... (Coronary artery disease, associated with , MI) NPP PIP PIP PIP
2 0. cad: presented with anginal symptoms and ekg

changes (stemi), with cardiac catheterization revealing
lesions in lad, lcx, and plb.

(CAD, member of, Other ischemic heart dis-
ease); (Other ischemic heart disease, has mem-
ber, Angina symptom)

NPP NPP PIP PIP

the GAD dataset, the capability of GCKE is lim-
ited.

3.5.2 Effect of Different Corpus Sizes in
Pre-training

Figure 4 shows the model performance comparison
with different proportion of the pre-training corpus.
From this figure, we observe that BERT-MK out-
performs BioBERT by using only 10%-20% of the
corpus, which indicates that medical knowledge
has the capability to enhance pre-trained language
models and save computational costs (Schwartz
et al., 2019).

4 Related Work

Pre-trained language models represented by ELMO
(Peters et al., 2018), GPT (Radford et al., 2018) and
BERT (Devlin et al., 2019) have attracted great at-
tention, and a large number of variant models have
been proposed. Among these studies, some re-
searchers devote their efforts to introducing knowl-
edge into language models (Levine et al., 2019;
Lauscher et al., 2019; Liu et al., 2019; Zhang et al.,
2019b). ERNIE-Baidu (Sun et al., 2019) introduces
new masking units such as phrases and entities
to learn knowledge information in these masking
units. As a reward, syntactic and semantic infor-
mation from phrases and entities is implicitly in-
tegrated into the language model. Furthermore,
a different knowledge information is explored in
ERNIE-Tsinghua (Zhang et al., 2019a), which in-
corporates knowledge graph into BERT to learn
lexical, syntactic and knowledge information si-
multaneously. Xiong et al. (2019) introduce entity
replacement checking task into the pre-trained lan-
guage model, and improve several entity-related
downstream tasks, such as question answering and
entity typing. Wang et al. (2020) propose a plug-in
way to infuse knowledge into language models, and
their method keeps different kinds of knowledge
in different adapters. The knowledge information
introduced by these methods does not pay much

attention to the graph contextualized knowledge in
the KG.

Recently, several KRL methods have attempted
to introduce more contextualized information into
knowledge representations. Relational Graph Con-
volutional Networks (R-GCNs) (Schlichtkrull et al.,
2018) is proposed to learn entity embeddings from
their incoming neighbors, which greatly enhances
the information interaction between related triples.
Nathani et al. (2019) further extend the informa-
tion flow from 1-hop in-entities to n-hop during
the learning process of entity representations, and
achieves the SOTA performance on multiple rela-
tion prediction datasets, especially for the ones con-
taining higher in-degree nodes. We believe that the
information contained in knowledge graphs is far
from being sufficiently exploited. In this study, we
develop an approach to integrate more graph con-
textualized information, which models subgraphs
as training samples. This module has the ability to
model any information in the KG. In addition, this
learned knowledge is integrated into the language
model to obtain an enhanced version of the medical
pre-trained language model.

5 Conclusion and Future Work

We propose a novel approach to learn more com-
prehensive knowledge, focusing on modeling sub-
graphs in the knowledge graph by a knowledge
learning module. Additionally, the learned medical
knowledge is integrated into the pre-trained lan-
guage model, which outperforms BERT-Base and
another two domain-specific pre-trained language
models on several medical NLP tasks. Our work
validates the intuition that medical knowledge is
beneficial to some medical NLP tasks and provides
a preliminary exploration for the application of
medical knowledge.

In the follow-up work, some knowledge-guided
tasks will be used to validate the effectiveness of
the knowledge learning module GCKE. Moreover,
we will explore some other knowledge injection



2289

ways to combine medical knowledge with language
models, such as multi-task learning. More sub-
graph sampling strategies need to be explored, such
as r-ego subgraph (Qiu et al., 2020) and degree-
dependent subgraph.
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A Appendices

A.1 Comparison between MedERNIE and
BERT-MK

As shown in Table 6, BERT-MK outperforms Med-
ERNIE on all datasets except BC5CDR.

Table 6: MedERNIE vs. BERT-MK.

Entity Typing (Acc)

2010
i2b2/VA

JNLPBA BC5CDR

MedERNIE 97.37 94.46 99.62
BERT-MK 97.70 94.55 99.54

Relation Classification (F)

2010
i2b2/VA

GAD EU-ADR

MedERNIE 73.8 86.23 86.99
BERT-MK 74.7 86.87 87.49

http://arxiv.org/abs/1907.10597
https://openreview.net/forum?id=rJXMpikCZ
https://www.aclweb.org/anthology/P19-1139
https://www.aclweb.org/anthology/P19-1139
https://www.aclweb.org/anthology/P19-1139

