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Abstract

Text summarization aims to extract essential
information from a piece of text and trans-
form the text into a concise version. Existing
unsupervised abstractive summarization mod-
els leverage recurrent neural networks frame-
work while the recently proposed transformer
exhibits much more capability. Moreover,
most of previous summarization models ig-
nore abundant unlabeled corpora resources
available for pretraining. In order to address
these issues, we propose TED, a transformer-
based unsupervised abstractive summariza-
tion system with pretraining on large-scale
data. We first leverage the lead bias in news
articles to pretrain the model on millions of un-
labeled corpora. Next, we finetune TED on
target domains through theme modeling and
a denoising autoencoder to enhance the qual-
ity of generated summaries. Notably, TED
outperforms all unsupervised abstractive base-
lines on NYT, CNN/DM and English Giga-
word datasets with various document styles.
Further analysis shows that the summaries gen-
erated by TED are highly abstractive, and each
component in the objective function of TED is
highly effective.

1 Introduction

Summarization refers to the task of condensing a
document into a shorter version without losing the
key information. Summarization models can be
categorized into two types: abstractive and extrac-
tive. Extractive models select sentences from the
input article as the summary. Such process ensures
a basic level of grammaticality and accuracy, but
also limits the model ability to copying. In con-
trast, abstractive models summarize a document
using newly generated tokens and phrases that may
not be found in the original article, which involves

*Equal contribution. Work was done during first author’s
internship at Microsoft.

a process requiring an advanced ability to refine,
paraphrase and re-organize language information
(See et al., 2017; Narayan et al., 2018; Gunel et al.,
2020).

Like most machine learning algorithms, sum-
marization models can also be divided into super-
vised and unsupervised categories. Supervised ap-
proaches require in-domain parallel data, i.e. both
input articles and corresponding reference sum-
maries must be present for the teacher-forcing train-
ing (Hermann et al., 2015; Liu and Lapata, 2019).
Unfortunately, high-quality paired data are not al-
ways available across different text domains and
styles. Moreover, considering the fact that summa-
rization is not an easy task even for people, reli-
able human-labeled data are also difficult to obtain.
Therefore, several unsupervised summarization ap-
proaches have been proposed, which do not require
reference summaries for the target domain. We
introduce these methods as follows.

Unsupervised extractive models. TextRank
(Mihalcea and Tarau, 2004) encodes sentences in
the article as nodes in an undirected graph. The
weights of edges are measured by sentences simi-
larity. The centrality of a node (sentence) is com-
puted by PageRank (Brin and Page, 1998) to decide
whether a sentence should be included in the final
summary. Zheng and Lapata (2019) advances upon
TextRank by encoding sentences with BERT rep-
resentation (Devlin et al., 2018) to compute pairs
similarity and build graphs with directed edges de-
cided by the relative positions of sentences.

Unsupervised abstractive models. Baziotis
et al. (2019) leverages differentiable sampling and
optimizes by re-constructing the input article from
the generated summary. Chu and Liu (2018) pro-
poses a similar idea in the multi-document sum-
marization setting. Wang and Lee (2018) uses
adversarial training and reinforcement learning to
make the summary human-readable. Févry and
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Phang (2018) adopts denoising autoencoders orig-
inally used in sentence compression. However,
most of these models are only tested on datasets
with considerably small article/summary length.
Also, previous models usually utilize the recurrent
neural networks (RNNs). However, transformers
(Vaswani et al., 2017; Devlin et al., 2018) have
shown superior performances over RNNs on vari-
ous NLP tasks, including machine translation, read-
ing comprehension, sentiment analysis, etc. Few
Efforts have been made to leverage transformers in
unsupervised abstractive summarizations.

Pretraining Language Model. In recent years,
pretraining language models have proved to be
quite powerful in solving numerous NLP tasks. The
state-of-the-art pretrained models include CoVe
(McCann et al., 2017), ELMo (Peters et al., 2018),
GPT (Radford et al., 2018), BERT (Devlin et al.,
2018) and UniLM (Dong et al., 2019). Taking
advantage of corpora with billions of tokens, the
pretrained language models learn universal and ro-
bust representations for various semantic structures
and linguistic relationships. As a result, pretrained
models have been widely used with considerable
success in applications such as question answering
(Zhu et al., 2018), sentiment analysis (Peters et al.,
2018) and passage reranking (Nogueira and Cho,
2019). Furthermore, UniLM (Dong et al., 2019)
leverages its sequence-to-sequence capability for
abstractive summarization; the BERT model has
been employed as an encoder in BERTSUM (Liu
and Lapata, 2019) for supervised extractive and
abstractive summarization.

In this paper, we present TED, a pretrained unsu-
pervised abstractive summarization model which
is finetuned with theme modeling and denoising on
in-domain data. TED utilizes a transformer-based
encoder-decoder structure and the pretraining lever-
ages large-scale corpora containing millions of un-
labeled articles. Our primary contributions are two-
fold as follows.

First, we leverage the lead bias in news articles
to pretrain TED. The lead bias is introduced by the
journalistic convention of writing using an inverted
pyramid structure, placing the most important infor-
mation in the beginning of an article. We propose
to use the leading sentences as the target summary
and train the model to predict it during pretraining.
In this way, we pretrain a summarization model on
a large-scale corpus with 21.4M news articles. The
model yields better performance than most existing

unsupervised methods.

Second, to finetune on specific datasets, TED
is further trained with a theme modeling loss and
a denoising autoencoder. The role of the theme
modeling module is to make the generated sum-
mary semantically close to the article. The module
uses a semantic classifier trained using a discrimi-
native objective function. Furthermore, to optimize
on the generated summary tokens, we adopt the
Gumbel-Softmax (Jang et al., 2016) estimator to
replace the non-differentiable arg max. The de-
noising autoencoder has been previously used in
unsupervised machine translation (Lample et al.,
2017) and sentence compression (Févry and Phang,
2018), and we employ it to help the model extract
salient information from corrupted text.

Instead of classical word tokenization, we adopt
the SentencePiece tokenization (Kudo and Richard-
son, 2018) to alleviates the long-standing out-of-
vocabulary (OOV) problem in language generation
tasks (Luong et al., 2014; Sennrich et al., 2015).
We test TED on several benchmark datasets. The
experimental results show that TED outperforms all
unsupervised abstractive baselines on all datasets.
For example, on the CNN/DM dataset, it outper-
forms the state-of-the-art unsupervised abstractive
model by more than 9 ROUGE-1 points and com-
pares favorably with most unsupervised extractive
models. We further show that TED is capable of
generating novel words and phrases in summaries
and is a highly abstractive system even compared
with supervised systems.

2 Methodology

In this section, we will go through the model struc-
ture of TED, i.e. the transformer encoder and de-
coder. Then we introduce the pretraining method
and two in-domain finetuning objectives: theme
modelling and the denoising autoencoder. The
overall architecture of TED is illustrated in Fig. 1.

2.1 Transformer Encoder and Decoder

Previous unsupervised summarization methods are
based on the sequence to sequence (seq2seq) model
(Sutskever et al., 2014) that primarily uses the RNN
model. As the transformer structure (Vaswani et al.,
2017) has been successfully applied in a large num-
ber of NLP tasks, TED employs the multi-layer
transformer encoder-decoder architecture. We fol-
low the standard transformer design in TED net-
works and refer readers to Vaswani et al. (2017)
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Figure 1: Overall structure of our model. TED first pretrains on news articles and then finetunes with theme

modeling and denoising. (from left to right).

for more technical details on transformers. Denote
the number of layers (i.e., Transformer blocks) as
L, the number of self-attention heads as H and the
hidden size as N. We explore two different config-
urations in experiments, 4 layers 4 heads (4L4H)
with V = 512 and 10 layers 8 heads (10L8H) with
N = 720.

Denote the input article tokens sequence as
X ={z1, 29, ...,x,}, and each token is first trans-
ferred to a vector by a trainable embeddings ma-
trix V. The output from transformer encoder
E is a sequence of encoded vectors E(X) =
{uf u¥, ..., uP}. The decoder can be viewed as
a conditional language model to generate the sum-
mary depending on the generator outputs. Given k
input summary tokens W = {wy, wa, ..., wy }, the
cross attention layer in the decoder D attends with
encoder outputs {ulE ;. The decoder outputs are
D({wi,wa, ..., wr}) = {uP ul, .. ,uP}. The
probability distribution over the vocabulary for
W1 1s given by:

P(wgy1|wig, 1) = softmax(VukD) (D

In traditional tokenization algorithms, efforts
have been made to address the out-of-vocabulary
(OOV) issue (Yang et al., 2019) at the cost of los-
ing semantic information, such as mapping OOV
words to a special “UNK” token. To mitigate
the open vocabulary problem, we adopt Sentence-
Piece (Kudo and Richardson, 2018), a data-driven
method that trains tokenization models from sen-
tences in large-scale corpora. The advantage of
the SentencePiece model is that its subwords can
cover all possible word forms and the subword
vocabulary size is controllable. In the evaluation
experiments, we train a SentencePiece subword
vocabulary of size 32,000.

Note for supervised summarization models, dur-
ing training, the inputs to the decoder are the

groundtruths/reference summary tokens; for un-
supervised learning, input tokens are generated in
the previous pass, i.e. one new token is gener-
ated in one pass. More details are available in
section 2.3.1.

2.2 Pretraining with Unlabeled Corpora

Leveraging large scale unlabeled text corpora to
pretrain models has been proven as an effective
method in multiple NLP tasks (Devlin et al., 2018).
However, such approach has not yet been utilized
in text summarization.

News articles follow an inverted pyramid struc-
ture, i.e. front loading the most salient information.
This so-called "lead bias” for news summarization
is so strong that See et al. (2017) have shown that
using the first 3 sentences in a news article as a
summary can score higher than many sophisticated
deep learning models. Although this poses a great
challenge to previous research, we take advantage
of this property in our favor in the pretraining phase
of TED.

For a news article, we set the target summary to
be the first three sentences. This allows the model
to exploit the structural bias of the news domain
and infer the most important information using the
background materials in the remainder of the arti-
cle. To collect data for pretraining, we obtain three
years of online news articles from 2016 to 2019
via an industrial search engine. The search engine
indexes major online news domain, for instance,
New York Times and Bloomberg. Then we col-
lect the parsed articles within the 2016-2019 time
range as the raw data. Note that this time span
does not overlap any of three test datasets we use
in this paper, therefore the pretraining should not
lead to data leakage in test. It is also worth noting
that this idea of utilizing structural bias for large-
scale summarization pretraining is not limited to
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Figure 2: An example of the pretraining task: predict
the Lead-3 sentences (as the target summary) using the
rest of the article.

specific types of models, and it can be applied to
other types of text as well: academic papers with
abstracts, novels with editor’s notes, books with
tables of contents.

However, one should carefully examine and
clean the source data to take advantage of lead bias,
as the top three sentences may not always form a
good summary. Therefore, we conduct strict data
cleaning to remove irrelevant distracting content
and filter out articles whose top three sentences do
not form a good summary:

First, many news articles begin with media
names, reporter names, dates or other irrelevant
information for summarization, e.g. “New York
(CNN) -7, “Adam Smith, June 3rd 2018:”. We au-
tomatically clean these using regular expressions.

Second, we only include articles whose top
three sentences contain between 10 and 150 words,
and remaining sentences contain between 150 and
1,200 words. The criterion on top three sentences
is set to filter out articles with either extremely
short leading sentences, e.g. phrases of one or two
words, which contain too little information to be
reasonable summaries, or exceedingly long lead-
ing sentences to reduce the pretraining time. The
limit on total number of words in the article is to
filter out very long articles to reduce memory con-
sumption. Another purpose is to remove very short
articles of which the information is too condensed
and not suitable for summarization pretraining.

Third, we also remove articles in which the first
three sentences may not contain the major infor-
mation in the article. We use a simple and easy-to-
compute metric: overlapping words. We compute
the portion of non-stopping words in the top three
sentences that also appear in the rest of an article.
A higher ratio indicates that the rest of the article is

likely to elaborate on the beginning part. We keep
those articles with the ratio of overlapping words
higher than 0.65. We pick this threshold based on
observations in the CNN/DM dataset, where the
median overlapping ratio of non-stopping words
between golden summary and the article is 0.87,
and the median ratio between the top three sen-
tences and the rest of the article is 0.77. Setting the
threshold at 0.65 makes the final training set size
fit with the available computation resources and
ensures that the leading sentences contain enough
information.

Finally, we end up with 21.4M articles, out of
which 12,000 articles are randomly sampled as
the validation set. We conduct pretraining for 10
epochs and pick the model with the best ROUGE-L
score on the validation set. The pretraining task is
to predict to the first three sentences of an article
using the rest of the article (so pretraining will not
teach the model to simply copy the leading three
sentences since they are removed from the input to
the transformers). Note that TED does not start off
from other pretrained models like Bert.

After pretraining, in order to adapt TED to a
specific target dataset (for evaluation), we finetune
TED on the target dataset in an unsupervised man-
ner. The finetuning objective functions includes the
following: theme modeling and denoising autoen-
coder.

2.3 Theme Modeling

Theme modeling aims to make the generated sum-
mary semantically close to the input article. We
employ differential sampling to enable optimiza-
tion on generated summaries and train a classifier
to improve the semantic relatedness between the
output summary and article.

2.3.1 Differentiable Sampling

In order to optimize the transformers using out-
put summaries, we need to make the generation
of summary tokens differentiable. Recall the con-
ditional probability distribution of token w1 is
P(wgs1|wig, 1) = softmaX(VuE). Let 7 de-
note P(wgi1|wi.k,T1.n). One can use arg max
on 7 to obtain the token wyy; in the forward
pass, however, it is not differentiable in the gra-
dient back-propagation. Although arg max can
be avoided by obtaining the embedding of w1
as a weighted sum of the vocabulary embeddings
V, this results in an undesirable gap between the
training (weighted sum) and the inference (discrete
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sampling) on the forward pass generation. To solve
this issue, we employ the straight-through Gumbel-
Softmax estimator (Jang et al., 2016) as in Yang
et al. (2018); Baziotis et al. (2019). Specifically,
the forward pass in training still uses arg max sam-
pling, but for gradient computation, the following
Gumbel-Softmax distribution is used as a differen-
tiable approximation for the arg max operation:

7= exp(log(m;) + gi)/7) )
>4 exp(log(m;) + g;)/7)

where g1, ,g; are i.i.d samples drawn from
the Gumbel distribution G(0,1) and 7 denotes
the softmax temperature. As shown in Jang et al.
(2016), as 7 — 0, the Gumbel-Softmax distribu-
tion converges to the categorical (one-hot) distri-
bution; as 7 — inf, the Gumbel-Softmax distri-
bution converges to the uniform distribution. Al-
though this gradient estimator is biased, we find
that this method works well in practice. We choose
7 = 0.1 based on the CNN/DM validation set
and use this value in all the experiments. Denote
the input article as d, the generated summary as
s = {wy,wa,...,wy}. The generation of s fol-
lows the recursive process that input wj.; to the
transformer decoder to obtain wygy, then input
W1.k+1 to compute wy42 and so on. The first in-
put token w; is always the special beginning token
[START].

2.3.2 Encoder Transformer as A Semantic
Classifier

As the generated summary may be off the article
theme at the beginning of finetuning, we also opti-
mize TED such that the generated summaries are
semantically closed to the input articles. We frame
the semantic similarity problem in a discrimina-
tive setting. To better adapt to the target-domain
data, we add sentence pairs from training articles
to facilitate similarity computation.

Concretely, during training, we pick two consec-
utive sequences of tokens a; and a from an article
to form a positive sequence pair {a1, as}. Second,
sequence b; is chosen from another random arti-
cle in the dataset to form the negative sequence
pair {a1, by }. Following Devlin et al. (2018), each
sequence pair is packed into one single sequence
by inserting a special token [SEP] between them
and adding trainable segment embeddings. A spe-
cial classification token [CLS] is also added to
the beginning of the packed sequence. As shown

/
Iclassify
Les U J I JC 0 JC JC 0 I ]
| 1

r[ Add & Normalize ]
! t t

{ S Feedforwerd_______ ]
:-[ - Add & Normalize . ]
| ]

Self-Attention

dog is cute [SEP] he likes play ing

( [CLS] my dog is cute [SEP] I am at work )

Figure 3: Theme modeling is essentially updating TED
with a semantic classifier. The input sentence pair is
first processed by adding a “class” token in the begin-
ning and a “separation” token between the two sen-
tences. Then the sentence pair is fed into the trans-
former encoder, and the first output vector is classified
to “similar” or “distinct”.

in Fig. 3, the packed sequence is then fed as input
into TED’s transformer encoder. The output vector
associated with the token [CLS], is then classified
into similar/distinct categories by a two-layer fully
connected network. We use the following cross-
entropy loss to optimize the encoder such that the
a is semantically similar to as and s is also closed
to d, while a; is semantically distinct from by .

Ltheme = - IOg(p(y = 1|a17 a2))
—log(p(y = 1[s,d)) — log(p(y = Olai,b1))
3)

2.4 Denoising Autoencoder

The idea of denoising autoencoder (Vincent et al.,
2008) has been used in unsupervised machine trans-
lation (Artetxe et al., 2017; Lample et al., 2017)
to prevent the model from learning to merely copy
every input word one by one. This denoising pro-
cess imitates text simplification and helps to refine
essential semantic information.

In detail, a sequence of n consecutive tokens x
from the input article is injected with two types of
noise. First, we insert noisy tokens sampled from
other articles in the same dataset into the original
sequence at random positions, obtaining a new se-
quence with length n’, where n’ is 40%-50% larger
than n. Next, similar to Lample et al. (2017), the
sequence is slightly shuffled by applying a permu-
tation o such that Vi € [1,2,---,n/], |o(i) —i| < F,
where the permutation distance k is set to be 20%
of the length of . The final corrupted sequence
is denoted as x’. TED model is then trained to
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recover the original token sequence given the cor-
rupted sequence:

Lenoise = CE(CC, TED(:IZ/)) 4

where C'E denotes the mean of token-level cross-
entropy loss. TED(«’) denotes the sequence of
probability distribution outputs {7} from the de-
coder with inputting =’ to the encoder. The final
objective function is the mean of Eq. (3) and Eq. (4)
(we empirically find that equal weights between the
two terms work well enough in practice):

['TED _ £theme zﬁdenoise (5)

It is worth pointing out that we do not conduct
“pretraining” on target evaluation datasets. This is
because for a target dataset, we do not know be-
forehand whether the Lead-X sentences will make
a quality summary or not. We do have the option
to do so on datasets where Lead-X are good sum-
maries, however, it is potentially cherry-picking
datasets. Also, we do not conduct supervised fine-
tuning with ground-truths summaries in evaluation
datasets because we want to have an entirely unsu-
pervised summarization system with motivations
stated in the introduction section.

3 Experiments

3.1 Datasets

We evaluate our model on three benchmark sum-
marization datasets: NYT, CNN/DM and English
Gigaword, containing 110K, 300K and 3.8M news
articles, respectively. The detailed statistic informa-
tion on the datasets can be found in the appendix. In
NYT, following Liu and Lapata (2019), we choose
4,000 examples as the validation set and filter out
examples with summaries of fewer than 50 words.
In CNN/DM, similar to See et al. (2017) and Liu
and Lapata (2019), input articles are truncated to
500 tokens. In English Gigaword, we filter out
data examples with articles containing only”UNK”
tokens.

3.2 Baseline and Metrics

We compare TED with the following baselines. (1)
Unsupervised abstractive systems: Brief (Wang
and Lee, 2018), SEQ3 (Baziotis et al., 2019), GPT-
2 (Radford et al. (2019), without supervised fine-
tuning with ground-truths summaries). (2) Unsu-
pervised extractive systems: TextRank (Mihalcea

and Tarau, 2004), Lead-X. (3) Supervised abstrac-
tive and abstractive (models trained with ground-
truths summaries): PACSUM (Zheng and Lap-
ata, 2019), PGNet (See et al., 2017), REFRESH
(Narayan et al., 2018) and SUMO (Liu et al.,
2019b). TED is unsupervised abstractive and
therefore not directly comparable with supervised
baselines. The purpose of supervised systems here
is for references. We describe the implementation
details of our model in Appendix. We measure
the quality of generated summaries by ROUGE F1
score (Lin, 2004), including unigram (ROUGE-1),
bigram (ROUGE-2) and longest common subse-
quence (ROUGE-L).

3.3 Results

Results on English Gigaword dataset are shown in
Table 2, TED outperforms all unsupervised base-
lines. Table 2 shows the experimental results on
NYT and CNN/DM datasets. In NYT, the unsuper-
vised fine-tuning of TED improves upon the pre-
trained model by 2.75%/1.06%/2.37% on ROUGE-
1/ROUGE-2/ROUGE-L respectively. Note that
ROUGE metric prefers extractive systems that pre-
serve original phrasing (See et al., 2017). Consider-
ing this factor, TED achieves results that are com-
petitive with unsupervised extractive baselines and
surpasses all unsupervised abstractive models. In
CNN/DM, TED with a larger model size (10L8H)
outperforms all unsupervised abstractive methods
and compares favorably with unsupervised extrac-
tive baselines. Note that TED outperforms GPT-2,
a powerful transformer-based language generation
model pretrained on large scale webpage textual
data, by significant margins. Again, TED further
improves upon pretrained models on both 10L8H
and 4L4H configurations.

Table 1: Results on the English Gigaword dataset. Per-
formances of baseline models are collected from their
original papers. The best performance in each metric is
in bold.

Model | Rl R2 RL

TED 10L8H (ours) 25.58 8.94 22.83
Pretrained 10L8H (ours) | 25.23 8.84 22.56
TED 4L4H (ours) 2459 8.10 2191
Pretrained 4L4H (ours) | 22.52 7.46 20.09
LEAD-8 21.86 7.66 20.45
SEQ3 2539 821 22.68
Brief 21.26 5.60 18.89
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Table 2: ROUGE F} scores on CNN/DM and NYT datasets. R1/R2/RL stands for ROUGE-1/ROUGE-2/ROUGE-
L respectively. Best results in each unsupervised category is in bold. Results of baseline models are obtained from
their original papers or running open-sourced codes.

| CNN/DM NYT
Model | R R2 RL | Rl R2 RL
Unsupervised Abstractive
TED 10L8H (ours) 38.73 16.84 3540 | 37.78 17.63 34.33
Pretrained 10L8H (ours) | 38.38 1649 35.08 | 35.03 16.57 31.96
TED 4L4H (ours) 3438 9.56 30.10 | 2445 797 21.77
Pretrained 4L.4H (ours) 31.20 10.05 27.80 | 22.56 7.38 18.79
SEQ3 2324 7.10 2215 | 17.85 394 19.53
Brief 28.11 9.97 25.41 - - -
GPT-2 29.34  8.27 26.58 - - -
Unsupervised Extractive
LEAD-3 40.50 17.70 36.70 | 3550 17.20 32.00
TextRank + tf-idf 3320 11.80 29.60 | 33.20 13.10 29.00
TextRank + skip-thought | 31.40 10.20 28.20 | 30.10 9.60 26.10
TextRank + BERT 30.80 9.60 27.40 | 29.70 9.00 25.30
PACSUM + tf-idf 39.20 16.30 35.30 | 40.40 20.60 36.40
PACSUM + skip-thought | 38.60 16.10 34.90 | 38.30 18.80 34.50
PACSUM + BERT 40.70 17.80 36.90 | 4140 21.70 37.50
Supervised Abstractive & Extractive

SUMO 41.00 18.40 37.20 | 4230 22.70 38.60
PGNet 39.50 17.30 36.40 | 42.70 22.10 38.00
REFRESH 41.30 18.40 37.50 | 41.30 22.00 37.80

Article:

after exposing potential security risks with airlines’ in-flight entertainment systems, one of the top
experts on counter-threat intelligence in the world was pulled off a flight by fbi agents. chris roberts,
who featured in a string of fox news reports, was yanked off his plane after it landed in syracuse, new
york, on wednesday night by two fbi agents and two uniformed officers. roberts, who works for security
intelligence company one world labs, was questioned for the next four hours ...

TED Summary:

chris roberts, who works for security intelligence company one world labs, was pulled off a plane in
syracuse, new york, on wednesday night by two fbi agents and two uniformed officers. the incident
occurred only a few hours after a report about roberts’ research was released by the government
accountability office earlier this week.

Reference:

chris roberts of one world labs grabbed after plane landed in syracuse. two fbi agents spent four hours
questioning him about cyberhacking. agents confiscated electronic devices and computer files from
roberts. he flew in to give talk at aerospace conference about plane vulnerabilities. roberts featured
on fox news’ on the record with greta van susteren. regarded as one of the world’s top experts on
counter-threat intelligence.”

Figure 4: An example of a generated summary by TED. The reference summary and parts of the input article are
also included.
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4 Discussion

4.1 Ablation Study

The ablation studies shown in Table 3 verify the
effectiveness of each component in TED. Train-
ing the transformer encoder-decoder from scratch
yields reasonable performance. Pretraining on
large-scale data results in more than 10% improve-
ment on all three metrics on training TED from
scratch. Pretraining plus either theme modeling or
denoising improves upon the pretrained model by
more than 2%. The full TED model, pretraining
with theme modeling and denoising, produces the
best result overall.

Table 3: Ablation study of different components in
TED on the NYT dataset. We test with the 10L8H
model configuration.

Model | Rl R2 RL

Train from scratch 2449 441 20.14

Pretrained only 35.03 16.57 31.96

Pretrained w/ theme modeling | 37.16 18.18 34.15

Pretrained w/ denoise loss 3748 17.83 34.05

Full model 37.78 17.63 34.33
I PGNet 1TED ZZ Reference

80

40

Proportion% of novel n-grams

o e —

1-grams 2-grams 3-grams 4-grams

Figure 5: Proportion of novel grams in summaries gen-
erated by different models on the CNN/DM test set.

4.2 Model Analysis

Example. We showcase a sample summary from
CNN/DM dataset along with the input article and
the reference summary (Fig. 4). As shown, TED
is able to capture and organize the essential infor-
mation into fluent and highly readable language.
We attribute the grammatical correctness to the
pretraining process and the denoising autoencoder.
However, we also note that although TED man-
ages to recognize the temporal information related
to reported event (a few hours after Fox news re-
ports), it makes a mistake by summarizing as “a

few hours after a report about roberts’ research was
released. ..”. It shows that fact cross-checking is a
potential future research direction.

Abstractiveness. To examine how abstractive
TED is, we compute the proportion of novel N-
grams in the summary output (Fig. 5). The ref-
erence summary and the output from PGNet are
included for comparison. Although TED is unsu-
pervised, it includes more novel grams than the su-
pervised model PGNet. The reference summaries
have the highest proportion of n-grams.

4.3 Comparison with Previous Unsupervised
Models

TED is an innovative unsupervised summarization
model with several distinctive features setting it
apart from previous approaches such as MeanSum
and SEQ3. First, TED leverages the structure of
news articles for an effective large-scale pretraining.
Second, although both MeanSum and SEQ? have
a loss to make the summary similar to the input
article, they leverage the classical cosine similarity
on text embeddings. In contrast, TED innovatively
encodes the similarity by a transformer encoder
with much more modeling capability. Third, the
denoising module in TED is completely distinct
from the idea of reconstruction in SEQ® and Mean-
Sum. In TED’s denoising module, the corrupted
texts are input to the transformer and the model is
trained to filter the added noises. The original clean
document is not used as input and thus unseen by
TED in the forward pass. However, the reconstruc-
tion process in MeanSum and SEQ? employs the
original document to generate a summary, which is
then used to reconstruct the original document.

5 Conclusion

In this paper, we propose TED, an unsupervised
abstractive summarization model. First, we intro-
duce an effective large-scale pretraining approach
leveraging the lead bias in news articles. The pre-
training employs automatic filtering mechanism
and does require any human-labeled data. We then
develop a finetuning scheme to induce the seman-
tic similarity between summaries and input articles,
together with a denoising autoencoder to improve
the quality of generated summaries. Experiments
across three datasets show that TED significantly
outperforms unsupervised abstractive baselines.
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