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Abstract

Deep neural network-based pretraining meth-
ods have achieved impressive results in many
natural language processing tasks including
text classification. However, their applicabil-
ity to large-scale text classification with numer-
ous categories (e.g., several thousands) is yet
to be well-studied, where the training data is
insufficient and skewed in terms of categories.
In addition, existing pretraining methods usu-
ally involve excessive computation and mem-
ory overheads. In this paper, we develop a
novel multi-pretraining framework for large-
scale text classification. This multi-pretraining
framework includes both a self-supervised pre-
training and a weakly supervised pretraining.
We newly introduce an out-of-context words
detection task on the unlabeled data as the
self-supervised pretraining. It captures the
topic-consistency of words used in sentences,
which is proven to be useful for text classi-
fication. In addition, we propose a weakly
supervised pretraining, where labels for text
classification are obtained automatically from
an existing approach. Experimental results
clearly show that both pretraining approaches
are effective for large-scale text classification
task. The proposed scheme exhibits signifi-
cant improvements as much as 3.8% in terms
of macro-averaging F1-score over strong pre-
training methods, while being computationally
efficient.

1 Introduction

Large-scale text classification is a natural language
processing (NLP) task and a long-standing yet chal-
lenging problem. It seeks to classify arbitrary texts
into semantically relevant classes or categories.
A wide range of applications exploit large-scale
text classification, including web search personal-
ization (Chirita et al., 2005), contextual advertis-
ing (Lee et al., 2013), topical web search (Broder
et al., 2007), and recommender systems (Amini

et al., 2015). The success of these applications is
highly dependent on the quality of text classifica-
tion. Many applications of large-scale text clas-
sification require a sufficiently large taxonomy of
topical categories to capture various topics in arbi-
trary texts. In addition, it is necessary to collect a
large amount of training data for each category in
the taxonomy.

Deep neural models have demonstrated promis-
ing results in text classification tasks (Kim, 2014;
Zhang et al., 2015; Howard and Ruder, 2018), ow-
ing to their strong expressive power and less re-
quirement for feature engineering. However, the
deeper and more complex the neural model, the
more it is essential for them to be trained on sub-
stantial amount of training data. Hence, pretraining
methods have attracted significant attention (Rad-
ford et al., 2018; Devlin et al., 2019); these meth-
ods leverage large text corpora to train a model
with better generalization properties (Ruder et al.,
2019). Recently, several pretraining methods us-
ing bidirectional long short-term memory (LSTM)
networks (Hochreiter and Schmidhuber, 1997) or
transformer (Vaswani et al., 2017) have been highly
successful in many NLP tasks (Howard and Ruder,
2018; Radford et al., 2018; Devlin et al., 2019).
These methods first pretrain neural networks on
large unlabeled text corpora, and then, finetune the
pretrained networks on downstream tasks.

Although pretraining methods have achieved
state-of-the-art status on many NLP tasks (Howard
and Ruder, 2018; Radford et al., 2018; Devlin et al.,
2019), their applicability to large-scale classifica-
tion is yet to be well-studied, in which training data
for each category is severely insufficient and dis-
tributed unevenly among classification categories.
In addition, existing pretraining methods typically
need very high capacity and long training time.

To handle large-scale text classification, Kim
et al. (2019) have alleviated the problem of the
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limited amount of training data by utilizing a multi-
task learning (Collobert and Weston, 2008; Ruder
et al., 2019). The proposed multi-task framework
converts the large-scale text classification task to a
small-scale text classification task, and learns both
tasks simultaneously. They achieve a new state-of-
the-art large-scale text classification. However, this
scheme may not benefit from the generalization of
pretraining because different scale tasks come from
a single limited dataset.

In this paper, we develop a novel multi-
pretraining framework based on the convolutional
neural network (CNN) to handle large-scale text
classification. By the multi-pretraining, we mean
that the framework simultaneously learns both a
self-supervised and a weakly supervised pretrain-
ing. Self-supervised learning methods, such as
masked language modeling and permutation lan-
guage modeling, have shown to be effective for
improving neural models on many NLP tasks (De-
vlin et al., 2019; Lan et al., 2020; Yang et al.,
2019). However, they usually require excessive
computation and training time. Instead of the lan-
guage model, we newly introduce an out-of-context
(OOC) words detection task on the unlabeled data
for a self-supervised pretraining. Notably, the OOC
words detection task is inspired by the success of
learning to spot artifacts (Jenni and Favaro, 2018),
one of self-supervised learning methods in com-
puter vision. We hypothesize that the OOC words
detection in NLP is analogous to the spotting arti-
facts in computer vision, thereby helping improve
NLP tasks. It turns out that the task indeed learns
useful features for text classification by detecting
whether or not there are OOC words in a sentence.
In order to generate OOC words, we randomly se-
lect a word from the sentence or paragraph 1 in
corpora and replace it with a random word.

In addition, we propose a weakly supervised
pretraining (Dehghani et al., 2017), where labels
are obtained automatically with an existing text
classification method. To this end, we use the
output of an explicit representation model (Wang
and Wang, 2016) based on bag-of-words or bag-
of-phrases as a weak supervision signal. No-
tably, weakly supervised labels are highly ab-
stract topics (e.g., Sports, Health, Computers, Busi-
ness, etc.) rather than complete categories (e.g.,
Sports/Baseball/MLB/Awards) in a large-scale tax-

1We split One Billion Word Benchmark corpus into sen-
tences, while splitting other corpora into paragraphs.

onomy. The proposed framework involves two
steps. The first step is to pretrain the models on
the unlabeled large corpora, which learns to spot
whether OOC words are used, and a weakly super-
vised text classification task simultaneously. The
second step is to finetune the same model on the
labeled large-scale text classification dataset.

We demonstrate the efficacy of our framework
on large-scale text classification. The experimental
results show that the proposed multi-pretraining
scheme yields significantly improved results in
large-scale text classification. In summary, our
contributions are three-fold:

• We develop a novel multi-pretraining frame-
work based on CNN to handle large-scale
text classification, which contains both a self-
supervised and a weakly supervised pretrain-
ing.

• We propose a new way to simultaneously
learn multiple pretraining tasks on nearly-
unlimited amount of unlabeled data, and intro-
duce effective finetuning techniques for large-
scale text classification.

• We demonstrate the efficacy of the proposed
methodology through extensive experiments.
The performance evaluation clearly shows that
our approach outperforms a dozen of state-of-
the-art large-scale text classification methods
and is competitive with excessively large pre-
training methods.

The remainder of this paper is organized as
follows. Section 2 describes the proposed multi-
pretraining framework for large-scale text classi-
fication. We present the performance evaluation
results and in-depth analysis in Section 3 and 4,
respectively. We discuss related work in Section 5
and conclude in Section 6.

2 Methodology

In this section, we describe two pretraining meth-
ods, a self-supervised pretraining and a weakly
supervised pretraining, for large-scale text classi-
fication. We propose a novel multi-pretraining to
utilize the knowledge obtained from both pretrain-
ings. In addition, we introduce finetuning strate-
gies to maintain the useful knowledge or features.
We adopt the CNN which has been very success-
ful in text classification tasks (Kim, 2014; Choi
et al., 2019). In particular, a carefully designed
CNN outperforms other architectures in large-scale
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Figure 1: Illustration of architecture for our proposed framework

text classification (Kim et al., 2019) with relatively
small number of parameters. Figure 1 shows our
proposed framework.

2.1 Base Model
We adopt a popular CNN-based text classification
model (Kim, 2014) for our base architecture. This
model consists of three layers: word embedding,
convolution, and softmax. The word embedding
layer transforms a word sequence into a matrix,
in which columns are a sequence of vector repre-
sentations of words. One-dimensional convolution
is subsequently performed by taking each dimen-
sion of the word embedding as an input channel.
Subsequently, the element-wise rectified linear unit
function (ReLU) (Nair and Hinton, 2010) is applied
for non-linearity. Then, a max-over-time pooling
operation (Collobert et al., 2011) is applied over
the feature map. We use multiple filters with differ-
ent window sizes to obtain multiple features. We
simply concatenate the results of each filter and ob-
tain the output vector of the pooling operation. The
features are passed to the softmax layer to predict
the class label.

2.2 Self-supervised Pretraining
Most neural network-based methods suffer from
large-scale text classification (Kim et al., 2019)
because the training documents for each category
are insufficient. Self-supervised pretraining has
been highly successful in text classification when
only limited training data is available (Devlin et al.,
2019; Radford et al., 2018). Language modeling
(LM) is one of ideal source tasks (i.e., pretext task)
as a self-supervised pretraining. However, we em-
pirically find out that applying the language model
pretraining to CNN-based large-scale text classifi-
cation has no significant performance improvement
over training time(, which we shall show in Section
3). Therefore, unlike previous works, we do not

use the language model for pretraining. Inspired by
the success of learning to spot artifacts (Jenni and
Favaro, 2018), instead, we introduce a novel OOC
words detection-based self-supervised pretraining
method with CNN (denoted as SP-CNN), which
is shown in the left-hand side of Figure 1(a). We
expect the OOC words detection task to be a useful
pretext task for large-scale text classification. We
intentionally damage 50% of all sentences or para-
graphs in unlabeled corpora U at random, and then
predict whether a sentence or paragraph contains
any OOC words. In order to create texts with OOC
words and self-supervision signal Ys, we perform
the following procedure:

1. Select a word randomly from words, except
for stopwords, in a sentence or paragraph, e.g.,
The LA Dodgers are a professional baseball
team

2. Replace the word with a random word 2, e.g.,
The LA Dodgers are a professional shopping
team

After creating the self-supervision signal, we pre-
train the proposed CNN on large corpora (e.g.,
billions of training examples). The goal of self-
supervised pretraining is to learn to detect whether
any word is used out-of-context. In the self-
supervised pretraining phase, the parameters of
network are trained to minimize the following ob-
jective:

LOD(U) = −
∑
m

∑
n

SS(yn|xm)logP (yn|xm; Θ)

(1)
where yn and xm are a possible class (i.e., original
or OOC words detection) and a sentence or para-
graph in large corpora, respectively. SS(yn|xm)

2We empirically investigated a number of choices for noise
distribution and found that the uniform distribution outper-
formed the unigram distribution.
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denotes an automatically annotated class probabil-
ity of yn.

2.3 Weakly Supervised Pretraining

While the self-supervised pretraining has the ad-
vantage of availability of nearly unlimited amount
of data, a weak supervision pretraining has also
been applied in NLP and information retrieval (IR)
to utilize unsupervised data (Dehghani et al., 2017;
Meng et al., 2019). The weak supervision refers to
a learning approach that automatically creates its
own training data (i.e., weakly annotated set) using
an existing unsupervised or supervised approach.

We propose a weakly supervised pretraining
based on CNN (denoted as WP-CNN), which is
shown in the right-hand side of Figure 1(a). We
use a well-performing existing large-scale text clas-
sifier based on the tf-idf scheme (Lee et al., 2013)
to create a weakly annotated set from unlabeled
corpora U . This model performs robustly in large-
scale text classification, especially for categories
with a small number of data. We divide corpora
into sentences or paragraphs, and then generate
the weak supervision signal Yw in two ways. In a
complete signal, the tf-idf scheme based classifier
determines one pseudo label (e.g., Sports/Baseball/
MLB/Awards/Cy Young) that receives the highest
score among categories in a large-scale taxonomy.
In contrast, in an abstract signal, we use a top-
level category of the complete signal. For example,
given the Sports/Baseball/MLB/Awards/Cy Young
as a weak supervision signal, the Sports is used as
the abstract signal. We expect that the abstract way
works better than the complete way, since the ab-
stract signal is of higher quality than the complete
signal in terms of accuracy.

After creating the weak supervision signal, we
pretrain the proposed CNN on large corpora. The
goal of weakly supervised pretraining is to learn
pseudo-labels or class probabilities that are gen-
erated by the large-scale text classification based
on the tf-idf scheme. In the weakly supervised
pretraining phase, the parameters of network are
trained to minimize the following objective:

LTC(U) = −
∑
m

∑
k

WS(yk|xm)logP (yk|xm; Θ)

(2)
where yk and xm are a possible class (i.e., (top-
level) categories in the large-scale taxonomy) and
a sentence or paragraph in large corpora, respec-
tively. WS(yk|xm) denotes a weakly annotated

class probability of yk.

2.4 Multi-pretraining
To benefit from both pretrainings simultaneously,
we develop a novel multi-pretraining framework
based on CNN (denoted as MP-CNN). We apply
the multi-task learning by spotting OOC words
and text classification tasks as two, related tasks.
In other words, we add the OOC words detection
objective to the model that is trained jointly with
the text classification for pretraining. As shown in
Figure 1(a), the OOC words detection (i.e., self-
supervised pretraining) and text classification (i.e.,
weakly supervised pretraining) tasks share the same
word embedding and convolution layers, while
keeping their own private softmax layer.

Given unsupervised corpora U , weak supervi-
sion signal Yw, and self-supervision signal Ys, the
joint pretraining objective LP is computed by the
weighted sum of the OOC words detection objec-
tive LOD and the text classification objective LTC ,
as follows:

LP (U) = λoLOD(U) + λtLTC(U) (3)

where λo and λt are the weights for OOC words
detection and text classification tasks, respectively.
Following Collobert and Weston (2008), the pre-
training is performed in a stochastic manner by
looping over the following tasks:

1. Select a pretraining task with fixed probabili-
ties.

2. Select a random training example from the
corpora.

3. Update the parameters for the selected task
by taking a gradient step with respect to this
example.

4. Go to 1.

2.5 Finetuning
After pretraining the model, we finetune the pre-
trained model with two sequential stages (coarse-
tuning and supervised finetuning) as shown in Fig-
ure 1(b) and 1(c). We first finetune our model
with category names of a large-scale taxonomy.
We observe that category names clearly repre-
sent specific semantics of each category, which
are expected to be useful when training data
is extremely scarce3. For coarse-tuning, we

3We experimentally confirmed that the coarse-tuning im-
proved the performance by 1.1%.
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convert category names into pseudo sentences
(e.g., Sports/Baseball/MLB/Awards/Cy Young into
“sports baseball MLB Cy Young”)

After the coarse-tuning stage, we finetune the
pretrained model on the supervised target task,
which contains sentences or paragraphs S and cor-
responding ground truth label Y 4. To retain the
previous knowledge obtained from the pretrain-
ing phase, we apply finetuning techniques such as
the discriminative finetuning (Howard and Ruder,
2018) to the proposed CNNs.

We finetune each layer with different learning
rates. This is driven by the empirical evidence that
the layers closer to the input layer contain gen-
eral features, whereas the layers closer to the last
layer contain specific features. Therefore, given
a learning rate η, we determine the learning rates
ηs, ηc, and ηe, which denote the learning rates of
the softmax, convolution, and embedding layer, re-
spectively: ηs = η, ηc = ηs/4.5, and ηe = ηc/4.5,
respectively.

We introduce a penalization term, T , that penal-
izes redundant convolution filters and encourages
convolution layers to encode different aspects of
input. To this end, we use the dot product of the
multiple filter matrixCh ∈Rhd×n and its transpose,
where h and d are the window size and the dimen-
sion of the word embedding, respectively, and n is
the number of filters with a window size of h. We
calculate the penalization term as follows:

T =
∑
h

‖ ChCh
T − I ‖F (4)

Here, ‖ · ‖F represents the Frobenius norm of a
matrix, and Ch denotes a matrix for all convolution
filters with a window size of h. The final loss
function of the finetuning step is as follows:

L = LTC(S) + γT, (5)

LTC(S) = −
∑
i

logP (y|xi; Θ) (6)

where y and xi are a ground truth category and a
text in supervised training data. γ is a hyperparam-
eter.

4We found that performing both coarse-tuning and finetun-
ing as multiple objectives in the same stage shows a similar
classification performance to the presented three-stage ap-
proach.

3 Experiments

We experiment with the large-scale text classifica-
tion to verify the efficacy of the proposed multi-
pretraining framework.

3.1 Datasets

3.1.1 Unlabeled Large Corpora
To pretrain models in the proposed multi-
pretraining framework, we collect the unlabeled
datasets including One Billion Word Benchmark
(Chelba et al., 2013), WikiText-103 (Merity et al.,
2017), and AG News (Zhang et al., 2015). They
have 5.02GB of plain text combined.

3.1.2 ODP
For large-scale text classification, we use the RDF
dump from the original Open Directory Project
(ODP)5 dataset released on January 8, 2017. The
ODP is a large-scale and tree-structured web di-
rectory with a maximum of 15 levels, where ap-
proximately 4 million webpages are classified into
0.8 million categories by volunteer editors. To ob-
tain a well-organized ODP taxonomy, we apply
heuristic rules (Lee et al., 2013) and build our own
large-scale taxonomy with 2,531 categories. Thus,
the final training dataset used in our experiments
consists of 58,180 webpages.

The ODP test dataset consists of webpages col-
lected from the original ODP. The webpages in
each category are randomly divided into training,
test, and development sets. We collect 8,661 and
7,830 webpages from 2,531 ODP categories for the
test and development datasets, respectively. The
ODP datasets are publicly available6.

3.2 Evaluation Metrics

For the ODP datasets, we use the F1 measure
(Yang, 1999) as the classification performance met-
ric, which is the balanced harmonic mean of preci-
sion and recall. We use two averaging methods to
compute the F1 measure: micro-averaging (Mi-F1)
and macro-averaging (Ma-F1).

3.3 Baselines

We evaluate the performance of our methods with
a dozen of competitor methods. We adopt popular
text classification methods and five neural network-
based pretraining methods. In our experiments, we
use hyperparameters that work best on the ODP

5https://curlie.org, http://dmoz-odp.org
6https://bit.ly/3j4L6G2
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development dataset for each model. We compare
the following methods:

• SPG-CNN: State-of-the-art large-scale text
classification based on a multi-task learning
with CNN (Kim et al., 2019).

• MC: tf-idf-based classification method. MC
utilizes enriched training data for each cate-
gory from its descendants (Lee et al., 2013).

• CNN: Shallow CNN-based text classification
method (Kim, 2014).

• DPCNN: Deep pyramid CNN-based text clas-
sification method (Johnson and Zhang, 2017).

• LSTM: LSTM-based text classification
method (Jozefowicz et al., 2015).

• BiLSTM: Bidirectional LSTM-based text clas-
sification method.

• Transformer: Fully-connected attention-based
neural network model (Vaswani et al., 2017).
We only use the Transformer encoder for
large-scale text classification.

• ULMFiT: LSTM-based transfer learning for
text classification (Howard and Ruder, 2018).

• GPT: Pretraining method based on a left-to-
right Transformer LM for a wide range of
NLP tasks (Radford et al., 2018).

• BERT(base): Pretraining method based on
multi-layer bidirectional Transformer encoder
for a wide range of NLP tasks (Devlin et al.,
2019).

• XLNet(base): State-of-the-art pretraining
method across a broad range of NLP tasks
(Yang et al., 2019).

• ALBERT(base): Parameter-efficient variant of
BERT (Lan et al., 2020).

3.4 Implementation Details
We implement the proposed model and competitor
methods using PyTorch (Paszke et al., 2017) and
train models in a single machine equipped with an
AMD 12-Core processor, 128 GB of RAM, and
an NVIDIA GeForce RTX 2080 Ti with 11 GB
of RAM. The word embedding layers for all neu-
ral network-based models are initialized with the
pretrained word embeddings (except for models
that do not require pretrained word embeddings).
We adopt the publicly available Word2Vec7 model

7https://code.google.com/archive/p/word2vec/

(Mikolov et al., 2013a,b), which is a popular word
embedding technique. The embedding layer is up-
dated during finetuning to improve performance.
The other parameters are initialized by Xavier (Glo-
rot and Bengio, 2010).

3.4.1 Pretraining Phase
We pretrain the proposed networks with backprop-
agation and gradient-based optimization using the
Adam update rule (Kingma and Ba, 2015). We
set the learning rate with 1e-4, β1 = 0.9, β2 =0.99,
and linear decay of the learning rate. We use the
dropout (Srivastava et al., 2014) rate of 0.7; filter
windows of 2, 3, 4, and 5 with 600 filters each;
mini-batch size of 64; and L2 weight decay with a
lambda of 1e-7. We set λo and λt to 0.3 and 0.7,
respectively.

3.4.2 Finetuning Phase
For finetuning, most model hyperparameters are
the same as in pretraining, with the exception of
the learning rate and dropout probability. In the
finetuning phase, we use Adam update rule with a
learning rate of 5e-4 and a dropout rate of 0.75. We
set γ to 1e-7. In addition, we use the slanted trian-
gular learning rate schedule for quick convergence
(Howard and Ruder, 2018).

3.5 Experimental Results

We first compare a few CNNs with/without pre-
training methods on the ODP dataset. From Table
1, we observe that the simple and shallow CNN
outperforms DPCNN over 32.3% and 47.7% in
terms of Mi-F1 and Ma-F1, respectively. We also
compare our two methods for weakly supervised
pretraining. In Table 1, abs-WP-CNN denotes the
weakly supervised pretraining with abstract sig-
nals, while com-WP-CNN denotes the weakly su-
pervised pretraining with complete signals. Ex-

Model Mi-F1 Ma-F1

CNN 0.581 0.508
DPCNN 0.439 0.344

LP-CNN (ours) 0.593 0.523
SP-CNN (ours) 0.602 0.535

abs-WP-CNN (ours) 0.607 0.543
com-WP-CNN (ours) 0.603 0.535

MP-CNN (ours) 0.616 0.569

Table 1: Comparison of CNNs with/without pretrain-
ing on the ODP dataset.
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pectedly, we observe that abs-WP-CNN clearly out-
performs com-WP-CNN. Thus, we utilize abstract
signals for weakly supervised pretraining in the re-
maining experiments. We further observe that both
SP-CNN and WP-CNN outperform CNN. These
results clearly demonstrate that both pretraining
approaches are effective for large-scale text classifi-
cation. MP-CNN performs better than SP-CNN and
WP-CNN. This result implies that features learned
by the OOC words detection and the weakly super-
vised pretrainings are complementary. Note that,
LP-CNN in Table 1 denotes the language model pre-
training with CNN. LP-CNN performs the worst
among the CNN-based pretraining methods and
performs slightly better than CNN over 2.1% and
2.9% in terms of Mi-F1 and Ma-F1, respectively8.
We also observe that LP-CNN takes 35x more pre-
training time than SP-CNN. From these results,
we confirm that the pretraining based on language
model is relatively less effective in large-scale text
classification based on CNN.

Table 2 summarizes the experimental results
for large-scale text classification on the ODP test
dataset with 2,531 target classes. Notably, MP-
CNN outperforms all the baselines. MP-CNN ex-
hibits improvement compared to XLNet over 0.8%
and 3.8% in terms of Mi-F1 and Ma-F1, respec-
tively. Moreover, we observe that MP-CNN outper-
forms the baselines trained from scratch. In par-
ticular, MP-CNN performs better than MC, which
is used to generate weak supervision signals, over
28.6% and 22.1% in terms of Mi-F1 and Ma-F1,
respectively. Our experimental results show that
CNN performs the best among methods without pre-
training 9 (i.e., against MC, LSTM, BiLSTM, and
Transformer). We further observe that the average
performance of the pretraining methods achieves
the improvement of 1.2% over that of state-of-the-
art models based on a multi-task learning in terms
of Mi-F1. We also perform the t-test for the classi-
fication results, and find that MP-CNN results are
statistically significant with p < 0.01.

Table 3 demonstrates the model size and finetun-
ing time of pretraining methods. For a fair compar-
ison, we use the same hardware resources, and re-
port the finetuning time until each model converges.

8We trained both an LM and a weakly supervised text
classification task simultaneously, but we did not find any
noteworthy performance improvement.

9We observe that CNN outperforms MC in the optimal
parameter settings we found, contrary to the results in the
work (Kim et al., 2019).

Model Mi-F1 Ma-F1

MC 0.479 0.466
From CNN 0.581 0.508

scratch LSTM 0.446 0.374
BiLSTM 0.468 0.378

Transformer 0.523 0.508
SPG-CNN 0.595 0.524
ULMFiT 0.594 0.517

GPT 0.601 0.541
Pretraining BERT 0.602 0.556

XLNet 0.611 0.548
ALBERT 0.590 0.530

MP-CNN (ours) 0.616 0.569

Table 2: Large-scale classification performance on the
ODP dataset.

Model Parameters Finetuning time
ULMFiT 63,443,486 9h 26m

GPT 85,054,464 8h 10m
BERT 87,591,395 9h 43m
XLNet 94,679,267 8h 42m

ALBERT 9,624,803 10h 13m
MP-CNN (ours) 8,599,331 2h 55m

Table 3: Number of parameters and finetuning time
compared to pretraining models. Parameters in the
word embedding layers and softmax layer for pretrain-
ing are excluded.

We observe that MP-CNN has just 13.6%, 10.1%,
9.8%, 9.1% and 89.3% of parameters in ULMFiT,
GPT, BERT, XLNet, and ALBERT, respectively. We
also observe that MP-CNN is 3.2x, 2.8x, 3.3x, 3.0x
and 3.5x faster than those competitors, respectively.
In addition, we report that MP-CNN takes half a
day to complete the pretraining. Unfortunately, we
failed to measure the pretraining time of competi-
tors in our hardware resources, but estimate it to be
a few to several months. These results confirm that
MP-CNN is indeed effective with a reasonable cost
of memory and computation.

4 Analysis

We evaluate MP-CNN on different numbers of train-
ing examples to analyze its usefulness on the lim-
ited training data. We split off balanced fractions of
the ODP training data and fix the development set.
Although MP-CNN performs slightly better than
XLNet when trained on all the training examples
(as observed in Table 2), MP-CNN outperforms
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Figure 2: Large-scale classification performance with
different numbers of training examples on ODP dataset

Figure 3: Visualization of the change of predicted score
in the presence of OOC words at different time steps. Y-
axis represents predicted score, while X-axis represents
input words in chronological order

XLNet by a large margin for the limited training
data, as shown in Figure 2. In addition, we observe
that MP-CNN trained with only 1,250 labeled ex-
amples outperforms CNN trained with 5× more
data. These results clearly demonstrate that the
proposed multi-pretraining successfully improves
the performance of large-scale text classification.

We qualitatively examine the classified cate-
gories from SP-CNN and CNN to analyze why the
OOC words detection task improves the perfor-
mance of large-scale text classification. We se-
lect a magazine title “Professional tennis player W
on feminism and motherhood”, which is related
to both “Sports” and “Female”. Then, we ana-
lyze the changes of predicted score in the pres-
ence of OOC words at different time steps, which
are obtained by SP-CNN. The output layer for
large-scale text classification of SP-CNN returns
Sports/Tennis/Players up to the fifth word (i.e., on),
while Sports/Tennis/Players/Female when the sixth
word (i.e., feminism) is processed. In contrast,
CNN keeps returning Sports/Tennis/Players until
the last word. Interestingly, from Figure 3, we ob-
serve that SP-CNN captures “feminism” and “moth-
erhood” are semantically different from the previ-
ous context. These results illustrate how SP-CNN
effectively classifies the sentence into the highly
specific categories, both “Sports” and “Female”.
We note that this is consistent with many sentences
in the test dataset.

5 Related Work

For large-scale text classification, many techniques
have been proposed to handle data sparsity. Mc-
Callum et al. (1998) firstly addressed data spar-
sity on a hierarchical taxonomy. They adopted a
statistical technique, called shrinkage, to estimate
the parameters of data-sparse child categories with
their data-rich ancestor categories. Lee et al. (2013)
proposed a large-scale text classification method
called merge-centroid (MC). MC utilizes enriched
training data for each category based on webpages
classified into their ancestor and/or descendants
in the ODP. In another line of work (Kim et al.,
2019), they utilize a multi-task learning by treat-
ing different scales of text classification as related
tasks. They have achieved a new state-of-the-art
performance in large-scale text classification. How-
ever, these approaches cannot utilize the implicit
knowledge from general-domain large corpora.

Neural network-based models have utilized pre-
trainings to overcome the problem of insufficient
training data. Recent neural network-based ap-
proaches have utilized the language model pretrain-
ing on large text corpora. Radford et al. (2018)
pretrained a transformer decoder-based language
model and finetuned it using task-aware transfor-
mations. It consequently accomplished large gains
on natural language understanding tasks. Yet an-
other work (Devlin et al., 2019) used a masked lan-
guage model based on a bidirectional transformer
in pretraining. Very recently, Lan et al. (2020) have
suggested finetuning a parameter-efficient variant
of transformer pretrained on the masked language
model to benefit both the model size and perfor-
mance. The ideas from transformer-XL (Dai et al.,
2019) were integrated into the permutation lan-
guage model (Yang et al., 2019). Another line of
work (Howard and Ruder, 2018) introduced sev-
eral techniques for finetuning a pretrained language
model. To the best of our knowledge, our current
work is one of only a few work that applies the
pretrainings to large-scale text classification.

6 Conclusion

In this paper, we have developed a novel CNN-
based pretraining framework to handle large-scale
text classification. Specifically, we pretrain the
proposed CNN-based model, which simultane-
ously learns both the OOC words detection and
the text classification task on unlabeled corpora.
We have verified the large-scale text classification
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performance of our methodology using real-world
datasets. Our experimental results confirm that our
methodology significantly outperforms a dozen of
strong baseline methods. We plan to apply our
framework to another NLP tasks, such as sentiment
analysis and keyphrase extraction.
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