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Abstract
Generating questions based on answers and
relevant contexts is a challenging task. Recent
work mainly pays attention to the quality of
a single generated question. However, ques-
tion generation is actually a one-to-many prob-
lem, as it is possible to raise questions with dif-
ferent focuses on contexts and various means
of expression. In this paper, we explore the
diversity of question generation and come up
with methods from these two aspects. Specif-
ically, we relate contextual focuses with con-
tent selectors, which are modeled by a continu-
ous latent variable with the technique of condi-
tional variational auto-encoder (CVAE). In the
realization of CVAE, a multimodal prior dis-
tribution is adopted to allow for more diverse
content selectors. To take into account vari-
ous means of expression, question types are ex-
plicitly modeled and a diversity-promoting al-
gorithm is proposed further. Experimental re-
sults on public datasets show that our proposed
method can significantly improve the diversity
of generated questions, especially from the
perspective of using different question types.
Overall, our proposed method achieves a better
trade-off between generation quality and diver-
sity compared with existing approaches.

1 Introduction

As a reverse task of question answering (QA), ques-
tion generation (QG) aims to generate questions
from a given answer and its relevant context. The
task holds the potential value of educational pur-
pose to generate questions for reading compre-
hension materials (Heilman and Smith, 2010). It
can also be deployed as chatbot components (Li
et al., 2017) for evaluating or improving mental
health (Colby, 1975). Moreover, QG can be ap-
plied to extend the question-answer pairs (Du and
Cardie, 2018) for QA systems.

Traditional methods for QG mainly use rigid
heuristic rules to transform a sentence into related

Source context: the network was engineered and operated
by mci telecommunications under a cooperative agreement
with the nsf .
Target question: who operated the vbsn network? 

Focus 1: the network was engineered and operated
by mci telecommunications under a cooperative agreement
with the nsf .
(Ours) who operates the network with nsf ?

Focus 2: the network was engineered and operated
by mci telecommunications under a cooperative agreement
with the nsf .
(Ours) who operated the network under a cooperative
 agreement with the nsf ?

Focus 3: the network was engineered and operated
by mci telecommunications under a cooperative agreement
with the nsf .
(Ours) in what company was the network engineered and
 operated by the nsf ?

Figure 1: Diversified questions generated by our
method for the given passage-answer pair (answer is
underlined). Different questions can be raised accord-
ing to distinct focuses on the context (colored) and var-
ious means of expression (italic).

questions (Heilman, 2011). However, these ap-
proaches heavily rely on manually crafted features,
which cannot be easily generalized. In recent years,
neural techniques are applied to this task and have
achieved significant progress (Zhou et al., 2017;
Du et al., 2017). Most of these methods follow
the one-to-one encoder-decoder paradigm and fo-
cus on improving the quality of a single generated
question (Zhao et al., 2018; Sun et al., 2018).

However, given an answer and its associated
context, it is possible to raise multiple questions
with different focuses on the context and various
means of expression. Figure 1 shows some differ-
ent questions that can be generated from a given
source context. The characteristic of diversity is
inherent in QG and has the potential to enhance
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the value of this task. However, the diversity is
not fully explored with existing methods. Yao et
al. (2018) and Fan et al. (2018b) noticed this prob-
lem and modeled the variety with latent variable
models. However, the introduced latent variable
was regarded as a holistic attribute, whose meaning
was opaque and weakly related to the origin of di-
versity. More recently, Cho et al. (2019) proposed
a mixture content selection model for generation,
whose diversity is determined by a fixed number of
selectors. However, the discrete property confines
its variety to a large extent.

In this paper, we use a more flexible continuous
latent variable for content selection to deal with
different focuses on a context. Moreover, question
types are explicitly incorporated to consider differ-
ent ways of expression. With these components, a
question can be generated in three steps. Firstly,
a content selector in the form of a continuous la-
tent variable is sampled conditioning on the source
context. Secondly, a question type is predicted
based on the context as well as the content selector.
Lastly, the content of a question is generated with
above information about contextual focuses and
means of expression. Considering the variety of
content selectors and question types, the diversity
of generated questions can be ensured.

Overall, the main contributions of this paper are
as follows:

• We explicitly consider the content selection
process of QG and model content selectors
as a continuous latent variable for different
focuses on contexts. CVAE is utilized and
the multimodal prior technique is adopted for
more diverse selectors.

• We consider various means of expression
through the incorporation of question type
modeling. A diversity-promoting algorithm
concerning the use of distinct question types
among generations is proposed further.

• We conduct experiments on the public
datasets SQuAD and NewsQA, whose results
demonstrate a better trade-off between gener-
ation quality and diversity compared with pre-
vious methods. Further analysis demonstrates
the effectiveness of our proposed components.

2 Related Work

Automatic question generation has attracted an in-
creasing attention from the natural language gen-

eration community in recent years, which is re-
flected in newly published datasets (Zhou et al.,
2017; Chen et al., 2018) and sophisticated tech-
niques (Du et al., 2017; Liu et al., 2019).

Traditional methods are mainly rule-based,
where they first transform the source information
into syntactic representation and then use templates
to generate related questions (Heilman, 2011).
These methods largely depend on rigid heuristic
rules and cannot be easily generalized.

In contrast to rule-based methods, neural net-
works have the potential to learn implicit patterns
from labeled data, thus become more prevalent in
question generation. Du et al. (2017) and Zhou
et al. (2017) followed the paradigm of sequence-
to-sequence and showed promising results when
combining rich features and attention mechanism.
Sun et al. (2018) and Zhou et al. (2019) incorpo-
rated answer-focused information to improve the
relevance between answers and questions. Liu et
al. (2019) and Chen et al. (2020) introduced graph
networks to estimate significant contents in the
source context.

Most of previous work regarded question gen-
eration as a one-to-one problem and focused on
improving the quality of a single generated ques-
tion. Some work noticed the diversity inherent in
QG and came up with methods to consider this
characteristic. Yao et al. (2018) used a latent vari-
able to model the holistic attributes in questions.
Similar ideas could also been found in some related
work (Jain et al., 2017; Fan et al., 2018b). However,
the meaning of the holistic features is only opaque
and cannot be strongly connected with diversity.
More recently, Cho et al. (2019) proposed a mix-
ture content selection model for generation. The
diversity was determined by a fixed number of con-
tent selectors. Different from their work, we model
the latent variable of content selectors in a continu-
ous space, which holds the potential of capturing
more variety inherent in content selection.

Besides above related work, other techniques
plugged into the general encoder-decoder frame-
work can also be utilized to promote diversity (Li
et al., 2016; Shen et al., 2019). However, the partic-
ular characteristics of question generation are not
fully considered in these approaches.

3 Method

Question generation aims to model the probability
of a question q given an answer a and its context c,
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Figure 2: The framework of our model for diverse ques-
tion generation, which can be decomposed into three
stages.

which can be combined as the source information
x = {c, a}.

To diversify generated questions, we incorporate
a continuous multi-dimensional latent variable z
for content selection and explicitly model question
types to deal with means of expression. Genera-
tion can be factorized into three stages. Firstly, a
content selector z is sampled conditioning on the
input x. This is used to indicate which parts of the
source information should be focused on. Secondly,
a question type qt is predicted considering the spe-
cific content selector z and the input x. Lastly, the
relevant question content qc is generated with se-
lected contents and predicted question type. The
final question q can be composed as (qt, qc). The
factorization can be formulated as follows:

pθ(q|x) = Ez∼pθ(z|x)[pθ(q|x, z)]
= Ez∼pθ(z|x)[pθ(qt|x, z)pθ(qc|x, z, qt)]

(1)
The choice of a continuous latent variable as con-

tent selectors leads to more variety compared with
its discrete counterpart. CVAE (Sohn et al., 2015)
is adopted to make training more tractable. Then
the objective function turns out be the evidence
lower bound (ELBO) of logpθ(q|x):

L(θ, φ;x, q) = Ez∼pφ(z|x,q)[logpθ(q|x, z)
+ logpθ(z|x)− logpφ(z|x, q)]

(2)
where pφ(z|x, q) is incorporated to approximate
the the posterior distribution pθ(z|x, q).
L(θ, φ;x, q) can be approximated using Monte

Carlo estimate and learning can be conducted with
re-parameterization trick (Kingma and Welling,

2014) on pφ(z|x, q) and pθ(z|x):

z ∼ pφ(z|x, q)

L̃(θ, φ;x, q) = logpθ(qt|x, z) + logpθ(qc|x, z, qt)
+ logpθ(z|x)− logpφ(z|x, q)

(3)
The first two components in L̃ denote the re-

construction error that forces the sampled content
selector to be informative of what to focus on. The
last two components constitute a kind of regular-
ization that drive the posterior to match the prior.

The overall architecture is illustrated in Figure 2.
In the following subsections, we will elaborate the
details of each stage.

3.1 Content Selector
In our framework, the content selector is modeled
as a continuous multi-dimensional latent variable
z, which is used to focus on relevant contextual
information. Following CVAE, a recognition net-
work pφ(z|x, q) is defined to approximate the true
posterior distribution. As shown in the form of
pφ(z|x, q), it is conditioned on the source informa-
tion x as well as the target question q.

As for the source information, we decompose
the context c as a sequence of words {xi}ni=1. Fol-
lowing Zhou et al. (2017), we exploit lexical fea-
tures to enrich word embeddings as x = {xi}ni=1.
Then a bidirectional recurrent neural network (Bi-
RNN) is used to produce a sequence of hidden
states {hi}ni=1. At last, condensed source informa-
tion s is aggregated with a self-attention operation:

γi = softmax(uT
h tanh(Whhi + bh))

s =
n∑
i=1

γihi
(4)

We assume the target question has content words
{yt}mt=1. Then, the target information t can be
calculated with a similar process as Equation 4.

To model the continuous property of the latent
variable z, we assume pφ(z|x, q) follows multivari-
ate Gaussian distribution with a diagonal covari-
ance matrix, hence the recognition network can be
calculated as:

pφ(z|x, q) ∼ N (µ, σ2I)[
µ

log(σ2)

]
= Wr

[
s
t

]
+ br

(5)

Given Equation 3, we also need to define the
prior distribution pθ(z|x) of the latent variable z.
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Traditional methods often represent the prior as an-
other Gaussian distribution for the sake of tractable
calculation. To enrich the model with more va-
riety and prevent the variational posterior to be
over-regularized, we adopt a multimodal prior dis-
tribution. Gaussian mixture distribution has the po-
tential to fit more diverse multi-dimensional data,
which are suitable to enlarge the divergence be-
tween content selectors with different focuses.

Instead of introducing transformation matrices
to mean and variance for each mode, we adopt the
multimodal prior technique of VampPrior (Tom-
czak and Welling, 2018), where only marginal ad-
ditive parameters are needed and overfitting can be
alleviated. More specifically, the multimodal prior
distribution can be formulated as follows:

pθ(z|x) ∼
1

K

K∑
k=1

N (µk, σ
2
kI)[

µk
log(σ2k)

]
= Wr

[
s

t̃k

]
+ br

(6)

where t̃k denotes a pseudo-input, which is a learn-
able vector with the same dimension as t. K is a
hyper-parameter denoting the number of modes.

Given above recognition and prior networks, we
can use re-parametrization trick to obtain samples
of z from pφ(z|x, q) (training) or pθ(z|x) (testing).
With the sampled latent variable z, we can calculate
what to focus on the context c:

oi = sigmoid(uT
z tanh(Wz[hi; z;E[qt]] + bz))

(7)
where [; ] means vector concatenation. E[qt] de-
notes the word embedding of question type qt,
which will be elaborated in subsection 3.2. We
use o to represent {oi}ni=1 for simplicity.

3.2 Question Type Predictor
Given source information s and sampled content
selector z, question type predictor produces a prob-
ability distribution to indicate how likely the se-
lected contents can be inquired by different ques-
tion types. In this paper, we categorized question
types according to the interrogative words com-
monly used in general questions. Specifically, they
are classified into 8 types - what, who, how, when,
which, where, why and other (Zhou et al., 2019).

We combine the contextual information s and
the selector representation z as the input. Two fully
connected layers followed by a softmax layer are

Algorithm 1 Pseudo-code for diversity-promoting
question type selection algorithm. P ∈ N × L is
the question type distributions of N different sam-
ples with L types. −inf represents the negative
infinity. decay is a hyper-parameter controlling
the degree of diversity and tuned by the develop-
ment set. The algorithm returns qit for each sample,
which means its predicted question type.

1. procedure QUESTIONTYPESELECT(P , N ,
L)

2. for t ∈ {1, 2, ...N} do
3. i, j = argmaxi,j{Pi,j}
4. qit = j

5. Pij′ = − inf j′ ← 1 ∼ L
6. Pi′j −= decay i′ ← 1 ∼ N
7. end for
8. return {qit}Ni=1

9. end procedure

used to estimate the final question type distribution
for a relevant question. The loss corresponds to the
first item in Equation 3:

logpθ(qt|x, z) = log softmax(Wt1tanh(Wt2 [s; z]))
(8)

Given the question type predictor, we propose
a diversity-promoting algorithm in the inference
phase. In Algorithm 1, we utilize decay to ex-
plicitly control the degree of diversity for multiple
generations. Specifically, given multiple samples
with their question type distributions as a whole,
we iteratively pick the highest probability and as-
sign its type to the corresponding sample. Then, the
probability of choosing the same question type for
other samples will be restrained by decay. There-
fore, it is more likely to allocate different types to
the rest, thus the degree of diversity in question
types can be explicitly promoted.

3.3 Controlled Generator
We utilize focused encoder and decoder to make the
generation process aware of the selected contents
and the predicted question type.

3.3.1 Focused Encoder
The selected contents can be regarded as a clue
indicator feature (Liu et al., 2019), which assigns a
binary value to each word to signify its importance.
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To stabilize training, we use the soft version of this
indicator feature, whose weight is given by o in
Equation 7. In the inference phase, we discrete this
indicator by setting a threshold (Cho et al., 2019).
Specifically, this feature is transformed into another
embedding as follows:

E[oi] =

{
oiE1 + (1− oi)E0 for training
I(oi)E1 + (1− I(oi))E0 for inference

(9)
where E1 and E0 correspond to the trainable em-
beddings for the two values of this clue indicator.
I(oi) represents the discreteness of the content se-
lection probability oi. This embedding is appended
to the word embedding xi introduced in subsec-
tion 3.1. The resulting embeddings are denoted as
{x′i}ni=1.

Then another Bi-RNN is utilized to obtain fo-
cused contextual representations as h′ = {h′i}ni=1.

3.3.2 Focused Decoder
We assume that the contextual representations h′,
the content selection indicator o and the question
type qt should be combined to generate relevant
question content qc = {yt}mt=1, which is the re-
maining part of a question other than its type.

Following the traditional paradigm, a unidirec-
tional Gated Recurrent Unit (GRU) (Cho et al.,
2014) is employed to form the decoder. It takes
the question type qt as the initial input word y0
and refers to representations h′ for attention mech-
anism (Bahdanau et al., 2015). More details can
be found in the implementation of NQG++ (Zhou
et al., 2017).

Traditional methods calculate attention weights
using the correlation between the hidden states of
the encoder and the decoder, which is defined at
the word level. In our method, the content selector
z decides what to focus on before generation, thus
has the ability to provide attention at the sentence
level. This is similar to the idea used in data-to-text
generation (Mei et al., 2016). Therefore, we com-
bine the content selection probability o to refine the
attention weights αt,i at position t:

α′t,i =
αt,ioi∑n
i=1 αt,ioi

(10)

Note that incorporating content selection in this
way is an independent operation, which can be
plugged into any standard attention method.

As for generation distribution, we adopt copy-
generator (See et al., 2017) to deal with the out-

of-vocabulary problem. Then, the loss function
exerted on the question content, which corresponds
to the second term of Equation 3, can be calculated
as follows:

logpθ(qc|x, z, qt) =
m∑
t=1

logpθ(yt|y<t,h′,o)

(11)

3.4 Training
As the selected contents play an important role in
our model, we assume they are consistent with the
final generation. Although this behavior can be
learned with Equation 11 in an end-to-end manner,
we add an auxiliary loss function to facilitate it.
Formally, we set the gold label of content selection
gi to 1 if the source token xi appears in the target
question q and 0 otherwise. Without annotations of
real focuses, above labels serve as proxies to ease
learning. The loss function is thus defined as:

Lsel(θ, φ;x, q) =

n∑
i=1

[gilogoi+(1−gi)log(1−oi)]

(12)
It is well known that a vanilla CVAE with RNN

decoder has the risk of failing to encoding mean-
ingful information in the latent variable (Bowman
et al., 2016). Inspired by the same concern in the
previous work (Zhao et al., 2017), we also adopt the
bag-of-word loss Lbow(θ, φ;x, q) as an auxiliary
loss, which requires the latent variable to predict
the words shown in the target question. Moreover,
the technique of KL cost annealing (Bowman et al.,
2016) is also incorporated to let the divergence
of pφ(z|x, q) and pθ(z|x) gradually influence the
learning procedure.

Therefore, the overall loss function of the whole
framework is defined as:

L̂(θ, φ;x, q) = L̃(θ, φ;x, q) + Lsel(θ, φ;x, q)

+ Lbow(θ, φ;x, q)
(13)

which can be optimized by stochastic gradient de-
scent.

4 Experiments

4.1 Experiment Settings
Dataset We conduct experiments on two pub-
lic datasets SQuAD (Rajpurkar et al., 2016) and
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NewsQA (Trischler et al., 2017). As for SQuAD,
we follow the same corpus split by Zhou et
al. (2017) and directly utilize their provided lex-
ical features1. There are 86635, 8965 and 8964
sentence-answer-question triples in the training,
development and testing set respectively. As for
NewsQA, we follow the original split of this
dataset, resulting in 92549, 5166 and 5126 triples
for training, development and testing.

Implementation Details The vocabulary is set
to contain the most frequent 20000 words in each
training set. We set the dimension of word embed-
ding to 300 and hidden size to 512. The representa-
tions of lexical features and focus indicator are ran-
domly initialized as 16-dimensional vectors. The
dimension of the latent variable z and the hidden
size of the question type predictor are set to 128.
The number of layers for RNN is set to 1 in both
the encoder and the decoder. We update the model
parameters using Adam optimizer (Kingma and
Ba, 2014) with learning rate of 0.001, momentum
parameters β1 = 0.9 and β1 = 0.999. Batch size
is set to 64 during training. The development set is
used to find the best model and hyper-parameters.
Our model is implemented with Pytorch 1.0.0.

4.2 Baselines and Metrics

We compare our method with recent diversified
generation methods including Truncated Sam-
pling (Fan et al., 2018a), Diverse Beam Search (Vi-
jayakumar et al., 2018), Mixture Decoder (Shen
et al., 2019) and Mixture Content Selection (Cho
et al., 2019). The implementations and naming con-
ventions of above baselines follow those by Cho et
al. (2019).

As for our method, to getN generations for each
passage-answer pair, we sample N content selec-
tors from the multimodal prior defined by Equation
6. Given these content selectors, question types
are promoted to be distinct with Algorithm 1 and
greedy search is conducted for a fair comparison.
Note that there is no restriction on the number of
prior modes (K) to get N samples. However, it is a
natural choice to setK = N and get a sample from
each mode. We name this model as N -M. Prior. In
further analysis, we will also show the influence of
setting different values to K.

We use metrics2 adopted by Cho et al. (2019) to

1https://res.qyzhou.me/redistribute.zip
2⇑ is used for a metric which is higher with better perfor-

mance, otherwise ⇓ is marked.

Method
BLEU-4 Oracle Pairwise Overall Type stats.
(Top-1) (Top-N) (Self-sim) (Top-N) (Top-N)

3-Beam 13.59 16.85 67.23 3.40 0.63 / 1.17
3-D. Beam 13.70 16.99 68.02 3.42 0.62 / 1.13
3-T. Sampling 11.89 15.45 37.37 4.91 0.70 / 1.61
3-M. Decoder 14.72 19.32 51.36 5.54 0.70 / 1.38
3-M. Selector 15.87 20.44 47.49 6.83 0.67 / 1.29
3-M. Prior 15.13 19.28 42.37 6.88 0.85 / 2.42

5-Beam 13.53 18.81 74.67 3.41 0.67 / 1.31
5-D. Beam 13.38 18.30 74.80 3.27 0.65 / 1.24
5-T. Sampling 11.53 17.65 45.99 4.43 0.76 / 1.94
5-M. Decoder 15.17 21.97 58.73 5.67 0.77 / 1.69
5-M. Selector 15.67 22.45 59.82 5.88 0.70 / 1.41
5-M. Prior 15.34 21.15 54.18 5.99 0.96 / 3.85

Table 1: Automatic metrics on SQuAD about base-
lines and our proposed method. Method prefixes are the
numbers of generations for each passage-answer pair
(N = 3, 5). The last column is targeted to measure the
coverage and the diversity of generated question types.

Method
BLEU-4 Oracle Pairwise Overall Type stats.
(Top-1) (Top-N) (Self-sim) (Top-N) (Top-N)

5-Beam 10.09 15.82 68.88 2.32 0.76 / 1.25
5-D. Beam 10.12 15.51 70.57 2.22 0.75 / 1.19
5-T. Sampling 8.64 14.25 47.57 2.59 0.80 / 1.58
5-M. Decoder 10.02 17.04 55.07 3.10 0.82 / 1.50
5-M. Selector 10.90 17.51 52.61 3.63 0.77 / 1.29
5-M. Prior 9.90 15.48 41.37 3.70 0.89 / 2.24

Table 2: Automatic metrics on NewsQA.

evaluate generation quality and diversity:

Top-1 metric (⇑) This measures the top-1 accu-
racy (BLEU-4) among the N -best generations.

Oracle metric (⇑) This measures the upper
bound of top-1 accuracy (Oracle BLEU-4) by com-
paring the best hypothesis among the top-N gener-
ations with the target question. The metric reflects
the overall quality of top-N generations.

Pairwise metric (⇓) This measures the within-
distribution similarity. The metric computes the
average of sentence-level metrics (Self BLEU-4)
between one sentence and the rest in a generated
collection. Low pairwise metric indicates high di-
versity.

Given these metrics, we come up with a compre-
hensive measurement to balance generation quality
and diversity.

Overall metric (⇑) This measures the overall
performance concerning both quality and diversity:
Top-1 metric×Oracle metric÷Pairwise metric

Also, we introduce other two metrics regarding
with the diversity of generated question types.
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Diversity (%)
Baselines Win Lose Tie

v.s. 3-M. Selector 45 26 29
v.s. 3-M. Decoder 46 26 28

Table 3: Human evaluation results on SQuAD.
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Figure 3: The change of each evaluation metric with
different values of the decay hyper-parameter in Algo-
rithm 1. Values range from 0 to 1 with an interval of
0.1. The left subgraph (a) records metrics related to
question types and the right one (b) shows metrics con-
cerning BLEU-4. The experiments are conducted with
the setting of 3-M. Prior on SQuAD.

Type coverage metric (⇑) This measures the
percentage that the question type of the target ques-
tion is covered by top-N generations.

Type diversity metric (⇑) This measures the av-
erage number of distinct question types in top-N
generations.

4.3 Results and Analysis
Results compared with baselines The experi-
mental results on SQuAD are displayed in Table
1. The table shows that the quality of generated
questions with our method (N -M. Prior) scores
comparable BLEU-4 to the state-of-the-art, which
is much superior compared with methods based on
beam search and sampling. Moreover, from the
perspective of diversity, our method performs evi-
dently better than other mixture models, resulting
in the best trade-off between diversity and quality
as shown by the overall metric. Furthermore, fo-
cusing on the measurements concerning question
types, we can find that our model demonstrates sig-
nificant improvements from both the coverage and
the diversity, which are caused by the explicit mod-
eling and diversifying of question types. We can
observe the similar phenomenon that our method
performs better with regard to the diversity metrics
from the performance on NewsQA in Table 2.

We also conduct human evaluation comparing

Method
BLEU-4 Oracle Pairwise Overall
(Top-1) (Top-N) (Self-sim) (Top-N)

3-M. Prior 15.13 19.28 42.37 6.88
-Diversity-promoting 15.19 19.29 43.86 6.72
-Focused Decoder 15.03 19.56 44.96 6.54
-Focused Encoder 14.28 18.67 44.80 5.95
-Focused Decoder & Encoder 14.55 17.95 65.56 3.98
-Content Selection Loss 14.66 18.11 66.23 4.01
-Bag-of-Word Loss 15.29 19.19 50.86 5.77
-KL cost Annealing 15.58 18.70 67.94 4.29

Table 4: Ablation results concerning important model
components on the test set of SQuAD.

Method
BLEU-4 Oracle Pairwise Overall
(Top-1) (Top-N) (Self-sim) (Top-N)

1-M. Prior (3 samples) 14.51 18.52 47.50 5.66
3-M. Prior (3 samples) 15.13 19.28 42.37 6.88
5-M. Prior (3 samples) 15.16 19.14 44.49 6.52

1-M. Prior (5 samples) 14.55 20.19 56.55 5.19
3-M. Prior (5 samples) 14.88 20.18 57.18 5.25
5-M. Prior (5 samples) 15.34 21.15 54.18 5.99

Table 5: Experiments on SQuAD with different num-
bers of prior modes (K = 1, 3, 5) when generating mul-
tiple samples (N = 3, 5).

the diversity of the generated questions from our
model 3-M. Prior with other mixture model base-
lines in Table 3. The table shows that our method
outperforms its counterparts in terms of diversity
with statistical significance.

Diversifying question types As described in Al-
gorithm 1, the diversity of question types can be
explicitly controlled by setting different values of
decay. The influence is clearly shown in the Figure
3(a). As decay gradually increases, the diversity of
question types increases as well as their coverage
of the golden type. Also, from the Figure 3(b), we
can see that, a small value of decay results in better
generation quality metrics. The reason is that the
incorporation of more diverse question types may
lead to more possibilities of raising good questions.
As its value continues to grow, the diversity keeps
on increasing at the risk of inappropriate question
types used, which results in a slight degradation of
the generation quality. We can select an appropriate
decay value according to the overall metric.

Ablation Analysis To show the effects of impor-
tant components in our model, we conduct an abla-
tion study on SQuAD. As shown in Table 4, the
proposed diversity-promoting algorithm can clearly
improve the generation diversity with nearly no
negative impact on the quality, which can also be
shown in Figure 3 when decay is small. As for
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Source context: the network was engineered and operated by
mci telecommunications under a cooperative agreement with
the nsf .
Target question: who operated the vbsn network? 

Mixture Content Selection:
Q1: who operates the network ?
Q2: who operates the network ?
Q3: who operates the network with the nsf ?

Ours�
Q1: who operates the network with nsf ?
Q2: who operated the network under a cooperative agreement
       with the nsf ?
Q3: in what company was the network engineered and
       operated by the nsf ?

Mixture Decoder:
Q1: who operated the network in the nsf ?
Q2: who operates the network in the network ?
Q3: who operates the network under a cooperative agreement
       with the nsf ?

Figure 4: Multiple questions generated by our model
3-M. Prior and other mixture model counterparts.

content selection, incorporating its influence in the
encoder-decoder architecture improves the overall
metric obviously. Also, we observe that the auxil-
iary loss function on selected contents can make a
big difference, demonstrating its necessity to make
content selectors focus on diverse and valid text
pieces. Moreover, learning tricks about CVAE con-
tribute to a more informative latent variable and
improve the diversity evidently.

Influence of multimodal prior distribution
The continuous property of content selectors make
it possible to generate N questions even given a
standard gaussian prior. However, the introduction
of multimodal prior can enrich content selectors
with more variety and lead to more diverse gener-
ations. As shown in Table 5, the number of prior
modes (K = 1, 3, 5) has an effect on metrics when
generating multiple questions (N = 3, 5). First,
we can see that the multimodal prior has the ability
to improve the generation diversity compared with
the standard one, which tallies with our conjec-
ture. Second, when experimenting with the setting
N = K, almost all of the metrics are better. We can
explain this from the fact that samples of content
selectors can be taken from different prior modes,
which are more diverse. Also, inference accords
with the training process in this situation.

Qualitative Analysis Figure 4 shows an exam-
ple of the generated questions from our model 3-

Source context��in the early 1950s , student applications 
declined as a result of increasing crime and poverty in the 
hyde park neighborhood .

Q1: what did student applications decline in the 1950s ?
Q2: what did student applications decline in the early 
1950s ?

Q3: what was the result of student applications in the 
1950s ?
Q4: what was the result of student applications in the early 
1950s ?

Q5: in the early 1950s , student applications declined as a 
result of what ?
Q6: in the early 1950s , what did student applications 
decline ?

Figure 5: Different generations on SQuAD with the
setting of 3-M. Prior. Generations from different prior
modes are partitioned by dash lines.

M. Prior and its mixture model counterparts. As
shown in this example, our generations often varies
in question types and exhibit more diversity. More-
over, we highlight the selected contents of each gen-
eration from our model in Figure 1, which shows
the effectiveness of our content selection module.

As we use the multimodal prior technique, the di-
versity of generated questions can be reflected from
both intra and inter modes. We can see from Figure
5 that different from other mixture models which
can only generate a fixed number of questions, our
continuous modeling option makes it possible to
produce more generations by sampling from each
mode repeatedly. In this example, questions from
different modes exhibit a larger divergence com-
pared with those from the same one, which demon-
strates once more that the use of a multimodal prior
makes a difference to the generation diversity.

5 Conclusion

In this paper, we explicitly diversify the question
generation from the perspectives of contextual fo-
cuses and means of expression. We model focuses
through continuous content selectors and introduce
a multimodal prior to allow for more diverse se-
lectors. We consider various means of expression
through the modeling of question types and a re-
lated diversity-promoting algorithm. On public
datasets, our approach achieves the best trade-off
between generation quality and diversity. Further
analysis also demonstrates the effectiveness of our
proposed model components.
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