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Abstract

Active learning is an efficient approach for mit-
igating data dependency when training neural
machine translation (NMT) models. In this pa-
per we explore new training frameworks by in-
corporating active learning into various tech-
niques such as transfer learning and iterative
back-translation (IBT) under a limited human
translation budget. We design a word fre-
quency based acquisition function and com-
bine it with a strong uncertainty based method.
The combined method steadily outperforms all
other acquisition functions in various scenar-
ios. As far as we know, we are the first to do
a large-scale study on actively training Trans-
former (Vaswani et al., 2017) for NMT. Specif-
ically, with a human translation budget of only
20% of the original parallel corpus, we man-
age to surpass Transformer trained on the en-
tire parallel corpus in three language pairs.

1 Introduction

Many impressive progresses have been made in
neural machine translation (NMT) in the past few
years (Luong et al., 2015; Gehring et al., 2017;
Vaswani et al., 2017; Wu et al., 2019). However,
the general training procedure requires tremendous
amounts of high-quality parallel corpus to achieve
a deep model’s full potential. The scarcity of the
training corpus is a common problem for many lan-
guage pairs, which might lead to the NMT model’s
poor performance.

However, constructing a parallel corpus is a slow
and laborious process. Professional human trans-
lators and well-trained proofreaders are needed.
Although several dual learning (He et al., 2016; Bi
et al., 2019) and unsupervised learning (Artetxe
et al., 2018; Lample et al., 2017; Lample and Con-
neau, 2019) approaches have been successfully
used, they are often inferior to the supervised mod-
els. In such cases, active learning might be a good

choice. The goal of active learning in NMT is to
train a well-performing model under a limited hu-
man translation budget. We achieve this goal by
using some particularly designed acquisition func-
tions to select informative sentences to construct a
training corpus.

Acquisition functions can be categorized into
two types: model related and model agnostic. For
the former, the methods we use are all based on
the idea of uncertainty. For the latter, we devise
a word frequency based method which takes lin-
guistic features into consideration. Both types of
acquisition functions have been proven to be bene-
ficial in active NMT training, especially when they
are appropriately combined.

Data augmentation techniques that consume no
human translation budget are worth exploring in
active NMT training. If the parallel corpus of a
related language pair is available, transfer learning
(Zoph et al., 2016; Kim et al., 2019) might be a
good choice. Otherwise, we propose a new training
framework that integrates active learning with iter-
ative back-translation (IBT) (Hoang et al., 2018).
We achieve success in both the settings, especially
when active learning bonds with IBT.

The main contributions of this work are listed
as follows: 1) To the best of our knowledge, we
are the first to give a comprehensive study of active
learning in NMT under various settings. 2) We
propose a word frequency based acquisition func-
tion which is model agnostic and effective. This
acquisition function can further enhance existing
uncertainty based methods, achieving even better
results in all settings. 3) We design a new train-
ing framework for active iterative back-translation
as well as a simple data augmentation technique.
With a human translation budget of only 20% of
the original parallel corpus, we can achieve better
BLEU scores than the fully supervised Transformer
does (Vaswani et al., 2017).
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Figure 1: (a) shows the diagram of vanilla supervised NMT training. A parallel corpus is available and used
to train the model. (b) shows active NMT training. An acquisition function can use the model to score each
sentence in the source side monolingual corpus. A parallel corpus is gradually constructed by employing an oracle
(human translator) to translate the sentences with high scores. (c) shows active iterative back-translation. An
acquisition function can use ModelA→B to score the untranslated sentences in language A. One part of the high
score sentences are translated by an oracle (new parallel corpus), another part are translated by ModelA→B (new
synthetic corpus). New parallel corpus and new synthetic corpus are used for training ModelB→A and vice versa.

2 Related Work

Active learning As for natural language process-
ing, active learning is well studied in text classi-
fication (Zhang et al., 2017; Ru et al., 2020) and
named entity recognition (Shen et al., 2017; Sid-
dhant and Lipton, 2018; Prabhu et al., 2019). Peris
and Casacuberta (2018) applied attention based
acquisition functions for NMT. Liu et al. (2018)
introduced reinforcement learning to actively train
an NMT model.

Data selection in NMT Although active learn-
ing has not been thoroughly studied in NMT, the re-
lated data selection problem attracts some attention.
van der Wees et al. (2017); Wang et al. (2018a) de-
liberately designed weighted sampling methods,
which accelerates training and improves perfor-
mance. Wang et al. (2018b); Pham et al. (2018)
focused on noisy data, coming up with algorithms
to filter harmful sentence pairs. Wang et al. (2019)
simultaneously dealt with domain data selection
and clean data selection. Fadaee and Monz (2018);
Poncelas et al. (2019); Dou et al. (2020) considered
domain data selection in back-translation. Wang
and Neubig (2019) proposed a method to select
relevant sentences from other languages to bring
performance gains in low resource NMT. Further-
more, Ruiter et al. (2019) tried to extract possible

parallel data from bilingual Wikipedia.

Interactive NMT Interactive NMT exploits user
feedback to help improve translation systems. Real-
world (Kreutzer et al., 2018) or simulated user
feedback includes highlighting accurate translation
chunks (Petrushkov et al., 2018) or correct errors
made by machine (Peris and Casacuberta, 2018;
Domingo et al., 2019). Kreutzer and Riezler (2019)
took the cost of different types of supervision (feed-
back) into account, which resembles the idea of
active learning.

3 Methodology

We give a detailed description of active neural ma-
chine translation (NMT) in this section. Basic set-
tings and some terminologies are introduced in
Section 3.1. In Section 3.2 and Section 3.3, var-
ious acquisition functions are presented and ex-
plained. Section 3.4 deals with combining active
learning with transfer learning and iterative back-
translation. Figure 1 is an illustration of different
training frameworks in NMT.

3.1 Active NMT

Several terminologies need to be clarified before
introducing the active NMT circulation, namely,
acquisition function, oracle and budget.
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Acquisition Function An acquisition function
gives a score to each untranslated sentence in the
monolingual corpus. Sentences with higher scores
are more likely to be selected as the training corpus.
Acquisition functions fall into two types, model
related and model agnostic. A model related acqui-
sition function takes a sentence as the model input
and gives a score depending on the model output. A
model agnostic acquisition function often concerns
about the informativeness of the sentence itself,
which can score each sentence before training the
model.

Oracle An oracle is a gold standard for a ma-
chine learning task. For NMT, an oracle can output
the ground truth translation given a source sentence
(specifically an expert human translator). A paral-
lel corpus is gradually constructed by employing
an oracle to translate the selected sentences.

Budget Budget means the total cost one can af-
ford to employ an oracle. For NMT, we need to
hire human experts to translate sentences. In order
to simulate active NMT training, throughout all our
experiments, the cost is the number of words been
translated.

In the beginning, we have a large-scale monolin-
gual corpus of the source language. We do several
rounds of active training until the total budget is
used up. In each round, five steps are taken:

• Use an acquisition function to score each un-
translated sentence.

• Sort the untranslated sentences according to
the scores in descending order.

• Select high score untranslated sentences until
the token budget in this round is used up.

• Remove the selected sentences from the mono-
lingual corpus and employ an oracle to trans-
late them.

• Add these new sentence pairs to the parallel
corpus and retrain the NMT model.

Transformer is what we use throughout our ex-
periments. As this architecture is commonly used
and our implementation has little difference with
the original, we skip an exhaustive background de-
scription of the underlying model. One can refer to
Vaswani et al. (2017) for some details. The active
NMT training circulation is shown in part (b) of
Figure 1.

3.2 Model Related Acquisition Functions
All model related acquisition functions we try
are based on uncertainty. Settles and Craven
(2008) tried these methods on sequence label-
ing tasks. For NMT, we use greedy decoding
to generate a synthetic translation of each sen-
tence x = (x1, · · · , xn) in the monolingual cor-
pus U . We denote this synthetic translation as
ŷ = (ŷ1, · · · , ŷm). In the ith decoding step, the
model outputs a probability distribution over the
entire vocabulary Pθ(·|x, ŷ<i).

Least Confident (lc) A direct interpretation of
model uncertainty is the average confidence level
on the generated translation. We strengthen the
model on its weaknesses and force it to learn more
on intrinsically hard sentences.

1

m

m∑
i=1

[
1− Pθ(ŷi|x, ŷ<i)

]
(1)

Minimum Margin (margin) Margin means the
average probability gap between the model’s most
confident word y∗i,1 and second most confident
word y∗i,2 in each decoding step. With a small mar-
gin, the model is unable to distinguish the best
translation from an inferior one.

− 1

m

m∑
i=1

[
Pθ(y

∗
i,1|x, ŷ<i)− Pθ(y∗i,2|x, ŷ<i)

]
(2)

Token Entropy (te) Concentrated distributions
tend to have low entropy. Entropy is also an ap-
propriate measurement of uncertainty. In NMT, we
calculate the average entropy in each decoding step
as given by the following equation.

1

m

m∑
i=1

entropy(Pθ(·|x, ŷ<i))) (3)

Total Token Entropy (tte) To avoid favoring
long sentences, we choose to take average over
sentence length in the above three methods. How-
ever, it remains a question whether querying long
sentences should be discouraged. We design an
acquisition function to figure out this issue by re-
moving the 1

m term from Token Entropy.

3.3 Model Agnostic Acquisition Functions
Uncertainty based acquisition functions depend
purely on probability. We propose a model agnostic
acquisition function that focuses on linguistic fea-
tures. In NMT, it is important to enable the model
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Algorithm 1 Decay Logarithm Frequency Acqui-
sition Function
Input:

Selected Corpus L, Untranslated Corpus U ;
Token Budget b;
Positive Constants λ1, λ2;

Output: New Selected Sentences B
1: B = ∅; Û = ∅
2: for s in U do
3: calculate lf(s) by Equation (6)
4: end for
5: for s in sort(U ) by lf score do
6: calculate delfy(s) by Equation (7)
7: Û = Û ∪ {s}
8: end for
9: for s in sort(U ) by delfy score do

10: if Cost(B ∪ {s}) > b then
11: break
12: end if
13: B = B ∪ {s}
14: end for

to translate unseen future sentences. In other words,
we wish to choose those sentences that are repre-
sentatives of all the untranslated sentences but less
similar with what has previously been selected.

In each active training round, we have a set
of untranslated sentences in the source language
side, which is denoted as U . Also, those sentences
that have been selected in previous active training
rounds are denoted as L. We denote a sentence as
s = (s1, · · · , sK) which is different from what it
is in Section 3.2 because we are now working on
word level instead of the subword level. First, we
define the logarithm frequency of a word w in U ,
namely, F (w|U).

G(w|U) = log(C(w|U) + 1) (4)

F (w|U) =
G(w|U)∑

w′∈U G(w′ |U)
(5)

Where C(w|·) means the occurrence number of a
word w in a certain sentence set.

As shown in Equation (6), the representativeness
of a sentence s is determined by its average loga-
rithm word frequency in U . A decay factor λ1 ≥ 0
is introduced to assist the model to pay more at-
tention to the uncommon words in the previously
selected corpus L.

lf(s) =

∑K
i=1 F (si|U)× e−λ1C(si|L)

K
(6)

Directly using lf scores is problematic. The al-
gorithm favors a small number of function words
(like ”a”, ”the”) which account for a high propor-
tion of the entire corpus. Also, redundancy breaks
out since sentences of similar content share similar
scores. These two drawbacks are disastrous for
building a well-performing translation system.

A gradual reranking is used to ease these two
problems. Equation (6) is employed for the first
round of sorting. Û(s) is the set of all sentences
that have a higher lf score than s. If s has a high
lf score, but each word si in s frequently appears
in Û(s), we use a decay term e−λ2C(si|Û(s)) to cut
down its score. In this way, we tend to discard
repetitive sentences and filter out insignificant func-
tion words. Details can be found in Equations (7)
and (8). λ1 and λ2 are non-negative constants.

delfy(s) =

∑K
i=1 F (si|U)×Decay(si)

K
(7)

Decay(si) = e−λ1C(si|L) × e−λ2C(si|Û(s)) (8)

We name this model agnostic acquisition function
as decay logarithm frequency (delfy) which is sum-
marized in Algorithm 1.

3.4 Active NMT with Data Augmentation
Directly incorporating active learning into NMT
can be beneficial. However, is there any technique
that consumes no extra budget to further improve
translation performance? The answer depends on
the availability of some related parallel corpus.
Transferring knowledge from a related language
pair can be considered if an extra parallel corpus is
available. Iterative back-translation is worth trying
if not.

Transfer Learning We assume that there exists
a rich parallel corpus in a related translation direc-
tion, e.g., we try to build a German-English NMT
system and we have access to French-English sen-
tence pairs. The model is initialized by training on
this related parallel corpus. Active NMT training is
carried out as described in Section 3.1 after model
initialization.

Iterative Back-Translation Iterative back-
translation (IBT) (Sennrich et al., 2016a; Hoang
et al., 2018) proves to be of help in boosting model
performance. IBT offers a data augmentation
technique that is budget free (no human translator
needed) when considering active NMT training.
However, simply using all monolingual corpus
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Algorithm 2 The Framework for Active Iterative
Back-Translation (IBT)
Input:

Active IBT Rounds R;
Parallel Corpus L = {LA, LB};
Monolingual Corpus UA,UB;
Initialized NMT Model MA→B , MB→A;
Acquisition Function Φ;
Token Budget b, Oracle O;
Token Number in Synthetic Sentences α;

Output: MA→B , MB→A;
1: for i in 1 to R do
2:

−→
Ai = Φ(UA, LA,MA→B, b)

3:
−→
Bi = O(

−→
Ai); UA = UA \

−→
Ai

4:
−→
Pi = Φ(UA, LA,MA→B, α)

5:
−→
Qi = MA→B(

−→
Pi)

6: LA = LA ∪
−→
Ai, LB = LB ∪

−→
Bi

7: Train MB→A on {(LB ∪
−→
Qi), (LA ∪

−→
Pi)}

8:
←−
Bi = Φ(UB, LB,MB→A, b)

9:
←−
Ai = O(

←−
Bi); UB = UB \

←−
Bi

10:
←−
Qi = Φ(UB, LB,MB→A, α)

11:
←−
Pi = MB→A(

←−
Qi)

12: LA = LA ∪
←−
Ai, LB = LB ∪

←−
Bi

13: Train MA→B on {(LA ∪
←−
Pi), (LB ∪

←−
Qi)}

14: end for

to generate a synthetic parallel corpus will hurt
instead of improving the model performance.
We designed some experiments to validate this
argument. Detailed results can be seen in Appendix
B.

Two reasons may cause these poor results. First,
the quality of synthetic corpus varies. Some of the
synthetic sentence pairs can be beneficial, while
others only introduce chaos into the NMT model.
Second, the percentage of the synthetic corpus in
the entire training corpus is too high. To cope
with these two problems, we propose a new Active
IBT framework. Models of opposite translation
directions are responsible for constructing training
corpus for each other. Sentences with the highest
acquisition function scores are divided into two
parts. One part is translated by an oracle to enrich
the parallel corpus. Another part is used to generate
a new synthetic corpus. In this way, we manage to
control the quality as well as the percentage of the
synthetic corpus.

This framework is shown in part (c) of Figure 1,
and some details can be found in Algorithm 2.

Algorithm 3 Active IBT++ (LAN A to LAN B)
Input:

Active IBT Rounds R; Merge Number k1, k2;
Final Parallel Corpus L++ = {LA, LB};
MA→B,i, MB→A,i, i ∈ {1, 2, · · · , R};
Synthetic Corpus

←−
Pi,
←−
Qi, i ∈ {1, 2, · · · , R};

Output: MA→B;
1: for j in 1 to k1 do
2: L̃A,j = MB→A,R−j+1(LB);
3: L̃B,j = MA→B,R−j+1(LA);
4: L++ = L++ ∪ {L̃A,j , LB} ∪ {LA, L̃B,j}
5: end for
6: for j in 1 to k2 do
7: L++ = L++ ∪ {

←−
P R−j+1,

←−
QR−j+1}

8: end for
9: MA→B = Retrain MA→B,1 on L++

Active IBT++ Active learning aims at choos-
ing informative sentences to train the model. Is
there any way that we can exploit more value from
these selected sentences? Inspired by Nguyen et al.
(2019), we propose some further data augmenta-
tion techniques after Active IBT is done. Models
of the last k1 rounds are used for translating the
final parallel corpus, such that each selected sen-
tence will have diversified translations. We merge
the diversified parallel corpus with the synthetic
corpus of a specific translation direction in the last
k2 rounds. Duplicate sentence pairs are filtered out.
The NMT model is re-initialized and trained on this
enlarged training corpus.

We name this technique Active IBT++ and sum-
marize it in Algorithm 3. For simplicity, we only
consider one translation direction in Algorithm 3.
The same technique can be easily done in another
translation direction.

4 Experiments

4.1 Dataset, Preprocessing and
Implementation

We experiment on three language pairs, namely,
German-English (DE-EN), Russian-English (RU-
EN) and Lithuanian-English (LT-EN). To simulate
active NMT training, we use parallel corpus from
the WMT 2014 shared task (DE-EN, RU-EN) and
the WMT 2019 shared task (LT-EN). For Russian-
English, we randomly choose extra 2M sentence
pairs from the UN corpus1. The number of sen-

1https://conferences.unite.un.org/UNCorpus/
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Figure 2: Active NMT, BLEU scores on the test dataset.
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Figure 3: Active NMT with Transfer Learning, BLEU scores on the test dataset.

tence pairs in each language pair is 4M (DE-EN),
4M (RU-EN) and 0.8M (LT-EN). Tokenization is
done by Moses2. We employ BPE (Sennrich et al.,
2016b) to generate a shared vocabulary for each
language pair. The BPE merge operation numbers
are 20K (LT-EN), 32K (DE-EN,RU-EN). For active
NMT with or without transfer learning, we only
experiment on translating into English. Instead, for
active iterative back-translation (IBT), evaluation
is carried out on translating from English and into
English. The evaluation metric is BLEU (Papineni
et al., 2002).

Model hyper parameters are identical to Trans-
former base (Vaswani et al., 2017). Adam opti-
mizer (Kingma and Ba, 2014) is used with a learn-
ing rate of 7×10−4. We use the same learning rate
scheduling strategy as Vaswani et al. (2017) does
with a warmup step of 4000. During training, the
label smoothing factor and the dropout probability
are set to 0.1. λ1, λ2 in Algorithm 1 are all set to
1.0.

Our implementation is based on pytorch3. All
models are trained on 8 RTX 2080Ti GPU cards
with a mini-batch of 4096 tokens. We stop training

2https://github.com/moses-smt/mosesdecoder
3http://pytorch.org/

if validation perplexity does not decrease for 10
epochs in each active training round.

4.2 Active NMT

As a starting point, we empirically compare differ-
ent acquisition functions proposed in Section 3.2
and Section 3.3, as well as the uniformly random
selection baseline. Twelve rounds of active NMT
training are done. In each round, 1.67% of the en-
tire parallel corpus is selected and added into the
training corpus. Thus, we ensure the token bud-
get is 20% of the entire parallel corpus in the final
round. Training corpus in the first round is identi-
cal across different acquisition functions to ensure
the fairness of comparison.

Results are shown in Figure 2. Most active ac-
quisition functions can outperform the random se-
lection baseline in all three language pairs. Our
model agnostic acquisition function (delfy) is also
better than the best uncertainty based acquisition
function. We try to combine delfy with some well-
performing uncertainty based acquisition functions
since they represent different aspects of the infor-
mativeness of a sentence. We choose to combine
delfy with token entropy (te). We add the ranks
given by these two acquisition functions to avoid
the magnitude problem. For example, if a sentence
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Figure 4: Active Iterative Back-Translation, BLEU scores on the test dataset.

gets the highest delfy score as well as the second-
highest te score, then its delfy rank is 1 and its te
rank is 2, such that its final score is 1 + 2 = 3.
Since we sort sentences in descending order of
their scores, we should multiply the summation of
the ranks by −1. This new combined acquisition
function is named as te-delfy.

Our combined method (te-delfy) proves to be
more effective, outperforming all the other acquisi-
tion functions in each active NMT training round
in all three language pairs. To be more specific,
in the last active training round, te-delfy surpasses
the best uncertainty based acquisition function by
1.4 BLEU points in DE-EN, 1.6 BLEU points in
RU-EN and 1.1 BLEU points in LT-EN.

4.3 Active NMT with Transfer Learning

To evaluate different acquisition functions in ac-
tive NMT with transfer learning, we start from a
French to English NMT model. The parallel corpus
for building this initial model contains 4M sentence
pairs which are randomly selected from the WMT
2014 shared task. To share vocabulary between
different languages, we latinize all the Russian sen-
tences4.

Figure 3 shows the results. All the active acquisi-
tion functions are still advantageous compared with

4https://github.com/barseghyanartur/transliterate

the random selection baseline except total token en-
tropy (tte). Our combined method (te-delfy) is also
the best in most active training rounds. Te-delfy
yields the best final results, beating the best un-
certainty based acquisition function by 0.5 BLEU
points in DE-EN, 0.3 BLEU points in RU-EN and
0.5 BLEU points in LT-EN. However, in active
NMT with transfer learning, the performance gains
brought by different acquisition functions are not
as much as it is in active NMT (Section 4.2).

4.4 Active Iterative Back-Translation

For active iterative back-translation (IBT), we ran-
domly select 10% of the entire parallel corpus to
train an initial NMT model. The initial model is
shared across different acquisition functions. We
do 10 rounds of Active IBT training. In each round,
1% of the entire parallel corpus is added into the
training corpus. The total token budget is still 20%
as in Section 4.2 and Section 4.3. For α in Al-
gorithm 2, we use as many as half of the amount
of the authentic parallel corpus in this Active IBT
round. k1, k2 in Algorithm 3 are set to 3 and 6
respectively.

Results are summarized in Figure 4. Our com-
bined method (te-delfy) becomes even more power-
ful than it is in active NMT, leading all the way until
the final round in all the experiments. All active
acquisition functions we try surpass the random



1803

Method Setting DE→EN EN→DE RU→EN EN→RU LT→EN EN→LT
Transformer Base Entire Corpus 32.5 27.3 33.9 36.6 24.2 20.3
Random Active IBT 29.4 23.6 28.4 30.5 21.2 15.7
Best Uncertainty Active IBT 31.5 25.5 32.1 33.9 23.0 19.5
Delfy (Ours) Active IBT 31.3 26.1 32.0 34.4 23.6 20.0
Te-delfy (Ours) Active IBT 31.9 26.9 33.5 36.1 23.8 20.3
Te-delfy (Ours) Active IBT++ 32.8 27.4 35.0 37.4 25.4 21.3

Table 1: Comparison between Active IBT models in the final round, Active IBT++ models and the full supervision
Transformer. Best results are all achieved by Te-delfy. The token budget is 20% of the entire parallel corpus.
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Figure 5: Text analysis of selected sentences, including average sentence length, vocabulary coverage and MTLD
score.

baseline by a large margin, with a minimum per-
formance gain of 1.1 BLEU points. We argue that
synthetic sentence pairs need more sophisticated se-
lection criteria than the authentic ones. Low-quality
pseudo-parallel data can damage rather than help
the model performance.

We make a comparison between the actively
learned models and the full supervision Trans-
former in Table 1. The best results are all achieved
by te-delfy which further proves its superiority. Ac-
tive IBT++ (Algorithm 3) is applied with te-delfy.
With a token budget of 20% of the entire paral-
lel corpus, we can surpass the vanilla Transformer
in every translation direction. These results show
that Active IBT and Active IBT++ are promising
approaches for enhancing NMT models.

5 Analysis

5.1 Linguistic Features

In order to find the common features of the benefi-
cial sentences in translation, we analyze the final
parallel corpus constructed by different acquisi-
tion functions in active NMT from four aspects.
All the analyses are done on word level instead
of the subword level. First, we study the impact
of the average sentence length. Second, we study

the vocabulary coverage by calculating the ratio
of the vocabulary size of the selected corpus to
the total/test vocabulary size. Finally, the lexical
diversity of the selected corpus is analyzed based
on the MTLD metric (McCarthy and Jarvis, 2010).
Analyses are done on random selection, the best
uncertainty based method, delfy and te-delfy. The
results are shown in Figure 5.

Most algorithms tend to choose some medium-
length sentences, rather than the extremely long or
short ones. We also use sentence length as our ac-
quisition function (choosing the longest or shortest
sentences), which proves to be terrible (Appendix
A). Vocabulary coverage varies among different ac-
quisition functions, with random selection always
being the lowest one. Higher vocabulary coverage
means fewer unseen words which might create a
more knowledgeable model. Also, delfy and te-
delfy always achieve higher MTLD scores than the
other two methods do. Note that a higher vocabu-
lary coverage does not necessarily mean a higher di-
versity score. In LT-EN and RU-EN, delfy always
has a larger vocabulary size than te-delfy, but its
selected corpus is less diverse. In general, a good
acquisition function should favor medium-length
sentences as well as having a large vocabulary cov-
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erage. Meanwhile, diversified training corpus is
also beneficial to model performance.

Methods Easy→Hard Hard→Easy
lc 16.0 17.5
margin 16.3 18.3
te 15.9 18.7
tte 16.1 18.6
delfy 16.9 19.1
te-delfy 16.0 19.8

Table 2: We validate the necessity of active learning
when there is a limited human translation budget. Hard
→ Easy corresponds to active learning. Easy→ Hard
represents reverse active learning. We experiment on
EN-LT with a token budget of 20% of the entire parallel
corpus. Active learning results are always better than
reverse active learning results.

5.2 Reverse Active learning
Active learning chooses difficult samples for the
model. Instead, several curriculum learning meth-
ods (Zhang et al., 2018; Platanios et al., 2019; Liu
et al., 2020; Zhou et al., 2020) accelerates model
convergence, which starts training with easy data
samples and gradually moves to hard ones. Cur-
riculum learning’s success makes it reasonable to
think about whether the reverse of active learning is
also beneficial. Reverse active learning selects sen-
tences with the lowest acquisition function scores
in each round. We make a comparison between ac-
tive learning and reverse active learning in Table 2.
Reverse active learning lags behind active learning
with all acquisition functions we try. Also, reverse
active learning can not beat the random baseline
of 18.5 BLEU points. Curriculum learning em-
phasizes the training process of networks (easy to
hard), which might accelerate convergence. How-
ever, when the amount of training data is limited,
active learning is a better choice.

6 Conclusion

Various acquisition functions are conducted on ac-
tive NMT, active NMT with transfer learning and
active iterative back-translation (IBT). Our exper-
iment results strongly prove that active learning
is beneficial to NMT. Our combined method (te-
delfy) achieves the best final BLEU score in ev-
ery experiment we do. Also, the proposed Active
IBT++ framework efficiently exploits the selected
parallel corpus to further enhance the model ac-
curacy. These techniques may also be useful for

unsupervised NMT. Active pre-training is worth
trying and active IBT has already proven its capa-
bility. We leave it for future work to study more
acquisition functions in more NMT scenarios.
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