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Abstract
The goal of text summarization is to com-
press documents to the relevant information
while excluding background information al-
ready known to the receiver. So far, summa-
rization researchers have given considerably
more attention to relevance than to background
knowledge. In contrast, this work puts back-
ground knowledge in the foreground. Build-
ing on the realization that the choices made
by human summarizers and annotators contain
implicit information about their background
knowledge, we develop and compare tech-
niques for inferring background knowledge
from summarization data. Based on this frame-
work, we define summary scoring functions
that explicitly model background knowledge,
and show that these scoring functions fit hu-
man judgments significantly better than base-
lines. We illustrate some of the many po-
tential applications of our framework. First,
we provide insights into human information
importance priors. Second, we demonstrate
that averaging the background knowledge of
multiple, potentially biased annotators or cor-
pora greatly improves summary-scoring per-
formance. Finally, we discuss potential appli-
cations of our framework beyond summariza-
tion.

1 Introduction

Summarization is the process of identifying the
most important information pieces in a document.
For humans, this process is heavily guided by back-
ground knowledge, which encompasses preconcep-
tions about the task and priors about what kind of
information is important (Mani, 1999).

Despite its fundamental role, background knowl-
edge has received little attention from the summa-
rization community. Existing approaches largely
focus on the relevance aspect, which enforces sim-
ilarity between the generated summaries and the
source documents (Peyrard, 2019).
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: Should be similar: small KL(S||D) (Relevance)
: Should be different: large KL(S||K) (Informativeness)

Figure 1: A summary (S) results from the combina-
tion of the background knowledge (K) and the source
document (D). Following Peyrard (2019), S is simi-
lar to D (Relevance measured by a small KL(S||D))
but also brings new information compared to back-
ground knowledge (informativeness measured by a
large KL(S||K)). We can infer the unobserved K from
the choices unexplained by the Relevance criteria.

In previous work, background knowledge has
usually been modeled by simple aggregation of
large background corpora. For instance, using
TF·IDF (Sparck Jones, 1972), one may operational-
ize background knowledge as the set of words with
a large document frequency in background corpora.

However, the assumption that frequently dis-
cussed topics reflect what is, on average, known
does not necessarily hold. For example, common-
sense information is often not even discussed (Liu
and Singh, 2004). Also, information present in
background texts has already gone through the im-
portance filter of humans, e.g., writers and publish-
ers. In general, a particular difficulty preventing
the development of proper background knowledge
models is its latent nature. We can only hope to
infer it from proxy signals. Besides, there is, at
present, no principled way to compare and evaluate
background knowledge models.
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In this work, we put the background knowledge
in the foreground and propose to infer it from sum-
marization data. Indeed, choices made by human
summarizers and human annotators provide im-
plicit information about their background knowl-
edge. We build upon a recent theoretical model of
information selection (Peyrard, 2019), which pos-
tulates that information selected in the summary
results from 3 desiderata: low redundancy (the sum-
mary contain diverse information), high relevance
(the summary is representative of the document),
and high informativeness (the summary adds new
information on top of the background knowledge).
The tension between these 3 elements is encoded
in a summary scoring function θK that explicitly
depends on the background knowledge K. As illus-
trated by Fig. 1, the latent K can then be inferred
from the residual differences in information selec-
tion that are not explained by relevance and redun-
dancy. For example, the black information unit in
Fig. 1 is not selected in the summary despite being
very prominent in the source document. Intuitively,
this is explained if this unit is already known by
the receiver. To leverage this implicit signal, we
view K as a latent parameter learned to best fit the
observed summarization data.

Contributions. We develop algorithms for infer-
ring K in two settings: (i) when only pairs of docu-
ments and reference summaries pairs are observed
(Sec. 4.1) and (ii) when pairs of document and
summaries are enriched with human judgments
(Sec. 4.2).

In Sec. 5 we evaluate our inferred Ks with re-
spect to how well the induced scoring function θK

correlates with human judgments. Our proposed
algorithms significantly surpass previous baselines
by large margins.

In Sec. 6, we give a geometrical perpespective
on the framework and show that a clear geometrical
structure emerges from real summarization data.

The ability to infer interpretable importance pri-
ors in a data-driven way has many applications,
some of which we explore in Sec. 7. Sec. 7.1 quali-
tatively reveals which topics emerge as known and
unkown in the fitted priors. Moreover, we can in-
fer K based on different subsets of the data. By
training on the data of one annotator, we get a
prior specific to this annotator. Similarly, one can
find domain-specific K’s by training on different
datasets. This is explored in Sec. 7.2, where we an-
alyze 16 annotators and 15 different summarization

datasets, yielding interesting insights, e.g., averag-
ing several, potentially biased, annotator-specific
or domain-specific K’s results in systematic gener-
alization gains.

Finally, we discuss future work and poten-
tial applications beyond summarization in Sec. 8.
Our code is available at https://github.com/

epfl-dlab/KLearn

2 Related work

The modeling of background knowledge has re-
ceived little attention by the summarization com-
munity, although the problem of identifying con-
tent words was already encountered in some of
the earliest work on summarization (Luhn, 1958).
A simple and effective solution came from the
field of information retrieval, using techniques such
as TF·IDF on background corpora (Sparck Jones,
1972). Similarly, Dunning (1993) proposed the log-
likelihood ratio test to identify highly descriptive
words. These techniques are known to be useful
for news summarization (Harabagiu and Lacatusu,
2005). Later approaches include heuristics to iden-
tify summary-worthy bigrams (Riedhammer et al.,
2010). Also, Hong and Nenkova (2014) proposed
a supervised model for predicting whether a word
will appear in a summary or not (using a large set of
features including global indicators from the New
York Times corpus) which can then serve as a prior
of word importance.

Conroy et al. (2006) proposed to model back-
ground knowledge by aggregating a large random
set of news articles. Delort and Alfonseca (2012)
used Bayesian topic models to ensure the extraction
of informative summaries. Finally, Louis (2014) in-
vestigated background knowledge for update sum-
marization with Bayesian surprise.

These ideas have been generalized in an abstract
model of importance (Peyrard, 2019) discussed in
the next section.

3 Background

This work builds upon the abstract model intro-
duced by Peyrard (2019), whose relevant aspects
we briefly present here.

Let T be a text and a function mapping a text to
its semantic representation of the following form:

{PT (ω1), . . . ,PT (ωn)} (1)

The semantic representation is a probability dis-
tribution P over so-called semantic units {ω j} j≤n.

https://github.com/epfl-dlab/KLearn
https://github.com/epfl-dlab/KLearn


2075

Many different text representation techniques can
be chosen, e.g., topic models with topics as se-
mantic units, or a properly renormalized semantic
vector space with the dimensions as semantic units.

In the summarization setting, the source docu-
ment D and the summary S are represented by prob-
ability distributions over the semantic units, PD

and PS. Similarly, K, the background knowledge,
is represented as a distribution PK over semantic
units.1 Intuitively, PK(ω j) is high whenever ω j is
known. A summary scoring θK(S,D) (or simply
θK(S) since the document D is never ambiguous)
can be derived from simple requirements:

θK(S) =−RED(S)+α · REL(S,D)+β · INF(S,K)

= H(S)−α ·KL(S‖D)+β ·KL(S‖K), (2)

where RED captures the redundancy in the summary
via the entropy H. REL reflects the relevance of the
summary via the Kullback-Leibler (KL) divergence
between the summary and the document. A good
summary is expected to be similar to the original
document, i.e., the KL divergence KL(S‖D) should
be low. Finally, INF models the informativeness of
the summary via the KL divergence between the
summary and the latent background knowledge K.
The summary should bring new information, i.e.,
the KL divergence KL(S‖K) should be high.

In this work, we fix α= β = 1.

4 The KLearn framework

As laid out, in our framework, texts are viewed
as distributions over a choice of semantic units
{ω j} j≤n. We aim to infer a general K as the distri-
bution over these units that best explains summa-
rization data. We consider two types of data: with
and without human judgments.

4.1 Inferring K without human judgments
Assume we have access to a dataset {xi} of pairs
of documents Di and their associated summaries
Si: xi = (Di,Si). Under the assumption that the Si

are good summaries (e.g., generated by humans),
we infer the background knowledge K that best
explains the observation of these summaries. In-
deed, if these summaries are good, we assume that
information has been selected to minimize redun-
dancy, maximize relevance and maximize informa-
tiveness.

1We use K and PK interchangeably when there is no ambi-
guity.

Direct score maximization. A straightforward ap-
proach is to determine the K that maximizes the θK

score of the observed summaries. Formally, this
corresponds to maximizing the function:

FMS(K) =

[∑
xi

θK(xi)

]
−γ ·KL(P‖K), (3)

where KL(P‖K) acts as a regularization term forc-
ing K to remain similar to a predefined distribution
P. Here, P can serve as a prior about what K should
be. The factor γ > 0 controls the emphasis put on
the regularization.

A first natural choice for the prior P can be the
uniform distribution U over semantic units. In this
case, we show in Appendix B that maximizing
Eq. 3 yields the following simple solution for K:

PK(ω j) ∝

∑
xi=(Di,Si)

(γ−PSi(ω j)) . (4)

With the choice γ ≥ 1, note that PK(ω j) is always
positive, as expected. This solution is fairly intu-
itive as it simply counts the prominence of each
semantic unit in human-written summaries and con-
siders the ones often selected as interesting, i.e., as
having low values in the background knowledge.
We denote this technique as MS|U to indicate the
maximum score with uniform prior. Surprisingly, it
does not involve documents, whereas, intuitively,
K should be a function of both the summaries and
documents. However, if such a simplistic model
works well, it could be applied to broader scenar-
ios where the documents may not even be fully
observed.

Alternatively, we can choose the prior P to be
the source documents {Di}. Then, as shown in
Appendix B, the solution becomes

PK(ω j) ∝

∑
xi=(Di,Si)

(γ ·PDi(ω j)−PSi(ω j)) . (5)

Here a conservative choice for γ to ensure the pos-
itivity of PK(ω j) is γ ≥ min

j

PS(ω j)
PD(ω j)

. This model

is also intuitive, as the resulting value of PK(ω j)
would be higher if ω j is prominent in the document
but not selected in the summary. This is, for exam-
ple, the case for the black semantic unit in Fig. 1.
Furthermore, choosing D as the prior implies view-
ing the documents as the only knowledge available
and makes a minimal prior commitment as to what
K should be. We denote this approach as MS|D.
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Probabilistic model. When directly maximizing
the score of observed summaries, there is no guar-
antee that the scores of other, unobserved sum-
maries remain low. A principled way to address
this issue is to formulate a probabilistic model over
the observations xi = (Di,Si):

P(xi) =
exp(θK(xi))∑

S∈Summ(Di)

exp(θK((Di,S))
, (6)

where the partition function is computed over the
set Summ(Di) of all possible summaries of docu-
ment Di. In practice, we draw random summaries
as negative samples to estimate the partition func-
tion (4 negative samples for each positive).

Then, K is learned to maximize the log-
likelihood of the data via gradient descent. To
enforce the constraint of K being a probability dis-
tribution, we parametrize K as the softmax of a
vector k = [k1, . . . ,kn] of scalars. The vector k is
trained with mini-batch gradient descent to mini-
mize the negative log-likelihood of the observed
data. This approach is denoted as PM.

4.2 Inferring K with human judgments
Next, we assume a dataset annotated with hu-
man judgments. Observations come in the form
(Si,Di,hi) where hi is a human assessment of how
good Si is as a summary of Di. We can use this extra
information to enforce high-scoring (low-scoring)
summaries to also have a high (low) θK scores.

Regression. As a first solution, we propose regres-
sion, with the goal of minimizing the difference
between the predicted θK and the corresponding
human scores on the training set. More formally,
the task is to minimize the following loss:

Lreg(K) =
1
2

∑
xi

(a ·θK(xi)−hi)
2, (7)

where a > 0 is a scaling parameter to put θK and
hi on a comparable range. To train K with gradient
descent, we again parametrize K as the softmax of
a vector of scalars (cf. Sec. 4.1). We denote this
approach as HREG.

Preference learning. In practice, regression suf-
fers from annotation inconsistencies. In particular,
the human scores for some documents might be
on average higher than for other documents, which
easily confuses the regression. Preference learning
(PL) is robust to these issues, by learning the rel-
ative ordering induced by the human scores (Gao

et al., 2018). PL can be formulated as a binary clas-
sification task (Maystre, 2018), where the input is
a pair of data points {(Si,Di,hi),(S j,D j,h j)} and
the output is a binary flag indicating whether Si is
better than S j, i.e., hi > h j:

LPL(K) =
∑
i, j

l(σ(θK(xi)−θK(x j)),1(hi > h j)),

(8)

where σ is the logistic sigmoid function and l can
be, for example, the binary cross-entropy. Again,
we perform mini-batch gradient descent to train k.
We denote this approach as HPL.

5 Comparison of approaches

To compare the usefulness of various K’s, we need
a way to evaluate them. Fortunately, there is a
natural evaluation setup: (i) plug K into θK , the
summary scoring function described by Eq. 2, (ii)
use the induced θK to score summaries Si, and (iii)
compute the agreement with human scores hi.

To distinguish between the algorithms intro-
duced in Sec. 4, we adopt the following naming
convention for scoring functions: if the background
knowledge K was computed using algorithm A, we
denote the corresponding scoring function by θA;
e.g., θHPL is the scoring function where K was in-
ferred by HPL.

Data. We use two datasets from the Text Anal-
ysis Conference (TAC) shared task: TAC-2008
and TAC-2009.2 They contain 48 and 44 top-
ics, respectively. Each topic was summarized by
about 50 systems and 4 humans. All system sum-
maries and human-written summaries were man-
ually evaluated by NIST assessors for readability,
content selection with Pyramid (Nenkova and Pas-
sonneau, 2004), and overall responsiveness (Dang
and Owczarzak, 2008a, 2009a). In this evaluation,
we focus on the Pyramid score, as the framework
is built to model the content selection aspect.

Semantic units. As in previous work (Peyrard,
2019), we use words as semantic units. In Sec. 7,
we also experiment with topic models. However,
different choices of text representations can be eas-
ily plugged in the proposed methods. Words have
the advantage of being simple and directly compa-
rable to existing baselines.

2http://tac.nist.gov/2009/
Summarization/, http://tac.nist.gov/2008/

http://tac.nist.gov/2009/Summarization/
http://tac.nist.gov/2009/Summarization/
http://tac.nist.gov/2008/
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Kendall’s τ MR

Baselines
LR .115 26.6
ICSI .139 25.3
KL(S‖D) .204 37.5
JS(S‖D) .225 35.7
θIDF .242 23.3
θU .202 23.8

Without human judgments (ours)
θMS|U .271 22.8
θMS|D .295 17.9
θPM .269 19.8

With human judgments (ours)
θHREG .227 21.8
θHPL .285 18.6

Best training data fit
Optimal (θHPL) .457 14.5

Table 1: Comparison of background knowledge based
on: how well the induced θK correlates with humans
(Kendall’s τ , higher is better) and how far human-
written summaries are ranked compared to system sum-
maries (MR, lower is better). The improvements of
θMS|D and θHPL over the baselines are significant (paired
t-test, p< 0.01).

Baselines. For reference, we report the summary
scoring functions of several baselines: LexRank
(LR) (Erkan and Radev, 2004) is a graph-based
approach whose summary scoring function is the
average centrality of sentences in the summary.
ICSI (Gillick and Favre, 2009) scores summaries
based on their coverage of frequent bigrams from
the source documents. KL(S‖D) and JS(S‖D)
(Haghighi and Vanderwende, 2009) measure di-
vergences between the distribution of words in the
summary and in the sources. JS divergence is a
symmetrized and smoothed version of KL diver-
gence. Additionally, we report the performance of
choosing the uniform distribution for K (denoted
θU) and an IDF-baseline where K is built from the
document frequency computed using the English
Wikipedia (denoted as θIDF). For reference, we
report the performance of training and evaluating
θHPL on all data (denoted as Optimal). This mea-
sures the ability of HPL to fit the training data.

Results. Table 1 reports the 4-fold cross-
validation, averaged over all topics in both TAC-08
and TAC-09. The first column reports the Kendall’s
τ correlation between humans and the various sum-
mary scoring functions. The second column reports
the mean rank (MR) of reference summaries among

Documents

Reference summaries

K (inferred by HPL)

Topic separation

Figure 2: Multi-dimensional scaling projection of doc-
uments, summaries, and K inferred by HPL. The Eu-
clidean distance in the projection approximates to KL
divergence in the original space. The geometrical in-
tuition that summaries, documents, and K should form
a line with documents in the middle is simultaneously
respected for 6 different randomly selected topics from
TAC datasets.

all summaries produced in the shared tasks, when
ranked according to the summary scoring functions.
Thus, lower MR is better.

First, note that even techniques that do not rely
on human judgments can significantly outperform
previous baselines. The results of θMS|D are par-
ticularly strong, with large improvements despite
the simplicity of the algorithm. Indeed, θMS|U and
θMS|D have a time complexity of O(n), where n is
the number of topics and run much faster than any
other algorithm (≈ 2 seconds on a single CPU to
infer K from a TAC dataset). Despite being more
principled, θPM does not outperform θMS|D.

Improvements over baseline are also obtained
by HPL, which leverages the fine-grained informa-
tion of human judgments. However, even without
benefiting from supervision, MS|D performs simi-
larly to HPL without significant difference. Also,
as expected, the preference learning setup θHPL is
stronger and more robust than the regression setup
θHREG, which does not significantly outperform the
uniform baseline θU.

Therefore, we use HPL when human judgments
are available and MS|D when only document-
summary pairs are available.

6 A geometric view

Previously (see Fig. 1), we mentioned that a good
K corresponds to a distribution such that the sum-
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mary S is different from K (KL(S‖K) is large) but
still similar to the document D (KL(S‖D) is small).
Furthermore, the regularization term in Eq. 3, with
P = D enforcing small KL(D‖K), makes minimal
commitment as to what K should look like, i.e.,
no a-priori information except the documents is
assumed.

Viewing these distributions as points in Eu-
clidean space, the optimal arrangement for S, D,
and K is on a line with D in between S and K. Since
human-written summaries S and documents D are
given, inferring K intuitively consists in discover-
ing the point in high-dimensional space matching
this property for all document-summary pairs.

Interestingly, we can easily test whether this ge-
ometrical structure appears in real data with our
inferred K. To do so, we perform a simultaneous
multi-dimensional scaling (MDS) embedding of
documents Di, human-written summaries Si, and
K. In this space, two distributions are close to
each other if their KL divergence is low. We plot
such an embedding in Fig. 2 for 6 randomly chosen
topics from TAC-09 and K inferred by HPL. We in-
deed observe documents, summaries, and K nicely
aligned such that the summaries are close to their
documents but far away from K. This finding also
holds for K inferred by MS|D.

These observations are important for two rea-
sons. (1) They show that general framework in-
troduced in Fig. 1 is an appropriate model of the
summarization data: For any given topic, the ref-
erence summaries are arranged on one side of the
document. They deviate from the document in a
systematic way that is explained by the repulsive ac-
tion of the background knowledge. Human-written
summaries contain information from the document
but not from the background knowledge which puts
them on the border of the space. (2) Our models
can be seen to infer an appropriate background
knowledge that is common to a wide spectrum of
topics, as shown by the fact that K occupies the
central point in the embedding of Fig. 2.

7 Applications

We now investigate some applications arising from
our framework. As K is easily interpretable, we
explore which units receive high or low scores. One
can also use different subsets (or aggregations) of
training data. Here, we look into annotator-specific
K’s and domain-specific K’s.

Known Unknown

said say kill nation
also told liberty announcement
like one new investigation

Table 2: Example of words “known” and “unknown”
according to the best K inferred by HPL. A word ω j is
“known” (“unknown”) according to K when PK(ω j) is
high (low).

7.1 Qualitative analysis
To understand what is considered as “known”
(PK(ω j) is high) or “unknown” (PK(ω j) is low),
we fit our best model, HPL, using all TAC data for
two choices of semantic units: (i) words and (ii)
LDA topics trained on the English Wikipedia (40
topics).

In Table 2 we report the top “known” and “un-
known” words. Frequent but uninformative words
like ‘said’ or ‘also’ are considered known and thus
undesired in the summary. On the contrary, un-
known words are low-frequency, specific words
that summarization systems systematically failed
to extract although they were important according
to humans. We emphasize that the inferred back-
ground knowledge encodes different information
than a standard IDF. We provide a detailed compar-
ison between K and IDF in Appendix E.

When using a text representation given by a topic
model trained on Wikipedia, we obtain the fol-
lowing top 3 most known topics (described by 8
words):

1. government, election, party, united, state, po-
litical, minister, president, etc.

2. book, published, work, new, wrote, life, novel,
well, etc.

3. air, aircraft, ship, navy, army, service, training,
flight, etc.

The following are identified as the top 3 un-
known topics:

1. series, show, episode, first, tv, film, season,
appeared, etc.

2. card, player, chess, game, played, hand, team,
suit, etc.

3. university, research, college, science, profes-
sor, research, degree, published, etc.

Topics related to military and politics receive higher
scores in K. Given that these topics tend to be the
most frequent in news datasets, K trained with hu-
man annotations learns to penalize systems over-
fitting on the frequency signal within source doc-
uments. On the contrary, series, games, and uni-
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a) Annotators MDS

PubMed

Opinosis

hMDS

SciSumm

AMI

Reddit
CNN

X-Sum

MDIC

NYT

WikiHow

LegalReports

LiveBlogs

TAC09

TAC08

b) Domains MDS

Annotators Non-News News

Figure 3: Multi-dimensional scaling projections of (a)
annotators and (b) domains. The Euclidean distance
in the projected space represents KL divergence in the
original space. The disk size is proportional to how
well the K performs on the full TAC datasets, as eval-
uated by the correlation (Kendall’s τ ) between the in-
duced θK and human judgments.

versity topics receive low scores and should be
extracted more often by systems to improve their
agreement with humans.

7.2 Inferring annotator- and domain-specific
background knowledge

Within the TAC datasets, the annotations are also
tagged with an annotator ID. It is thus possible to
infer a background knowledge specific to each an-
notator, by applying our algorithms on the subset of
annotations performed by the respective annotator.
In TAC-08 and TAC-09 combined, 16 annotators
are identified, resulting in 16 different K’s.

Instead of analyzing only news datasets with
human annotations (like TAC), we can infer back-
ground knowledge from any summarization dataset
from any domain as long as document–summary
pairs are observed. To illustrate this, we consider a
large collection of datasets covering domains such
as news, legal documents, product reviews, Wiki-
pedia articles, etc. These do not contain human
annotations, so we employ our MS|D algorithm to
infer a K specific to each dataset. The detailed de-
scription of these datasets is given in Appendix C.

Structure of differences. To visualize the differ-
ences between annotators, we embed them in 2D
using MDS with two annotators being close if their
K are similar. In Fig. 3 (a), each annotator is a
dot whose size is proportional to how well its K
generalizes to the rest of the TAC datasets, as eval-
uated by the correlation (Kendall’s τ ) between the
induced θK and human judgments. The same proce-
dure is applied to domains and is depicted in Fig. 3
(b).
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Optimal (HPL)
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Figure 4: (a) Correlation with human judgments on
TAC datasets (news domain) resulting from averaging
annotator-specific K’s and domain-specific K’s. (b)
Distance to the optimal K (computed by running HPL
on the full TAC datasets).

News datasets appear at the center of all domains
meaning that the news domain can be seen as an
“average” of the peripheral non-news domains. Fur-
thermore, the K’s trained on different news datasets
are close to each other, indicating a good level
of intra-domain transfer; and unsurprisingly, news
datasets also exhibit the best transfer performance
on TAC.

Improvements due to averaging. Based on pre-
vious observations, we make the hypothesis that
averaging different annotator-specific K’s can lead
to better correlation with human judgments on the
unseen part of the TAC dataset. Similarly, news
domains generalize better than other domains. We
hypothesized that averaging domains may also re-
sult in improved correlations with humans in the
news domain.

In Fig. 4(a), we report the improvements in cor-
relation with human judgments on TAC (news do-
main) resulting from averaging an increasing num-
ber of annotators or domains. The error bars repre-
sent 95% confidence intervals arising from select-
ing a different subset to compute the average. As
we see, increasing the number of annotators aver-
aged results in clear and significant improvements.
Since the error bars are small, which annotators are
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a) Average of annotators b) Average of news domains c) Average of non-news domains d) Optimal

Figure 5: Several K distributions visualized as density in 2D GloVe embedding space.

included in the averaging has little impact on the
results.

Similarly, averaging different domains also re-
sults in significant improvements. In particular,
averaging several non-news domains gives better
generalization to the news domain.

Furthermore, Fig. 5 shows, in the GloVe (Pen-
nington et al., 2014) embedding space, the K’s
resulting from averaging (a) all annotators (K’s in-
ferred by HPL), (b) all news datasets (K’s inferred
by MS|D), and (c) all non-news datasets (K’s in-
ferred by MS|D) in comparison to (d) the optimal
K learned with HPL trained on all data from TAC
datasets. To produce these visualizations, we per-
form a density estimation of the K’s in the 2D
projection of word embeddings.

All averaged K’s tend to be similar to the opti-
mal K. It indicates that only one prior produces
strong results on the news datasets and it can be
obtained by averaging many biased but different
K’s. This is further confirmed by Fig. 4(b), where
the distance to the optimal K (measured in terms of
KL divergence) significantly decreases when more
annotators are averaged.3

8 Conclusion

We focus on the often-ignored background knowl-
edge for summarization and infer it from implicit
signals from human summarizers and annotators.
We introduced and evaluated different approaches,
observing strong abilities to fit the data.

The newly-gained ability to infer interpretable
priors on importance in a data-driven way has many
potential applications. For example, we can de-
scribe which topics should be extracted more fre-
quently by systems to improve their agreement with
humans. Using pretrained priors also helps systems
to reduce overfitting on the frequency signal within

3Note that the y-axis has been normalized to put the differ-
ent divergences on a comparable scale.

source documents as illustrated by initial results in
Appendix D.

An important application made possible by this
framework is to infer K on any meaningful subset
of the data. In particular, we learned annotator-
specific K’s, which yielded interesting insights:
some annotators exhibit large differences from the
others, and averaging several, potentially biased
K’s results in generalization improvements. We
also inferred K’s from different summarization
datasets and also found increased performance on
the news domain when averaging K’s from diverse
domains.

For future work, different choices of semantic
units can be explored, e.g., learning K directly in
the embedding space. Also, we fixed α = β = 1
to get comparable results across methods, but in-
cluding them as learnable parameters could provide
further performance boosts. Investigating how to
infuse the fitted priors into summarization systems
is another promising direction.

More generally, inferring K from a common-
sense task like summarization can provide insights
about general human importance priors. Inferring
such priors has applications beyond summariza-
tion, as the framework can model any information
selection task.
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Figure 6: Visualization of each annotator’s K based on
2D projection of Glove word embedding.

A 2D Visualization of K

For each annotator and each domain, we produce
visualizations in the 2D embedding space with the
same procedure as in Fig. 5. Fig. 6 depicts the
annotators and Fig. 7 depicts the domains. It is
interesting to observe much more diversity result-
ing from the domains and the domain-specific K’s
are more spread out in the semantic space. This
reflects the greater topic diversity discussed in dif-
ferent domains. In contrast, each annotator’s K is
inferred based on the TAC datasets, which are in
the same domain (news).

B Derivation of Approaches

The direct score maximization model consists in
maximizing:

L =
∑

x

θK(x)−γ ·KL(P||K), (9)

We use Lagrange multipliers with the constraint
that K is a valid distribution:

L =∑
x

θK(x)−γ ·KL(P||K)−λ

∑
ω j

PK(ω j)−1


(10)

PubMed AMI MDIC LiveBlogs

Opinosis Reddit NYT TAC2009

hMDS CNN-DM WikiHow TAC2008

SciSumm X-Sum LegalReports

Figure 7: Visualization of each domain’s K based on
2D projection of Glove word embedding.

(MS|U) First, with P =U the uniform and γ 6= 0,
we have the following derivatives:

dθK(xi)

dPK(ω j)
=−

PSi(ω j)

PK(ω j)
(11)

dγ ·KL(U ||K)

dPK(ω j)
=− γ

PK(ω j)
(12)

dL
dPK(ω j)

=−
∑

x

PSi(ω j)

PK(ω j)
+

γ

PK(ω j)
−λ (13)

Setting the Lagrange derivative to 0 yields:

PK(ω j) =
1
λ

(
γ−

∑
x

PSi(ω j)

)
, (14)

where λ is the normalizing constant. In particular,
when γ = 1:

PK(ω j) =
1
λ

(
1−
∑

x

PSi(ω j)

)
. (15)

Note that choosing γ ≥ 1 ensures that for all ω j,
we have PK(ω j)> 0.

(MS|D) Second, we consider the case P = D
the document and γ 6= 0. U changes with every
document-summary pair and L becomes:

L =
∑
(D,S)

θ(x)−
∑
(D,S)

KL(D||K), (16)

Then, only the the derivative concerning KL(U ||K)
is modified and becomes:

dγ ·KL(D||K)

dPK(ω j)
=−

γ ·PD(ω j)

PK(ω j)
(17)
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which gives the following solution after setting the
Lagrange derivative to 0:

PK(ω j) =
1
λ

(∑
x

γ ·PDi(ω j)−PSi(ω j)

)
. (18)

Here it is not clear that PK(ω j) is positive for ev-
ery units. To avoid such issue, notice that we can
choose γ ≥min j

PS(ω j)
PD(ω j)

.

C Datasets

The summarization track at the Text Analysis Con-
ference (TAC) was a direct continuation of the
DUC series. In particular, the main tasks of TAC-
2008 (Dang and Owczarzak, 2008b) and TAC-2009
(Dang and Owczarzak, 2009b) were refinements of
the pilot update summarization task of DUC 2007.
A dataset of 48 topics was released as part of the
2008 edition and 44 new topics were created in
2009. TAC-2008 and TAC-2009 became standard
benchmark datasets.

The New York Times Annotated Corpus (Sand-
haus, 2008) counts as one of the largest summa-
rization datasets currently available. It contains
nearly 1 million carefully selected articles from the
New York Times, each with summaries written by
humans.

Also, the CNN/Daily Mail dataset (Hermann
et al., 2015) has been decisive in the recent devel-
opment of neural abstractive summarization (See
et al., 2017; Paulus et al., 2017; Cheng and Lapata,
2016). It contains CNN and Daily Mail articles
together with bullet point summaries.

Zopf et al. (2016) also viewed the high-
quality Wikipedia featured articles as summaries,
for which potential sources were automatically
searched on the web.

(P.V.S. et al., 2018) recently crawled the live-
blog archives from the BBC and The Guardian to-
gether with some bullet-point summaries reporting
the main developments of the event covered.

To evaluate their opinion-oriented summariza-
tion system, Ganesan et al. (2010) constructed the
Opinosis dataset. It contains 51 articles discussing
the features of commercial products (e.g., iPod’s
Battery Life).

Furthermore, we consider the large PubMed da-
taset (Cohan et al., 2018), a collection of scientific
publications.

The Reddit dataset (Kim et al., 2019) has been
collected on popular sub-reddits.

The AMI corpus (Carletta et al., 2005) is a stan-
dard product review summarization dataset.

Koupaee and Wang (2018) automatically
crawled the WikiHow website using the self-
reported bullet points as summaries.

The XSUM dataset (Narayan et al., 2018) is a
large collection of news articles with a focus on
abstractive summaries.

To measure the effect of information distortion
in summarization cascades of scientific results,
Horta Ribeiro et al. (2019) collected manual sum-
maries of various lengths.

We also included the LegalReport dataset (Gal-
gani et al., 2012) where the task is to summarize
legal documents.

D Extracting Summaries: Example

Once K is specified, the summary scoring func-
tion θK can be used to extract summaries. For
extractive summarization, this is an optimal sub-
set selection problem (McDonald, 2007). Unfor-
tunately, θK is not linear and cannot be optimized
with Integer Linear Programming. It is also not sub-
modular and cannot be optimized with the greedy
algorithm for submodularity. We have to rely on
generic optimization techniques which do not make
any assumption about the objective function and
can approximately optimize any arbitrary function.
We use the genetic algorithm proposed by Peyrard
and Eckle-Kohler (2016)4 which creates and itera-
tively optimizes summaries over time. We denote
as (θK , Gen) the summarization system approxi-
mately solving the subset selection problem. We
compare 3 systems: when K is inferred by MS|D,
when K is inferred by HPL and when K is the uni-
form distribution.5 For reference, we report the
standard summarization baselines described in the
previous section. The summaries are evaluated
with 2 automatic evaluation metrics: ROUGE-2 re-
call with stopwords removed (R-2) (Lin, 2004) and
a recent BERT-based evaluation metric (MOVER)
(Zhao et al., 2019). The results, reported in Table 4,
are encouraging since the systems based on the
learned priors outperform the uniform prior. They
also perform well in comparison to baselines. The
inferred prior can benefit systems by preventing
them from overfitting on the frequency signal.

4https://github.com/UKPLab/
coling2016-genetic-swarm-MDS

5We employ a 3-fold cross-validation setup.

https://github.com/UKPLab/coling2016-genetic-swarm-MDS
https://github.com/UKPLab/coling2016-genetic-swarm-MDS
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Dataset Creation Input Summary Size
Man./Auto. Type Genre Length Topics Doc/Topic

TAC-2008 M MDS News 100 48 10
TAC-2009 M MDS News 100 44 10
SciSumm A MDS Sci. 150 1000 1
CNN/Daily Mail A SDS News ≈50 ≈300K 1
NYT Corpus A SDS News ≈50 ≈650K 1
Opinosis M MDS Review ≈20 51 ≈100
LiveBlogs A Temporal Snippets ≈60 ≈2K ≈70
hMDS M MDS Heter. ≈216 91 ≈14
PUBMED A SDS Sci. ≈100 ≈133K 1
XSUM A SDS News ≈25 ≈220K 1
Reddit A SDS Heter. ≈20 ≈122K 1
AMI M MDS Meeting ≈280 137 10
WikiHow A SDS Heter. ≈60 ≈230K 1
LegalReports A SDS Legal ≈280 3500 1
MDIC M Cascade Sci. varying 16 1

Table 3: Description of datasets used in the experiments

Optimal K

Renormalized IDFs

Absolute difference

(a) Visualization of optimal K, renormalized IDF and their
absolute difference. One bar for word in the support (2000
words).

Optimal K inferred by hPL
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(b) Scatter-plot where each dot is a word and the coordinates
are its probability in K and its renomalized IDF.

TAC-08 TAC-09
R-2 MOVER R-2 MOVER

Baselines
LR .078 .336 .090 .360
ICSI .101 .377 .103 .369
KL-GREEDY .074 .294 .069 .289
(JS, Gen) .101 .375 .104 .373

Ours
(θU , Gen) .098 .353 .094 .359
(θMS|D, Gen) .101 .367 .102 .371
(θHPL, Gen) .104 .377 .103 .374

Table 4: Comparison of summarization systems based
on maximizing the summary scoring function θK in-
duced by different background knowledge.

E Comparison: IDF vs. optimal K

To verify that our inferred K contains different in-
formation from ID, we compare IDF and our opti-
mal K (see Sec. 7).

To be comparable, IDF weights need to be renor-
malized, as the IDF weights of known (unknown)
words would be low (high) whereas PK would be
high (low). Thus, we compute 1

C (1− IDF(ω j)) for
each word ω j, where C =

∑
j(1− IDF(ω j)).

In Fig. 8a, we represent the full distributions
over all words in the support of K and show the
absolute difference with renormalized IDF weights.
Furthermore, Fig. 8b is a scatter plot where each
dot represent a word and the coordinates are its IDF

and K weights. The low correlation between the
two indicates that K learns a different signal than
IDF.


