
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 2175–2186
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

2175

Computer Assisted Translation with Neural Quality Estimation and
Automatic Post-Editing

Ke Wang⇤, Jiayi Wang⇤, Niyu Ge, Yangbin Shi, Yu Zhao, Kai Fan†

Alibaba Group Inc.
{moyu.wk,joanne.wjy,niyu.ge,taiwu.syb}@alibaba-inc.com,

kongyu@taobao.com, k.fan@alibaba-inc.com

Abstract

With the advent of neural machine transla-
tion, there has been a marked shift towards
leveraging and consuming the machine trans-
lation results. However, the gap between ma-
chine translation systems and human trans-
lators needs to be manually closed by post-
editing. In this paper, we propose an end-to-
end deep learning framework of the quality es-
timation and automatic post-editing of the ma-
chine translation output. Our goal is to pro-
vide error correction suggestions and to fur-
ther relieve the burden of human translators
through an interpretable model. To imitate the
behavior of human translators, we design three
efficient delegation modules – quality estima-
tion, generative post-editing, and atomic oper-
ation post-editing and construct a hierarchical
model based on them. We examine this ap-
proach with the English - German dataset from
WMT 2017 APE shared task and our experi-
mental results can achieve the state-of-the-art
performance. We also verify that the certified
translators can significantly expedite their post-
editing processing with our model in human
evaluation.

1 Introduction

The explosive advances in the sequence to sequence
model (Sutskever et al., 2014; Bahdanau et al.,
2014; Vaswani et al., 2017) enable the deep learn-
ing based neural machine translation (NMT) to
approximate and even achieve the human parity in
some specific language pairs and scenarios. Instead
of translating from scratch by human translators, a
new translation paradigm has emerged: computer
assisted translation (CAT) system, which includes
the machine translation and human post-editing.
The post-editing is the process whereby humans
amend machine-generated translations to achieve

⇤indicates equal contribution.
† indicates corresponding author.

an acceptable final product. Practically, the esti-
mated average translation time can be reduced by
17.4% (from 1957.4 to 1617.7 seconds per text)
(Läubli et al., 2013).

However, utilizing NMT poses two key chal-
lenges. First, the neural machine translation quality
still continues to vary a great deal across different
domains or genres, more or less in proportion to
the availability of paralleled training corpora. Sec-
ond, the zero tolerance policy is a common choice
in the vast majority of important applications. For
example, when business legal documents are trans-
lated, even a single incorrect word could bring se-
rious financial or property losses. Therefore, the
subsequent human post-editing is indispensable
in situations like this. Unfortunately, while NMT
systems saves time by providing the preliminary
translations, the time spent on error corrections by
humans (Läubli et al., 2013) remains substantial
to the extent that it offsets the efficiency gained
by the NMT systems. In this paper, we explore
automatic post-editing (APE) in the deep learning
framework. Specifically, we adopt an imitation
learning approach, where our model first screens
the translation candidates by quality prediction and
then decides whether to post edit with the genera-
tion or the atomic operation method.

Starting with a wide range of features used in
the CAT system, we carefully analyze the human
post-editing results to narrow down our framework
design into three key modules: quality estima-
tion (QE), generative post-editing and atomic op-
eration post-editing. These modules are tightly
integrated into the transformer neural networks
(Vaswani et al., 2017). Our main innovation is
a hierarchical model with two modular post-editing
algorithms which are conditionally used based on
a novel fine-grained quality estimation model. For
each machine translation, our model i) runs the
QE model to predict the detailed token level errors,

2176

which will be further summarized as an overall
quality score to decide whether the machine trans-
lation quality is high or not, and ii) conditional
on the previous decision, employs the atomic op-
eration post-editing algorithm on the high quality
sentence or the generative model to rephrase the
translation for the low one.

We examine our approach on the public English–
German dataset from WMT1 2017 APE shared task.
Our system outperforms the top ranked methods in
both BLEU and TER metrics. In addition, follow-
ing a standard human evaluation process aimed at
achieving impartiality with respect to the efficiency
of CAT system, we ask several certified translators
to edit the machine translation outputs with or with-
out our APE assistance. Evaluation results show
that our system significantly improves translators’
efficiency.

2 Related Work

Our work relates to and builds on several inter-
twined threads of research in machine translation,
including QE and APE. We briefly survey the tra-
ditional methods and differentiate our approach.

2.1 Quality Estimation

Quality estimation is often a desired component
for developing and deploying automatic language
technologies, and has been extensively researched
in machine translation (Barrault et al., 2019). Its
purpose is to provide some metrics measuring the
overall quality. The current state-of-the-art mod-
els mostly originated from the predictor-estimator
framework (Kim et al., 2017), where a sequence-
to-sequence model is pre-trained to extract sophis-
ticated sequence features to be fed into a sequence
level regression or classification network.

Tan et al. (2017) proposed the neural post-editing
based quality estimation by streamlining together
the traditional QE and APE models. Since our
proposed QE module will eventually serve the
APE module as well, we consider two modifica-
tions accordingly. First, we re-define the QE as
a fine-grained multi-class problem, whose output
indicates the number of tokens in four categories,
missing / redundant / erroneous or kept tokens. A
similar idea was initially proposed in (Gu et al.,
2017) to predict the number of copy occurrences
in non-autoregressive neural machine translation.

1http://www.statmt.org/

Table 1: Notation used in the model

Symbol Definition
s sentence in source language
m machine translated sentence in target language
t golden (reference) sentence in target language
e post-editing sentence in target language
si the i-th token of s, similar for mi, ti, ei
PMT the probabilistic model of machine translation
PPE the probabilistic model of post-editing
PQE the probabilistic model of quality estimation
IA indicator function, = 1 if A is true, o.w. 0
⌧ threshold to distinguish high/low quality trans-

lation

In this paper, we make significant extensions to in-
clude more categories. Secondly, we maximize our
QE model performance with a novel conditional
BERT architecture. Inspired by the masked lan-
guage model objective in the encoder BERT (De-
vlin et al., 2019), we introduce the training objec-
tive to the encoder-decoder framework by adapting
the decoder to become a memory encoder, allowing
us to pre-train the target language model similar to
BERT but conditioned on the source language text.

2.2 Automatic Post-Editing

Automatic Post Editing aims to improve the quality
of an existing MT system by learning from human
edited samples, converting “translationese” output
into natural text. The traditional APE is based on
a round-trip translation loop to mimic errors simi-
lar to the ones produced by NMT and can achieve
acceptable performance with large scale monolin-
gual data only (Freitag et al., 2019). However,
the prevalent trend in this area prefers the dual-
source encoder-decoder architecture with parallel
data (Chatterjee et al., 2017b; Junczys-Dowmunt
and Grundkiewicz, 2018; Pal et al., 2018; Lopes
et al., 2019), which obtained the best results in
WMT competitions (Chatterjee et al., 2019). The
dual-source encoder encodes the source text and
the machine translation output separately, and the
decoder decodes the post-edited results. All these
approaches encode each source independently and
apply an auto-regressive decoder. They differ in
their parameter sharing mechanisms.

While our approach still employs the multi-
source APE framework, but there are two funda-
mental differences. First, our APE module, as
aforementioned above, is built on our re-designed
QE model, with which the source and the ma-
chine translation are entangled by the encoder and
memory-encoder QE module. Second, our decoder

2177

consists in a versatile architecture that can choose
between the left to right auto-regressive generative
model and the atomic-operation based paralleled
model. It dynamically determines which model to
engage at runtime. The parallelizable model was
broadly explored in insertion- or deletion- based
transformer (Chan et al., 2019; Stern et al., 2019;
Gu et al., 2019), while our decoder supports more
functional operations.

3 Model and Objective

In order to achieve the automatic post-editing goal,
it is essential for the model to find the exact errors
appearing in the machine translation and learn how
to fix them. Breaking the problem into several sub-
tasks, our proposed pipeline includes three major
models as Figure 1. By skipping the pre-training
temporarily, the first step is to investigate the fine-
grained quality estimation model with respect to
the source text and machine translated text. Its out-
put will provide a fine-grained quality estimation of
the machine translation. Based on the correspond-
ing quality, an atomic APE or a generative APE
model will be called for further processing.

Encoder Memory
Encoder

source masked target or PE

Masked
tokens

Pre-training

DecoderEncoder Memory
Encoder

source machine translation right-shifted PE

PE

Generative APE

Encoder Memory
Encoder

source machine translation

QE Tags

Fine-grained QE

Encoder Memory
Encoder

source

Atomic Operation APE

Placeholder
Inserter

PE

QE Tags + machine translation

Figure 1: The overall pipeline. The QE model will
output fine-grained metrics to the translation quality.
Then, high quality machine translation will proceed
with atomic APE model for minor fix, while the low
quality machine translation will go through a genera-
tive APE model for completely rephrasing. Note that
the model parameters are shared for three steps w.r.t.
encoder and memory encoder. Detailed computational
graph can refer to Figure 2.

3.1 Fine-Grained Quality Estimation

Table 2: Definition of QE Tags

Label k > 1 k = 1 k = 0 k = �1
Definition insert k � 1 tokens keep delete replace

As described in the related work, compared to

traditional translation QE task in WMT2, our QE
module is more fine-grained and is recast as a multi-
class {�1, 0, 1, ...,K} sequence labeling problem.
The definition of the integer labels is shown in
Table 2. If k <= 1, the label denotes one single
token operation; otherwise, it means to insert k� 1
extra tokens after the current one. The QE tag q
for training pair (m, e) can be deterministically
calculated by dynamic programming Algorithm 4
in Appendix, which is basically a string matching
algorithm. We define a conditionally independent
sequence tagging model for the error prediction.

PQE(q|s,m) =
Y

i

PQE(qi|s,m) (1)

A transformer based neural network is employed.
We present a novel encoder-memory encoder
framework with memory attention as shown in the
decomposition of the following equation.

PQE(q|s,m)

, SoftmaxQE(EncM (m,Enc(s)))
(2)

where Enc(·) is the standard transformer encoder
(Vaswani et al., 2017), and EncM (·) is the mem-
ory encoder adapted from standard transformer de-
coder. It removed the future masking in the trans-
former decoder and use the last state as the output
which contains contexts from both SRC and MT.

During inference, neither the ground truth of
post-editing nor the golden translation reference is
available. The fine-grained QE model can predict
the human translation edit rate (HTER) h through
the inferred QE tags q̂.

h =
#predicted edits

predicted PE length

=

P
i{Iq̂i<1 + (q̂i � 1)Iq̂i>=1}P

i |q̂i|

(3)

On the one hand, the overall metric h can quantitate
the quality of machine translation and determine
which APE algorithm will be used. On the other
hand, the detailed QE tags can theoretically guide
the APE which atomic operation should be applied.
Thus, the QE tagging and the atomic operation APE
are simultaneously and iteratively trained, which
will be elaborated in 3.2 and 3.5.

2178

Probabilities of
masked tokens
(pre-training)

Multi-Head
Attention

Linear

Embedding

Target Inputs for pre-training

Add & Norm

Softmax

Positional
Encoding

Feed
Forward

Add & Norm

Multi-Head
Attention

Feed
Forward

Embedding

Add & Norm

N
x

Add & Norm

Positional
Encoding

NON-MASK
Multi-Head
Attention

Add & Norm

N
x

Source Inputs

Multi-Head
Attention

Embedding

Right-Shifted PE Inputs

Positional
Encoding

Feed
Forward

Add & Norm

N
x

MASK
Multi-Head
Attention

Add & Norm

Output Probabilities

Linear

Softmax

Low Quality

Random Mask

Multi-Head
Attention

Add & Norm

Linear

Softmax

Linear

Softmax

2. Output Probabilities

High Quality

1. QE Tags

1. Translation Inputs
2. Translation Inputs with placeholders

Placeholder
Inserter Add & Norm

Figure 2: The detailed computational graph including detailed operations.

<s> cat was sit on mat </s>𝒎

<s> the cat sat on the mat </s>𝒆

<s> [PLH] cat [PLH] on [PLH] mat </s>෥𝒎

2 1 0 -1 2 1 1

Insert 1
word

Keep Delete Replace Insert 1
word

Keep Keep

𝒒

Figure 3: An example illustration of placeholder in-
serter and atomic operation APE.

3.2 Atomic Operation Automatic
Post-Editing

The key idea of atomic operation APE is to reduce
all predefined operations (insertion, deletion, sub-
stitution) into a special substitution operation by
introducing an artificial token placeholder [PLH].

First, we align the machine translation m and
the post-edits e by inserting [PLH]s, resulting in
a new m̃ of the same length as e. Technically, we
insert qi � 1 [PLH]s after mi if qi > 1; we delete
the current token mi if qi = 0; we replace mi with
[PLH] if qi = �1. For convenience, this process is
denoted as m̃ = PLH INS(m,q).

Second, the original APE task is transformed
into another sequence tagging problem, since
|m̃| = |e|.

PA
PE(e|s,m) = PA

PE(e|s, m̃)

=SoftmaxPE(EncM (m̃,Enc(s)))
(4)

2http://www.statmt.org/wmt19/qe-task.
html

Notice that i) the encoder and memory encoder
share the parameters with the QE in Equation (2);
ii) the softmax layer is different, because the num-
ber of outputs in APE has a different size equal to
the vocabulary size. An intuitive visualization can
see the Figure 3 and the holistic pipeline sees the
Figure 1.

3.3 Generative Automatic Post-Editing

The larger HTER h is, the lower quality of m is,
and the more atomic operations are required. In this
case, the previous APE model may be not powerful
enough to learn complicated editing behaviors. We
propose a backup APE model via auto-regressive
approach for the deteriorated translations. Con-
cretely, we write the dual-source language model
into its probabilistic formulation.

PG
PE(e|s,m) =

Y

i

PG
PE(ei|e<i, s,m)

=
Y

i

Dec(e<i;EncM (m,Enc(s));Enc(s)) (5)

Notice that i) the encoder and memory encoder are
still reused here, ii) the Dec(·; ·; ·) is a transformer
decoder with hierarchical attention, since two mem-
ory blocks EncM (m,Enc(s)) and Enc(s) are both
conditional variables for the auto-regressive lan-
guage model; iii) unlike sequence tagging, the in-
ference of the generative APE is intrinsically non-
parallelizable.

2179

Algorithm 1 Imitation Learning Algorithm
Require: s, m = {mi}Mi=1, e = {ei}Ni=1, hyperparameter

� 2 (0, 1).
1: Draw a random number r from uniform distribution

[0, 1].
2: if r > � then
3: m̃ = PLH INS(m,q).
4: else
5: Randomly replace 20% of ei as [PLH] to obtain m̃.
6: end if
7: Pseudo data for insertion Remove all [PLH] in m̃ to

obtain mi.
8: Pseudo data for substitution Run APE inference model

to obtain the prediction ês PA
PE(·|s, m̃).

9: Pseudo data for deletion Randomly insert one or two
[PLH]s to each gap in e with probability 0.15 or 0.025
to obtain the updated m̃.

10: Run APE inference model to obtain the prediction
êd PA

PE(·|s, m̃).
11: return 3 fake data points, mi,ms = ês,md = êd.

3.4 Pre-training and Imitation Learning
Because of the lack of human post-editing data,
training from scratch is typically difficult. We thus
employ two workaround methods to improve the
model performance.

Pre-training It is worth noting that the reduced
atomic operation APE is actually equivalent to the
mask language modeling problem, a.k.a. the fa-
mous BERT (Devlin et al., 2019). Therefore, we
pre-train the encoder-memory encoder model as
a conditional BERT with the data pairs (s, t) and
(m, ê), aiming at learning the syntactic and align-
ment information of the ground truth. To make the
pre-training valid on downstream tasks, we con-
sistently use [PLH] token to randomly mask the
reference / post-editing sentence.

Imitation Learning As mentioned in 3.1, dur-
ing inference, the predicted QE tags will causally
tie to the successive APE algorithm, because m̃
is derived from (m, q̂). Although we would want
the model to learn to predict all three atomic oper-
ations together, the small size of real post-editing
data severely limits the performance of joint QE
tagging. Therefore, we propose a model specializa-
tion strategy where the model learns three separate
tasks: deletion, insertion, and substitution. A rea-
sonable amount of training data can be generated
for each of the tasks and the model learns to special-
ize in each operation. The details are summarized
in Algorithm 1.

3.5 Training and Inference Algorithms
In this section, we assemble all modules together
into the final system. Because our model involves

Algorithm 2 APE Training
Require: Pre-training data P in pair (s, t or e), QE Training

data Q in triplet(s,m, e).
1: Pre-train the encoder-memory encoder model with P as

3.4.
2: while not converge do
3: Sample a tuple from Q.
4: Call Algorithm 1 to enlarge the training sample four

times.
5: for each (s,m, e) in the augmented data do
6: Calculate true QE tags q =Algorithm 4(m, e).
7: Get machine translation with [PLH]

m̃ = PLH INS(m,q).
8: Update model parameters of encoder-memory en-

coder by optimizing the loss
LQE(q, s,m) + LA

PE(e, s, m̃).
9: Update All model parameters by optimizing loss

LG
PE(e, s,m).

10: end for
11: end while
12: return All model parameters.

Algorithm 3 APE inference
Require: s, m, HTER threshold ⌧ , iteration steps S.

1: m(0) = m
2: for i = 1, ..., S do
3: Run QE inference q̂ PQE(·|s,m(i�1)).
4: Run Equation 3 to obtain quality metric h.
5: if i == 1 and h > ⌧ then
6: Run generative APE inference ê PG

PE(·|s,m).
7: return APE ê.
8: end if
9: m̃ = PLH INS(m(i�1),q)

10: Run atomic operation APE inference
m(i) PA

PE(·|s, m̃).
11: end for
12: return APE ê = m(S).

a nontrivial pipeline, we describe the details of
training and inference separately and summarize
them in Algorithm 2 and 3.

Training usually requires to minimize the loss
function (negative data log-likelihood of probabilis-
tic models) by stochastic gradient descent (SGD)
with respect to the trainable parameters. Our QE
and atomic operation APE are both sequence tag-
ging task, while the generative APE is a sequence
generation task. The three loss functions are uni-
formly defined as sequential cross entropy be-
tween the predicted and the true sequence. Note
that the QE and atomic operation APE share the
encoder-memory encoder, so these two losses can
be summed together for optimization. However,
the generative APE model has an isolated hierar-
chical transformer decoder, so we need a second
update by optimizing the corresponding loss alone.

Inference of our APE system is not quite the
same as the training. First, the overall inference is
a continuously alternating procedure between QE

2180

and APE, where the predicted APE is assigned as
a new machine translation for iterative updating.
However, the inner loop in training algorithm re-
gards to the augmented data points. Second, we
introduce an early stop after the first QE tagging
prediction. If the predicted quality is very low (i.e.
the HTER is larger than a cross-validated thresh-
old), the generative APE will be called and the
inference will immediately exit without further it-
erations. Lastly, the APE results are utilized by
professional translators for further editing. In the
next section, we validate the gain of APE over ma-
chine translation with regards to the efficiency.

4 Experiments on our Proposed Model

We verify the validity and efficiency of the pro-
posed APE model by conducting a series of APE
experiments and human evaluation on WMT’17
APE dataset. For convenience, we denote the gen-
erative post-editing model as GM, the atomic op-
eration post-editing model as AOM, and the final
hierarchical model as HM in this section.

4.1 Setup

Dataset. The open public WMT17 Automatic Post-
Editing Shared Task (Bojar et al., 2017) data on
English-German (En-De) is widely used for APE
experiments. It consists of 23K real triples (source,
machine translation & post-editing) for training
and another 2K triples for testing from the Inter-
net Technology (IT) domain. Besides, the shared
task also provides a large-scale artificial synthetic
corpus containing around 500K high quality and 4
million low quality synthetic triples. We over sam-
ple the APE real data by 20 times and merge it with
the synthetic data, results in roughly 5 million of
triples for both pre-training and APE training. The
details of the training set are shown in Appendix
Table 6. We adopt test set of the same task in
WMT16 as the development set. Furthermore, we
apply truecaser (Koehn et al., 2007) to all files and
encode every sentence into subword units (Kudo,
2018) with a 32K shared vocabulary.

Evaluation Metrics. We mainly evaluate our
systems with metrics bilingual evaluation under-
study (BLEU) (Papineni et al., 2002) and transla-
tion edit rate (TER) (Snover et al., 2006), since
they are standard and widely employed in the APE
shared task. The metric BLEU indicates how sim-
ilar the candidate texts are to the reference texts,
with values closer to 100 representing higher sim-

9.03

2.13 1.62
0.62

6.04

1.52 1.44
0.46

18

19

20

21

22

23

24

25

60

62

64

66

68

70

72

Official Baseline GM w/o Shortcut GM w/o Joint GM w/o Pre-training

TERBLEU

BLEU TER FullGM BLEU FullGM TER

Figure 4: Results of Our Generative Model on Test Set

ilarity. TER measures how many edits required
from the predicted sentence to the ground truth sen-
tence, and is calculated by Equation (3) as well and
multiplied by 100.

Training Details. All experiments are trained
on 8 NVIDIA P100 GPUs for maximum 100,000
steps for about two days until convergence, with a
total batch-size of around 17,000 tokens per step
and the Adam optimizer (Kingma and Ba, 2014).
Only the source and post-edited sentence pairs are
used for pre-training. During pre-training, 20% to-
kens in post-editing sentence are masked as [PLH].
Parameters are being tuned with 12,000 steps of
learning rates warm-up (Vaswani et al., 2017) for
both of the GM and AOM model. However, 5
automatic post editing iterations (i.e. S = 5 in
Algorithm alg:infer) are applied during the infer-
ence for the AOM model due to its characteristic
of fine-grained editing behaviors. Except these
modifications, we follow the default transformer-
based configuration (Vaswani et al., 2017) for other
hyper-parameters in our models.

4.2 APE Systems Comparison

The main results of automatic post-editing sys-
tems are presented in Table 3 and competitively
compared with results of recent years’ winners of
WMT APE shared task and several other top re-
sults. It is observed that our hierarchical single
model achieves the state-of-the-art performance on
both BLEU and TER metrics, outperforming not
only all other single models but also the ensemble
models of top ranked systems in WMT APE tasks.

Note that our hierarchical system is not a two-
model ensemble. The standard ensemble method
requires inference and combination of results from
more than one models. In contrast, our hierarchical
model contains multiple parameter-sharing mod-
ules to accomplish multi-tasks, and only need to
infer once on the selected model.

2181

Table 3: Performance Comparison on WMT17 APE En-De Dataset

Model BLEU" TER# Note

Official Baseline 62.49 24.48 Do nothing with the origin machine translation
MS-UEdin 69.72 19.49 Single model (Junczys-Dowmunt and Grundkiewicz, 2018), winner of

WMT18 APE task
Levenshtein Transformer 70.1 19.2 Single model (Gu et al., 2019)

Unbabel 70.66 19.03 Single model (Correia and Martins, 2019), winner of WMT19 APE task.
FBK (Ensemble) 70.07 19.60 Ensemble model(Chatterjee et al., 2017a), winner of WMT17 APE task

MS-UEdin (Ensemble) 70.46 19.03 Ensemble model(Junczys-Dowmunt and Grundkiewicz, 2018)
Unbabel (Ensemble) 71.90 18.07 Ensemble model(Correia and Martins, 2019)

Only GM 71.52 18.44 Single model, i.e. ⌧ = 0 in Algorithm 3
Only AOM 68.40 20.34 Single model, i.e. ⌧ = 1 in Algorithm 3

Our HM 72.07 18.01 Single model, i.e. ⌧ = 0.3, determined on development dataset

Table 4: Performance Gain from Pseudo Data

Model BLEU" TER# �BLEU �TER

AOM w/o pseudo data 65.65 22.14 - -
AOM with pseudo data 68.40 20.34 +2.75 �1.80

4.2.1 Results of Generative APE Model
As mentioned in section 3.3, the decoder of our gen-
erative model receives encoder-memory encoder
outputs, refering to SRC memory and SRC-MT
joint memory. A transformer attention layer en-
codes the SRC into the SRC memory, and the joint
memory is produced by another one, which en-
codes the original MT conditionally on the SRC
memory. These two encoders are pre-trained with
sources and post-edits from the full training data.

We designed a set of systematic experiments to
verify that our model benefits from such a design
in Figure 4: (1) To verify that the memory encoder
has the ability to learn cross-lingual knowledge,
we replace the memory encoder with an ordinary
multi-head self-attention encoder, which does not
accept the source memory as input, marked by w/o
Joint. (2) To prove that the shortcut from the SRC
memory to the decoder input is necessary, the short-
cut is removed in the w/o Shortcut experiment. (3)
To verify that our model can leverage representa-
tions from pre-training, we conduct an experiment
without pre-training, denoted as w/o Pre-training.

The ablation results significantly demonstrate
that our model does benefit from meory encoder,
SRC memory shortcut and pre-training. Removing
any of them will result in performance loss.

4.2.2 Results of Atomic Operation APE
Model

In each iteration, based on the QE model’s output,
our AOM refines the MT in parallel regarding to

all placeholders. Unlike the GM, the time cost of
the AOM only depends on the steps of iterations,
regardless of the length of the sentence. To evalu-
ate the decoding efficiency, we collect the AOM’s
performances at different iteration steps, as shown
in Figure 5.

20

21

22

23

24

25

62

63

64

65

66

67

68

69

0 2 4 6 8 10

TERBLEU

Iteration Step

BLEU TER

Figure 5: The convergence curves of the AOM infer-
ence w.r.t. iteration. The iterative updating converges
within only 3 to 5 steps, which is much smaller than the
averaged number of decoding steps of the GM.

The Role of Pseudo Data. As noted in section
3.4, model specialization algorithm is applied to
train the model to learn different kinds of atomic op-
erations. We compare our AOM on the test set with
and without pseudo data in Table 4. The results
demostrate that our model specialization algorithm
plays a key role by providing a powerful guidance
for training and making up for the deficiency from
the lack of large amount of real APE data.

4.2.3 Results of QE Model
The QE model is the prerequisite of the final hier-
archical model as well as the basis of our atomic
operation model. Therefore, it is necessary to guar-
antee the performance of QE results as accurate
as possible. Unlike the traditional OK/BAD word-

2182

Table 5: Results of Fine-Grained QE Model (Pearson =
0.664). Quality tag prediction is evaluated in terms of
multi-classification accuracy via F1-scores. The over-
all MT quality estimation is measured by the Pearson
correlation coefficient, indicating the correlation be-
tween the predicted and the real MT quality w.r.t. TER.

K E R M OK BAD

Precision" 0.877 0.710 0.563 0.622 0.898 0.783
Recall" 0.951 0.471 0.480 0.540 0.962 0.559

F1-score" 0.913 0.566 0.518 0.578 0.928 0.652

level QE task in WMT (Bojar et al., 2017), our
model pursues to predict fine-grained quality tags.
So, we cannot make a completely fair comparison
with previous works.

The fine-grained quality tag of each word pre-
dicted by the model can be classified into one of
the four labels: K for Kept, E for Erroneous , R
for Redundant and M for Missing. Furthermore,
we convert the predicted fine-grained QE tags to
OK/BAD tags directly by treating tag K and tag M
as OK, and the other two tags as BAD according to
the rules of tagging in WMT17 QE Shared Task.

We provide our fine-grained QE results on the
test dataset of WMT17 APE Task in Table 5, where
the ground-truth tags are produced by Algorithm 4
in Appendix A.1. Note that the TER score can be
easily computed from the predicted quality tags.
The predicted TER score is regarded as an indica-
tor of MT quality in our hierarchical model: MTs
with quality higher than ⌧ in Algorithm 3 are fed to
the GM, otherwise they are sent to the AOM. The
hyper-parameter ⌧ = 0.3 is determined by cross
validation on WMT16 development dataset. After-
wards, we apply it on the WMT17 test dataset to
select a potentially preferable model from GM and
AOM to generate the final APE result for each SRC
and MT pair.

There are more than 75% of tokens in the train-
ing set are tagged with Keep. In terms of the huge
challenge posed by the unbalanced dataset, our
fine-grained quality estimation is quite remarkable.
The performance of our final hierarchical model in
Table 3 proves the effectiveness of it.

4.3 Results of Human Evaluation

We conduct real post-editing experiments with pro-
fessional translators involved. There are 6 inde-
pendent participating translators, randomly divided
into 2 groups. They are all native speakers of Ger-
man and have 10+ years of experience in transla-

Figure 6: Time Spent in Post-Editing by Translators.
The averaged total time spent by translators to post-edit
the APE becomes significantly decreased by 26.3%

tion of En-De in IT related domains. We follow
two different flows in our experiments. For fair
comparison, both of the two groups see the same
100 source sentences picked from the WMT17 test
dataset. The MTs are provided for the first group
for post-editing, while our model generated APEs
for the second group. However, the information
on the category of the translation is not revealed to
translators. The translators are asked to record the
elapsed time of their labor in total.

The statistics of averaged post-editing time for
different translators are summarized in Figure 6.
Besides the total time, we also analyze the duration
for low and high quality translations separately
(determined by QE model). In either case, post-
editing from the APE costs less time. We also did
case study about high-quality vs low-quality APE
in Appendix A.3. From different perspectives of
experimental validation, we can conclude that the
APE generated by our model can ease the burden
of translators and substantially improve the post-
editing efficiency.

5 Conclusion

In this paper, we propose a hierarchical model that
utilizes the fine-grained word-level QE prediction
to select one of the two APE models we propose
to generate better translations automatically, which
shows a state-of-the-art performance. In particular,
we design a dynamic deep learning model using
imitation learning, which intuitively mimics the
editing behaviors of human translators. Our hier-
archical model is not a standard ensemble model
in the conventional sense. We merely share the
parameters of different modules to accomplish dif-
ferent objectives, including QE, AOM and GM.
Our experimental findings show that if the charac-
teristics of errors in the machine translation can be

2183

accurately simulated, it is highly likely that MT
output can be automatically refined by the APE
model. Towards this end, we conduct a rigorous
comparison of the machine translation and auto-
matic post-editing based manual post-editing tasks,
and it is observed that the latter can significantly
increase the efficiency of post-editing.

Acknowledgments

This work is partly supported by National Key
R&D Program of China (2018YFB1403202).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Loı̈c Barrault, Ondřej Bojar, Marta R. Costa-jussà,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Müller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine transla-
tion (WMT19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1–61, Florence, Italy. As-
sociation for Computational Linguistics.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Shujian Huang,
Matthias Huck, Philipp Koehn, Qun Liu, Varvara Lo-
gacheva, Christof Monz, Matteo Negri, Matt Post,
Raphael Rubino, Lucia Specia, and Marco Turchi.
2017. Findings of the 2017 conference on machine
translation (WMT17). In Proceedings of the Sec-
ond Conference on Machine Translation, pages 169–
214, Copenhagen, Denmark. Association for Com-
putational Linguistics.

William Chan, Nikita Kitaev, Kelvin Guu, Mitchell
Stern, and Jakob Uszkoreit. 2019. Kermit: Gener-
ative insertion-based modeling for sequences. arXiv
preprint arXiv:1906.01604.

Rajen Chatterjee, M. Amin Farajian, Matteo Negri,
Marco Turchi, Ankit Srivastava, and Santanu Pal.
2017a. Multi-source neural automatic post-editing:
Fbkâs participation in the wmt 2017 ape shared task.
In Proceedings of the Second Conference on Ma-
chine Translation, Volume 2: Shared Task Papers,
pages 630–638, Copenhagen, Denmark. Association
for Computational Linguistics.

Rajen Chatterjee, M Amin Farajian, Matteo Negri,
Marco Turchi, Ankit Srivastava, and Santanu Pal.
2017b. Multi-source neural automatic post-editing:
Fbk?s participation in the wmt 2017 ape shared task.
In Proceedings of the Second Conference on Ma-
chine Translation, pages 630–638.

Rajen Chatterjee, Christian Federmann, Matteo Negri,
and Marco Turchi. 2019. Findings of the wmt 2019
shared task on automatic post-editing. In Proceed-
ings of the Fourth Conference on Machine Transla-
tion (Volume 3: Shared Task Papers, Day 2), pages
11–28.

Gonçalo M. Correia and André F. T. Martins. 2019.
A simple and effective approach to automatic post-
editing with transfer learning. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3050–3056, Florence,
Italy. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Markus Freitag, Isaac Caswell, and Scott Roy. 2019.
Ape at scale and its implications on mt evaluation
biases. In Proceedings of the Fourth Conference on
Machine Translation (Volume 1: Research Papers),
pages 34–44.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor OK Li, and Richard Socher. 2017. Non-
autoregressive neural machine translation. arXiv
preprint arXiv:1711.02281.

Jiatao Gu, Changhan Wang, and Jake Zhao. 2019. Lev-
enshtein transformer. In Advances in Neural Infor-
mation Processing Systems.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2018. Ms-uedin submission to the wmt2018 ape
shared task: Dual-source transformer for automatic
post-editing. In Proceedings of the Third Confer-
ence on Machine Translation, Volume 2: Shared
Task Papers, pages 835–839. Association for Com-
putational Linguistics.

Hyun Kim, Hun-Young Jung, Hongseok Kwon, Jong-
Hyeok Lee, and Seung-Hoon Na. 2017. Predictor-
estimator: Neural quality estimation based on tar-
get word prediction for machine translation. ACM
Transactions on Asian and Low-Resource Language
Information Processing (TALLIP), 17(1):3.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. International
Conference on Learning Representations.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
ACL.

2184

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates. pages 66–75.

Samuel Läubli, Mark Fishel, Gary Massey, Maureen
Ehrensberger-Dow, Martin Volk, Sharon O’Brien,
Michel Simard, and Lucia Specia. 2013. Assessing
post-editing efficiency in a realistic translation envi-
ronment.

António V. Lopes, M. Amin Farajian, Gonçalo M. Cor-
reia, Jonay Trénous, and André F. T. Martins. 2019.
Unbabel’s submission to the WMT2019 APE shared
task: BERT-based encoder-decoder for automatic
post-editing. In Proceedings of the Fourth Confer-
ence on Machine Translation (Volume 3: Shared
Task Papers, Day 2), pages 118–123, Florence, Italy.
Association for Computational Linguistics.

Santanu Pal, Nico Herbig, Antonio Krüger, and Josef
van Genabith. 2018. A transformer-based multi-
source automatic post-editing system. In Proceed-
ings of the Third Conference on Machine Transla-
tion: Shared Task Papers, pages 827–835.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proc Meeting
of the Association for Computational Linguistics.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study
of translation edit rate with targeted human annota-
tion. In In Proceedings of Association for Machine
Translation in the Americas, pages 223–231.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob
Uszkoreit. 2019. Insertion transformer: Flexible se-
quence generation via insertion operations. In In-
ternational Conference on Machine Learning, pages
5976–5985.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104–3112.

Yiming Tan, Zhiming Chen, Liu Huang, Lilin Zhang,
Maoxi Li, and Mingwen Wang. 2017. Neural post-
editing based on quality estimation. In Proceedings
of the Second Conference on Machine Translation,
pages 655–660.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

A Appendix
A.1 Pseudo code of QE tag computation
The computation of QE tags is quite similar to the
famous Minimum Edit Distance problem and can
be solved with dynamic programming in algorithm
4.

Algorithm 4 QE tag computation
Require: machine translation m = {mi}Mi=1, post-editing

e = {ei}Ni=1.
1: Initialize the edit distance matrix di,0 = i, d0,j = j and

QE tag qi = 1.
2: for i = 1, ...,M do
3: for j = 1, ..., N do
4: di,j = min{di�1,j�1 + Imi 6=ej , di,j�1 +

1, di�1,j + 1}
5: end for
6: end for
7: while i > 0 or j > 0 do
8: if i > 0 and j > 0 and di�1,j�1 + 1 = di,j then
9: qi = �1, i��, j ��

10: else if j > 0 and di,j�1 + 1 = di,j then
11: qi ++, j ��
12: else if i > 0 and di�1,j + 1 = di,j then
13: qi = 0, i��
14: else
15: i��, j ��
16: end if
17: end while
18: return q = {qi}Mi=1

A.2 Details of the Traning Corpus
WMT APE shared-task provided both real APE
triplets and a large a large-scale artificial synthetic
corpus containing around 500K high quality and 4
million low quality synthetic triples. Table 6 shows
the difference between them.

Table 6: Details of the WMT 2017 APE Shared-Task
Dataset. The BLEU and TER metrics are directly eval-
uated on machine translation and post-editings as refer-
ences.

Source # Sentence Avg. Length BLEU TER

Real Triples 23,000 17.88 61.87 25.35
Artificial 500K 526,368 20.90 60.01 25.55
Artificial 4M 4,391,180 16.68 46.59 35.37

500K+20⇤Real 986,368 19.49 60.80 25.46
4M+500K+20⇤Real 5,377,548 17.20 49.65 33.31(Full Training data)

A.3 Case Study and Runtime Efficiency
As mentioned in the paper, the AOM is more suit-
able for translations that only require a few edit
operations while GM is more preferable for low
quality translations. To demonstrate this conclu-
sion and prove the effectiveness of our QE-based
automatic selector, some cases of translations with
different qualities are shown in Table 7.

In case 1 and case 2, the translation is quite close
to pe. Therefore, the AOM only need to predict
tokens for a small number of [PLH]s. When there
are relatively complete contexts provided, the AOM

2185

Table 7: Examples of Crowdsourcing after APE. Tokens in “hi” indicates GM’s over corrections or AOM’s inac-
curate translations due to too many consecutive [PLH] predictions, which leads inadequate contextual information.
Tokens in “{}” highlights correct automatic editings.

High Quality s Translation Case

Case1

SRC In List view , click any column header to sort by that criteria .
MT Klicken Sie in der Listenansicht auf eine beliebige Spaltenüberschrift , um nach dieser Kriterien sortieren .
PE Klicken Sie in der Listenansicht auf eine beliebige Spaltenüberschrift , um nach diesen Kriterien zu sortieren .
MT (sub-word) klicken Sie in der Listenansicht auf eine beliebige Spalten überschrift , um nach dieser Kriterien

sortieren .
Predicted QE Tag 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 2 1 1
TER vs Predicted TER 11.76 vs 11.11
AOM Input klicken Sie in der Listenansicht auf eine beliebige Spalten überschrift , um nach [PLH] Kriterien

[PLH] sortieren .
AOM Output klicken Sie in der Listenansicht auf eine beliebige Spalten überschrift , um nach { diesen}

Kriterien { zu} sortieren .
GM Output klicken Sie in der Listenansicht auf eine beliebige Spalten überschrift , um nach dieser Kriterien

{ zu} sortieren .
Final Output Klicken Sie in der Listenansicht auf eine beliebige Spaltenüberschrift , um nach diesen Kriterien zu sortieren .
Translator Edit no action

Case2

SRC You can justify all text in a paragraph either including or excluding the last line .
MT Sie können den gesamten Text eines Absatzes mit oder ohne die letzte Zeile .
PE Sie können den gesamten Text eines Absatzes mit oder ohne die letzte Zeile ausrichten .
MT (sub-word) Sie können den gesamten Text eines Absatzes mit oder ohne die letzte Zeile .
Predicted QE Tag 1 1 1 1 1 1 1 1 1 1 1 1 2 1
TER vs Predicted TER 6.67 vs 6.67
AOM Input Sie können den gesamten Text eines Absatzes mit oder ohne die letzte Zeile [PLH] .
AOM Output Sie können den gesamten Text eines Absatzes mit oder ohne die letzte Zeile { ausrichten} .
GM Output Sie können den gesamten Text eines Absatzes h entweder einschließlichi oder ohne die letzte

Zeile löschen .
Final Output Sie können den gesamten Text eines Absatzes mit oder ohne die letzte Zeile ausrichten .
Translator Edit no action

Low Quality Translation Case

Case3

SRC In Start Number , enter the number to assign to the first PDF on the list .
MT Wählen Sie unter “ Number , ” geben Sie die Nummer für die erste PDF-Datei in der Liste aus .
PE Geben Sie unter “ Startnummer ” die Nummer für die erste PDF-Datei in der Liste ein .
MT (sub-word) wählen Sie unter “ Number , ” geben Sie die Nummer für die erste PDF - Datei in der

Liste aus .
Predicted QE Tag -1 1 1 2 -1 -1 -1 -1 -1 1 1 0 -1 -1 1 1 1 -1 1 1 -1 1
TER vs Predicted TER 35.29 vs 54.55
AOM Input [PLH] Sie unter “ [PLH] [PLH] [PLH] [PLH] [PLH] [PLH] die Nummer [PLH] [PLH] PDF - Datei [PLH]

der Liste [PLH] .
AOM Output { geben} Sie unter “ Start h geben Sie zum Zuweisen i” die Nummer der ersten PDF - Datei

über der Liste { ein} .
GM Output { geben} Sie unter “ { Start nummer} ” die Nummer für die erste PDF - Datei in der Liste

an .
Final Output Geben Sie unter “ Startnummer ” die Nummer für die erste PDF-Datei in der Liste an .
Translator Edit an!ein

Case4

SRC The Illustrator text is converted to HTML text with basic formatting attributes in the resulting web page .
MT Die Illustrator Text HTML-Text mit grundlegenden Formatierungsattribute in der erstellten Webseite konvertiert wird .
PE Die Illustrator-Text wird in HTML-Text mit grundlegenden Formatierungsattributen in der erstellten Webseite konvertiert

.
MT (sub-word) die Illustrator Text HTML - Text mit grundlegenden Formatierung s attribute in der erstellten Webseite

konvertiert wird .
Predicted QE Tag -1 3 3 1 1 1 1 1 1 1 -1 1 1 1 1 1 0 1
TER vs Predicted TER 35.29 vs 33.33
AOM Input [PLH] Illustrator [PLH] [PLH] Text [PLH] [PLH] HTML - Text mit grundlegenden Formatierung s [PLH] in

der erstellten Webseite konvertiert .
AOM Output in Illustrator - Der Text in in HTML - Text mit grundlegenden Formatierung s {attributen} in der

erstellten Webseite konvertiert .
GM Output der Illustrator {- Text wird in} HTML - Text mit grundlegenden Formatierung s {attributen} in der

erstellten Webseite konvertiert .
Final Output Der Illustrator-Text wird in HTML-Text mit grundlegenden Formatierungsattributen in der erstellten Webseite kon-

vertiert .
Translator Edit Der!Die

2186

can achieve a higher performance than the GM.
Moreover, after reading the source and the final
output, the human translators did not even take any
additional action to improve the translation quality.

In the opposite way, as shown in case 3 and
case 4, there is a huge gap between mt and pe,
and the input for AOM contains a considerable
number of placeholders, which lacks enough con-
textual information. In these cases, our GM can
auto-regressively regenerate the translation based
on the given mt to guarantee the higher quality of
the final output. Based on the QE selector, the
translators only need to make very few efforts to
correct the errors in the final generated APE of our
model.

A practical point of the computer assisted trans-
lation via APE is its expense and computational
cost. Compared with the traditional computer as-
sisted translation crowdsourcing, machine transla-
tion + human post-editing, our additional automatic
post-editing does increase the computational cost,
which is roughly equivalent to another machine
translation model. In general, the crowdsourcing is
charged by hours. The numbers in our findings sug-
gest a promising budget cut associated with CAT
crowdsourcing. However, this extra APE module
may lead to a latency increase by 4̃00ms, which
is still far below the average time cost by human
post-editing. Even for an online crowdsourcing sys-
tem, a well-designed concurrent mechanism should
make the translators not feel any delay. From the
perspective of architecture scale, the APE model
can be deployed in the identical processing unit for
the machine translation model and be called suc-
cessively in a pipeline. The only concern is that the
memory storage capacity should be large enough
to store more parameters.

