An Empirical Exploration of
Local Ordering Pre-training for Structured Prediction

Zhisong Zhang, Xiang Kong, Lori Levin, Eduard Hovy
Language Technologies Institute, Carnegie Mellon University
{zhisongz, xiangk, 1lsl,hovy}@cs.cmu.edu

Abstract

Recently, pre-training contextualized encoders
with language model (LM) objectives has been
shown an effective semi-supervised method
for structured prediction. In this work, we
empirically explore an alternative pre-training
method for contextualized encoders. Instead
of predicting words in LMs, we “mask out”
and predict word order information, with a lo-
cal ordering strategy and word-selecting ob-
jectives. With evaluations on three typical
structured prediction tasks (dependency pars-
ing, POS tagging, and NER) over four lan-
guages (English, Finnish, Czech, and Italian),
we show that our method is consistently bene-
ficial. We further conduct detailed error analy-
sis, including one that examines a specific type
of parsing error where the head is misidenti-
fied. The results show that pre-trained con-
textual encoders can bring improvements in a
structured way, suggesting that they may be
able to capture higher-order patterns and fea-
ture combinations from unlabeled data.

1 Introduction

Recently, pre-trained contextualized encoders (Pe-
ters et al., 2018; Radford et al., 2019; Devlin et al.,
2019) have been shown to be beneficial for NLP
tasks, including structured prediction (Kulmizev
et al., 2019; Kondratyuk and Straka, 2019). Most of
the pre-training objectives are based on variants of
language models (LM), that is, the model is trained
to predict lexical items with partial inputs. Masked
Language Model (MaskLLM) is a typical example,
popularized by BERT (Devlin et al., 2019), which
masks out lexical tokens in the input sequences and
predicts their identities. Since natural sentences
contain not only lexical tokens but also their lin-
earized word orders, it is a natural question if we
can perform pre-training by “masking out” and re-
covering word order information.

Word order is an important method of grammat-
ical encoding (Dryer, 2007), and can play an im-
portant role in predicting basic sentence structures
(Naseem et al., 2012; Tédckstrom et al., 2013; Am-
mar et al., 2016; Ahmad et al., 2019). Recently,
Wang et al. (2018) pre-train an explicit word re-
ordering model and show that its contextualized
representations improve dependency parsing.

In this work, we explore a local ordering pre-
training strategy with word-selection objectives.
Instead of completely discarding original word or-
der information, we segment the input sentence
into local bags of words and keep the ordering of
these bags. Inside each bag, we discard all the
local word orders and train the model to recover
them. Furthermore, we simplify the training objec-
tives: instead of training explicit word linearizers
which require extra unidirectional decoders, we
only ask the model to select original neighboring
words. This scheme simplifies the pre-training pro-
cedure and enhances the encoder since it can take
information from the whole sentence.

A similar idea is explored in StructBERT (Wang
et al., 2020), which adopts a word structural ob-
jective by shuffling and re-predicting randomly se-
lected subsets of trigrams. Our method is different
in that we make local bags of words instead of
shuffling and we adopt simpler and cheaper word-
selection objectives. Moreover, we focus on empir-
ical experiments and error analysis on structured
prediction tasks.

We evaluate on three structured prediction tasks
(dependency parsing, part-of-speech (POS) tag-
ging, and Named Entity Recognition (NER)) over
four languages (English, Finnish, Czech, Italian).
The highlights of our findings are:

e For local ordering pre-training, the best perfor-
mance is obtained when partially masking out
information in a suitable degree. (§3.2.1)

1770

Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1770-1783
November 16 - 20, 2020. (©2020 Association for Computational Linguistics

Left Selecion: (2 My Ly py by ey
L N O A S
Transformer Encoder
LA R A R A A B
Words: There is alicat on the|l mat . i
Positions: 0O 0 0/!3 3 3 6 6 |

Bag0 Bagl Bag?

Figure 1: Illustration of the local ordering pre-training
strategy. We segment the input sentence into local bags
(bag size is fixed to three here) and discard word order
information inside each bag by assigning same position
indexes. Training objectives are to select original neigh-
boring words. Here, we only show the scenario for di-
rect left-neighbor selection, while selections for other
positions will be similar.

e Even when pre-trained with a small amount of
data (1M Wikipedia sentences), our method can
improve the performances of structured predic-
tors in a consistent way. Our method performs
comparably to MaskLM and there can be further
improvements when combining the two objec-
tives, especially for parsing, which is the most
structured task we explore. (§3.2.2, §3.3)

e The pre-trained models make fewer structured er-
rors, suggesting that they may be able to capture
higher-order patterns and feature combinations
from unlabeled data. (§3.4)

2 Local Ordering Pre-training

Word reordering or linearization itself is an inter-
esting task, aiming to arrange a bag of words into
a natural sentence (Liu et al., 2015; Zhang and
Clark, 2015; Schmaltz et al., 2016). Wang et al.
(2018) show that representations from an explicit
reordering model can benefit dependency parsing.
However, there may be two issues with an explicit
reordering model for pre-training. Firstly, the input
is a bag of words without any positional informa-
tion. This could discard too much information,
leading to relatively large discrepancies between
pre-training and fine-tuning. Moreover, training
explicit reordering models requires unidirectional
decoders, which are only aware of contexts from
one direction and cannot make full use of the bidi-
rectional information at one time.

To mitigate these issues, we explore a local or-
dering pre-training strategy with word-selection
objectives. Inspired by MaskLLM, where only some
of the tokens are masked out, we “mask out” par-

tial ordering information by segmenting the input
sentence into multiple local bags of words, and
only discarding word orders inside each bag (§2.1).
Moreover, we adopt simpler training objectives of
selecting original neighboring words, which avoids
the need of unidirectional decoders and focuses the
pre-training on the encoder (§2.2).

2.1 Local Bags of Words

Instead of discarding all positional information, we
keep the overall ordering and only discard local
word orders. This is achieved by segmenting the
input sentence into a sequence of local bags of
words. In this way, the model is not aware of the
local word orders inside each bag, but the overall
ordering of the bags is kept. Figure 1 provides a
simplified example to illustrate this scheme. We
specify special positional encodings to “mask out”
local word orders: inside each local bag, all the to-
kens get the same positional indexes. For example,
the position indexes in the first bag {There, is, a}
are all set to 0, while in the second bag {cat, on,
the}, the position indexes are all casted to 3.

The above example illustrates a simplified
scheme, whereas in actual pre-training, we adopt
several variations to make it more flexible. 1) First,
for the position indexes inside each bag, we do not
fix them to the index of the first token, but randomly
pick a representative token and adopt its index. For
example, in the second bag, we randomly choose
a representative index from {3, 4,5}, and then set
all position indexes to this value. 2) Moreover, for
each local bag, we randomly sample its bag size
from a pre-defined range, instead of using a fixed
size. 3) In addition, we randomly pick half of the
bags and keep the original position indexes in them,
which is another way of retaining partial ordering
information.

2.2 Word-selection Objectives

Since the aim of pre-training is not the pre-training
task itself but the encoder, we do not need an ex-
plicit word reordering model, which may require
unidirectional decoders. In some way, an explicit
reordering model can be regarded as a LM which
constrains candidate words to come from the in-
put sentence. Therefore, it may suffer from the
same problem as unidirectional LMs: at one time,
contexts from only one direction can be utilized
instead of from both directions. This is the bias of
unidirectional decoders and we replace them with
simpler word selectors.

1771

Specifically, we only ask the model to select
original neighbors for each word that loses its local
word order information. Figure 1 illustrates the
case for left-neighbor selection. This task is non-
trivial since the model is unaware of word orders
inside each bag. In many scenarios, it needs to
capture certain global sentence structures. For ex-
ample, in the second bag {cat, on, the}, if looking
only locally, we may pick “the” as the left neighbor
of “cat”. However, if we notice that there is another
determiner “a” in the first bag, then “the” will not
be the only choice.

In actual running, we adopt four classification
tasks corresponding to different original offsets:
two for the selection of the original left neighbor
(-1) and the left of the left neighbor (-2) and two for
the right ones. Each word selector gets its own pa-
rameters. Since the word selection task is similar to
dependency parsing (Zhang et al., 2017), we adopt
the biaffine scorer (Dozat and Manning, 2017). The
training objectives are negative log likelihoods on
selecting the correct words.

Formally, assume that we have an input se-
quence of wop, w1, . .., Wy—1, and we generate their
corrupted positions pg, p1, - . ., Pr—1 With our lo-
cal bag strategy. For a specific word w; (where
p; # 1) and a specific selection offset § (§ €
{—2,-1,1,2}), its loss objective will be (for
brevity, we omit the conditions on the inputs):

exp Scores (w;, Wits)
> exp Scores(w;, wy)

Ewi,é = - log

Here, Scores denotes the scores of two tokens hav-
ing positional differences .

Notice that the simplified tasks are not necessar-
ily easier than the explicit reordering task, since
we can recover the original word order if we know
all the local neighboring information. The word-
selection objectives get rid of the explicit decoder
as well as its unidirectional bias. At the same time,
the model is still as efficient as word reordering
models, since we only need to select among the
words that appear in the input sentence, and there
is no need to do the computationally expensive nor-
malizations over the whole vocabulary as in LMs.

2.3 Hybrid Training

We further perform multi-task hybrid training, in-
cluding both ordering and MaskLLM objectives. Ac-
tually, our local ordering strategy can be integrated
with MaskLM in a natural way. Since half of the lo-
cal bags preserve the original position indexes, we

Model Data

--I{ Labeled]
l,

Decoder
|

| Encl)der |4,:--[Unlabeled]

FineTuning

PreTraining

Figure 2: Illustration of the overall training scheme.
The encoder is pre-trained in the pre-training stage with
the unlabeled data. Later, the task-specific decoder is
stacked and both modules are further fine-tuned with
task-specific labeled data.

randomly select words inside those bags to mask
and predict. This scheme is nearly as effective as
the original one because we can segment local bags
and mask words at the same time and thus there
is no need to run through the encoder twice. The
encoder produces one set of contextualized repre-
sentations, which we can feed to the corresponding
modules of the two tasks. We adopt equal weights
(both set to 0.5) for the two objectives.

3 Experiments

3.1 Settings

In this sub-section, we briefly describe our main
experiment settings'. Please refer to the Appendix
for more details.

Scheme Figure 2 shows our overall training
scheme. We take a two-step approach: pre-training
plus fine-tuning. First, the encoder is pre-trained
using a relatively large unlabeled corpus, then the
task-specific decoders are stacked upon the pre-
trained encoder and all the modules are fine-tuned
with task-specific labeled data, which is much
smaller than the pre-training data.

Data We explore four languages to evaluate our
pre-training strategy: English (en), Finnish (fi),
Czech (cs), and Italian (it). For the unlabeled
data in pre-training, we collect Wikipedia corpora
from the 2018-Fall Wiki-dump. Due to limita-
tion of computational resources, we sample 1M
sentences for each language. For POS tagging
and dependency parsing, we utilize Universal De-
pendencies (UD) v2.4 (Nivre et al., 2019). For
NER, we utilize CoNLLO3 (Tjong Kim Sang and
De Meulder, 2003) for English, Digitoday (Ruoko-
lainen et al., 2019) for Finnish, Czech Named En-
tity Corpus (Seveikovi et al., 2007) for Czech and

'Our implementation is publicly available at https: //
github.com/zzsfornlp/zmsp

1772

https://github.com/zzsfornlp/zmsp
https://github.com/zzsfornlp/zmsp

EVALITA 2009 (Speranza, 2009) for Italian. We
mainly follow the default dataset splittings, except
for the training sets. To investigate middle- and
low-resource scenarios, we explore three settings
of different training sizes, sampling 1k, Sk and 10k
sentences from the original training set. We adopt
standard evaluation criteria: accuracies for POS
tagging, first-level (language-independent) Labeled
Attachment Score (LAS) for dependency parsing,
and F1 score for NER.

Encoders We adopt encoders with the same ar-
chitecture: a 6-layer Transformer, whose head num-
ber, model dimension and feed-forward hidden di-
mension are set to 8, 512 and 1024, respectively.
In addition, we adopt relative positional encodings
(Shaw et al., 2018; Dai et al., 2019) within the
Transformer, since in preliminary experiments we
find this helpful for target tasks. In contrast to
BERT, we adopt words” as basic input and mod-
eling units. We further include a character-level
Convolutional Neural Network (CNN) to capture
internal structures of words.

Decoders For the decoders of specific tasks, we
adopt typical solutions. For dependency parsing,
we adopt the biaffine graph-based decoder (Dozat
and Manning, 2017). For POS tagging, we simply
add a single-layer classifier over all tags (Yang
et al., 2018). For NER, we adopt a standard CRF
layer (Lafferty et al., 2001).

Training For model training, we adopt the Adam
optimizer (Kingma and Ba, 2014) with a warming-
up styled learning rate schedule. In pre-training,
each mini-batch includes 480 sentences and we
train the model for 200k steps, in which the first
5k steps are specified for linearly increasing the
learning rate towards 4e-4. The pre-training stage
takes around 3 days with one RTX 2080 Ti GPU. In
task-specific training, we adopt a mini-batch size
of 80 sentences and train the model for maximally
250 epochs over the training set, which generally
takes several hours using a single GPU.

3.2 Effects of Pre-training Strategies

In this sub-section, we explore the effects of pre-
training strategies. Here, we take the English de-
pendency parsing dataset for development.

2Except for those which directly utilize BERT, all models
adopt the same word-based input scheme. We adopt this
mainly to follow the conventions of the target tasks and to
compare with baselines without pre-trained encoders.

R | 3 5 7 9 ITH

10k | 86.83 87.72 87.75 8791 87.64 86.98
5k | 8561 8654 86.70 8670 8638 85.64
Ik | 80.87 82.07 8225 8191 8217 79.06

Table 1: Comparisons of bag size ranges ([%, R]) for
the local ordering strategy. “R=00” indicates that all
words from one input sentence fall into one bag. Evalu-
ations are performed with the English dependency pars-
ing task (LAS on development set). Each row repre-
sents different (target task) training sizes.

3.2.1 Bag Size Range

As described in §2.1, we adopt variable bag sizes
for the ordering pre-training. The aim is to make
the model more flexible and prevent it from always
seeing the same patterns associated with fixed bag
sizes. The neighbor selection process is not af-
fected by this since it does not care about the bag
boundaries, and selects among all the input tokens.
The bag size range is a major setting in this strat-
egy. To reduce the number of hyper-parameters,
we specify a maximum bag size 12, and set the bag
size range to [%, R]. For example, if R is setto 7,
then for each bag, its size is randomly selected from
4 to 7. We also include a setting where R is oo,
which corresponds to the case where all words fall
into one global bag, as in the full word reordering
model.

The results are shown in Table 1. Firstly, in
the case of R = oo, the model generally performs
worse than those with local bags. This shows the ef-
fectiveness of keeping partial ordering information
for pre-training, which may possibly reduce the
discrepancies between pre-training and fine-tuning,
matching our intuition of the local ordering strategy.
Furthermore, when the bag size is too small as in
the case of R = 3, the performances are also worse,
possibly because the task becomes so simple that
the model learns little in pre-training. Among the
middle-ranged settings of 12, which partially mask
out information in suitable degrees, the results do
not differ too much. In the following experiments,
we fix R to 7, which performs well overall.

3.2.2 Comparisons

We compare various pre-training strategies and
show the results in Table 2. As split in this table,
we arrange the models into three groups:

(1) The first group includes models without pre-
trained encoders. “Random” gets random initial-
ization, and “fastText” gets its word lookup table

1773

| Random fastText | BiLM MaskLM LBag Hybrid | BERT
10k | 83.70+036 86.00+010 | 87.284016 87.964000 87.75+013 88.27+011 | 89.60+0.10
S5k | 80.751035 83.171024 | 86.161003 87.091010 86.701013 87.351010 | 88.47 1011
1k | 699341030 72.844025 | 80.754003 82.654004 82.254007 83.284026 | 84.62+028

Table 2: Comparisons of different pre-training strategies with the English dependency parsing task (LAS on devel-
opment set, averaged over three runs). Each row represents different (target task) training sizes.

initialized from static fastText embeddings>.

(2) The second group includes models whose en-
coders are pre-trained with the same settings on the
IM Wiki corpus. “BiLM” denotes Elmo-styled (Pe-
ters et al., 2018) Bidirectional LM (BiLM), where
we train left-to-right and right-to-left language
models with causality attention masks. “MaskL.M”
means the BERT-styled MaskLM, where 15% of
the words are masked out and predicted. “LBag”
denotes our Local-Bag based ordering strategy and
“Hybrid” is the multi-task hybrid model trained
with both ordering and MaskLLM objectives.

(3) The third group only contains “BERT”, which
directly utilizes pre-trained BERT*.

In the first group, where there are no pre-trained
encoders, the performances drop drastically in low-
resource cases. The pre-trained static word embed-
dings help in some way, but its degree of perfor-
mance drop is very similar to the baseline: there
are performance gaps of nearly 14 points between
10k and 1k training sizes. If we adopt pre-trained
encoders, as in the second and third group, the per-
formance clearly improves for all training sizes.
Particularly, in the low-resource (1k) settings, the
performance drops from the 10k settings are much
smaller than those in the first group.

The more interesting comparisons are among
those in the second group, where the settings are
kept the same except for pre-training strategies.
Firstly, BiLM performs worst in this group. The
reason may be that BiLM contains unidirectional
decoders, which cannot make full use of the inputs.
The performance of our local ordering strategy
(LBag) is very close to those of the MaskLLM, with
performance gaps of only 0.2 to 0.4 in LAS. Fur-
thermore, if we combine the ordering and MaskLM
objectives as in the Hybrid model, there can be
further improvements. This suggests that local or-

3https://fasttext.cc/docs/en/pretrained-vectors.html

*We use bert -base-multilingual-cased in this
work. Since there are various aspects (model size, pre-training
data size, etc.) making our models not directly comparable to
BERT, we include BERT results mainly as a reference of how
much better we may possibly get with larger models and more
pre-training data.

dering pre-training may capture orthogonal infor-
mation from MaskLM. Overall, the model perfor-
mances in the second group do not differ too much,
suggesting that the effectiveness of contextualized
pre-training can be realized as long as the model is
capable enough.

Unsurprisingly, BERT performs the best, pos-
sibly due to its larger model and training corpus.
Nevertheless, if calculating the gaps between the
second group and BERT, we can find that they are
relatively consistent as training sizes get smaller.
In contrast, the gaps between the first group and
BERT obviously get larger in lower-resource set-
tings. This again suggests the effectiveness of con-
textualized pre-training.

For the pre-trained models in the following ex-
periments, we focus on three strategies: Mask[LM,
LBag and Hybrid, since they are the ones that we
are most interested to compare.

3.3 Main Results

Figure 3 shows the main results on the test sets.
The patterns are very similar to the development
results. Pre-trained BERT obtains the best results,
while our smaller pre-trained models lag behind by
small gaps, which are relatively consistent across
different training sizes. Those without pre-trained
encoders mostly get worse results, especially in
low-resource cases. For the parsing task, our lo-
cal ordering strategy can get comparable results to
those of Maskl.M and overall there can be further
improvements by combining the two objectives.
For the other two sequence labeling tasks, the re-
sults are mixed, possibly because in these cases the
lexical information may be more important, and
the LM-styled pre-training may be better at captur-
ing them. Nevertheless, our strategy still generally
obtains comparable results to MaskLLM.

3.4 Analysis

It is not surprising that contextualized pre-training
can help structured prediction, since pre-trained
encoders may have already captured structured pat-
terns from unlabeled data. We perform detailed

1774

en-Parsing fi-Parsing

cs-Parsing it-Parsing

Sk

en-Tagging fi-Tagging

Sk S5k

cs-Tagging it-Tagging

Accuracy%
) ©
N £

o
(=]

0
=]

85

80

— 801 75
[
75 70
65
70
60
1k 5k 10k 1k 5k 10k 1k 5k 7k 1k 5k 10k
—=— Random = fastText --+-- MaskLM —— LBag —— Hybrid —<— BERT

Figure 3: Test results for dependency parsing (LAS), POS tagging (Accuracy%) and NER (F1 score).

analysis to investigate in what aspects pre-training
are helpful. We select low-resource dependency
parsing (with 1k training size) as the analyzing
task, since parsing is the most structurally complex
task we explore and there may be more obvious pat-
terns in low-resource scenarios. For error analysis
of parsing, Kulmizev et al. (2019) provide detailed
error breakdowns on various factors, along the lines
of (McDonald and Nivre, 2007, 2011). In this work,
we explore different aspects, especially focusing
on the structured nature of the task.

3.4.1 On Word Frequencies

Since pre-training is performed on a much larger
corpus than the task-specific training set, we would

expect that pre-trained models perform better on
out-of-vocabulary (OOV) and rare words, since
they would be seen more often in pre-training.

To investigate this, we split the words of the
development set into four bins according to their
frequency ranking in the (target task) training vo-
cabulary. Except for the OOV bin where words do
not appear in training, the other three bins get the
same number of running word counts.

Figure 4 shows a breakdown of the results. First,
if comparing fastText against the Random baseline,
we can find that overall, the most improvements
come from low frequency and OOV words. For
words with high and middle frequency, static em-

1775

High Middle Low

—=— Random * fastText -

OOV High Middle Low OOV High Middle Low
MaskLM

OOV High Middle Low OOV

—— LBag —— Hybrid

Figure 4: Performance breakdown of dependency parsing (LAS on development sets, trained with 1k sentences)
on word frequencies. Non-OOV words are evenly divided into the first three bins according to frequency ranking

in (target task) training vocabularies.

beddings provide less or sometimes even no ob-
vious improvements. With pre-trained encoders,
not only do the results on rare and OOV words get
much better, but even high frequent words improve
by a large margin. This suggests that the benefits
of pre-training include not just that each individual
word is known better, which may also be captured
by static embeddings, but also that contextualized
pre-training may be able to identify higher-order
structured patterns.

When comparing the models with pre-trained
encoders, the trends are very similar to the overall
LAS scores. A slightly surprising phenomenon
is that, although our models are trained on much
less data than BERT, the performance gaps are still
relatively consistent across different frequency bins.
This may suggest that even for rare or OOV words,
their contexts can be signals that are strong enough
for syntax prediction.

3.4.2 On Higher-order Matches

A dependency tree is a collection of dependency
edges, which are not individual but interact with
each other, forming higher-order structures. To
investigate how pre-trained encoders help predict-
ing higher-order structures, we specify some frame
patterns and calculate the higher-order matching ac-
curacies. Here, we use “frame” to denote a collec-
tion of dependency edges which form a pre-defined
pattern. Accuracy is calculated by counting how
many times all the dependency edges in the specific
frame are correctly predicted.

We investigate five frame patterns: 1) pred: all
edges connecting a predicate and its core argu-

ment children, 2) mwe: all multi-word expression
(MWE) edges connected to the head word of an
MWE phrase, 3) conj: all edges related to a con-
junction, 4) expl: an expletive edge and its core
argument siblings, 5) acl: an adjectival clause mod-
ifier and all its core argument children. Please refer
to the Appendix for examples and more detail about
the extraction of these higher-order patterns.
Figure 5 shows the results. We can again ob-
serve that static word embeddings improve higher-
order accuracies very limitedly, while pre-trained
encoders give totally different stories. For the
“pred” patterns, the trends are very similar to the
overall LAS results, where LBag is slightly worse
than MaskLLM and Hybrid is better. The interesting
cases are “mwe” and “conj”, where LBag mostly
performs better than MaskLLM. The reason might be
that these patterns are more fixed in aspects of word
order, which may be captured better by ordering
pre-training. For the last two types, the results are
mixed for different languages. Nevertheless, the
ordering pre-trained models can still achieve com-
parable or sometimes better results than Mask[LM.

3.4.3 On Head Errors

Finally, we investigate a special error pattern in
dependency parsing, for which Figure 6 shows an
example. Here, all the predicted edges are wrong,
but there seems to be only one head selection error:
“Epic” is an apposition modifier of “movie”, but the
model picks “Epic” as the head, leading to all other
errors. In constituency trees, an attachment error
may lead to multiple wrong brackets (Kummerfeld
et al., 2012). In contrast, in dependency trees, a

1776

0.8

0.7 1

en-pred en-mwe en-conj en-expl en-acl
0.6
0.5-
fi-pred fi-mwe fi-conj fi-expl fi-acl
N/A
cs-pred cs-mwe cs-conj cs-expl cs-acl

it-pred it-mwe

it-conj

it-acl

it-expl

Il Random

N fastText

N MaskLM

N BERT

Figure 5: Comparisons of higher-order matching accuracies on dependency parsing (on development sets, with 1k
training). There are no results for “fi-expl” since in the Finnish (TDT) Treebank we adopt, “expl” is not used.

obj

det, appos
compoun

see the Flash movie Epic

ompound

de und

obj

Figure 6: An example of head error. Here, the edges
above the tokens are gold ones and the edges below
are predictions. The red edge indicates the back edge,
which is directly reversed in this case.

pure attachment error may influence no other edges,
but head errors may lead to multiple related errors.
In the pattern of head errors, the predicted edge
that forms a back edge in the original gold tree can
usually be the signature. The prediction of a back
edge indicates that a word is wrongly attached to
one of its descendants in the gold tree. In addition
to the wrongly predicted back edge itself, there
must be at least another error, since loops are not
allowed in trees. The example in Figure 6 shows
a special case where the back edge is a directly
reversed one, where the head and the modifier are
reversely predicted. This type of 1-step back edges
usually indicates local head errors, while there can
be back edges involving multiple steps, which usu-
ally suggest more complex structured errors.
Figure 8 shows the results on back edges. Firstly,

AYaNaYaY
ho hi .. hn1 hn

Figure 7: Illustration of multi-step back edge. Here,
the edges above the tokens are gold ones (Notice that
in actual sequence, the tokens do not necessarily appear
in left-to-right order). The red edge below indicates a
n-step back edge for the gold tree.

as the trends in previous analyses, the pre-trained
models obviously predict fewer back edges and
thus make fewer head errors, again suggesting
structural improvements. Moreover, comparing the
1-step back-edge percentages, the pre-trained mod-
els also have higher rates, indicating that their head
errors are more local. Further comparing different
pre-training strategies, we can see that, except for
Finnish, the MaskLM predicts fewer back edges
and makes more local head errors (indicated by
higher 1-step back edge percentages) than LBag.
This suggests that, LM pre-training, which directly
predicts lexical items, may be more sensitive to the
information of head words.

We further investigate errors® that might be re-
lated with head errors. We adopt a relatively simple

SFor simplicity, in this analysis, we ignore dependency
labels and focus on unlabeled errors.

1777

en fi

cs it

2500 3000
2500
2000
1500

1000

500

78.7% 77.4% 86.6% 88.5% 87.2% 84.2%

fastText

0-
82.9% 83.4% 87.7% 84.8% 87.7% 89.9%

Random

16000 -

14000

MaskLM

800

0-
79.0% 77.2% 84.3% 83.2% 85.0% 86.0% 84.4% 83.4% 94.8% 91.4% 93.5% 93.4%

[LBag

Hybrid BERT

Figure 8: Results on back edges (on development sets, with 1k training). The light bars indicate the number of
all back edges, while the darker and shaded parts represent the number of 1-step back edges. The numbers on the
z-axis indicate the percentage of 1-step back edges (which indicate more local errors) among all back edges.

en fi

cs it

17500 -
17500

15000 4
15000

12500 -
3 12500

10000 - 10000

7500+ 7500

5000 5000

2500 - 2500

30.6% 24.4% 22.9% 25.5% 25.1% 25.3%

0-
28.1% 26.0% 22.2% 24.1% 22.7% 23.5%

Random fastText

100000 4

80000 -

60000 -

40000 -

20000 -

MaskLM

6000

5000

4000

3000

2000

1000

22.8%19.4% 15.1% 15.9% 16.2% 17.7%

Hybrid BERT

0-
25.7% 20.9% 18.7% 21.1% 20.0% 20.3%

N LBag

Figure 9: Results on head-error related errors (on development sets, with 1k training). The light bars indicate
the number of total erroneous edges, while the darker and shaded parts represent the number of the ones that are
related with head errors. The numbers on the x-axis indicate the relatedness rates: the percentage of head-error

related erroneous edges among all erroneous edges.

strategy: first identify all back edges, and then in-
clude other erroneous edges that might be related
with any head error. We use the diagram in Figure 7
to illustrate our criterion for relatedness. We mark
three types of erroneous edges as head-error related:
1) the back edge itself (h,, — hg), 2) any wrongly
predicted children of h,, whose gold head should be
one of [hg, h1, ..., hn—_1], 3) any errors for the head
prediction of the tokens [hg, A1, ..., Ap—1]. This
criterion may miss or over-predict related errors,
nevertheless we find it a reasonable approximation.

Figure 9 shows the results. First, as in Figure 8,
the pre-trained models are less influenced by head
errors, again suggesting structural improvements.
Further comparing different pre-training strategies,
generally MaskI.M is less influenced by head er-
rors, as shown by either lower head-error related
error counts or relatedness rates.

4 Conclusion

In this work, we empirically explore an alternative
pre-training strategy for contextualized encoders.
Instead of training variants of language models, we
adopt a local word ordering strategy, which seg-
ments the inputs into local bags of words, together
with order-based word-selection objectives. Eval-
uated on typical structured prediction tasks, we
show the effectiveness of this method. With further
analysis on one typical structured task, we show
that pre-trained encoders can bring improvements
in a structured way. We hope this empirical work
can shed some light and inspire future work on
exploring how pre-trained contextualized encoders
capture language structures.

1778

References

Wasi Ahmad, Zhisong Zhang, Xuezhe Ma, Eduard
Hovy, Kai-Wei Chang, and Nanyun Peng. 2019. On
difficulties of cross-lingual transfer with order differ-
ences: A case study on dependency parsing. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 24402452,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Waleed Ammar, George Mulcaire, Miguel Ballesteros,
Chris Dyer, and Noah A. Smith. 2016. Many lan-
guages, one parser. Transactions of the Association
for Computational Linguistics, 4:431-444.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2978-2988, Florence, Italy.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In ICLR.

Matthew S Dryer. 2007. Word order. Language typol-
ogy and syntactic description, 1:61-131.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Dan Kondratyuk and Milan Straka. 2019. 75 lan-
guages, 1 model: Parsing universal dependencies
universally. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
1JCNLP), pages 2779-2795, Hong Kong, China. As-
sociation for Computational Linguistics.

Artur Kulmizev, Miryam de Lhoneux, Johannes
Gontrum, Elena Fano, and Joakim Nivre. 2019.
Deep contextualized word embeddings in transition-
based and graph-based dependency parsing - a tale
of two parsers revisited. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2755-2768, Hong Kong,
China. Association for Computational Linguistics.

Jonathan K. Kummerfeld, David Hall, James R. Cur-
ran, and Dan Klein. 2012. Parser showdown at the
wall street corral: An empirical investigation of er-
ror types in parser output. In Proceedings of the
2012 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natu-
ral Language Learning, pages 1048—1059, Jeju Is-
land, Korea. Association for Computational Linguis-
tics.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In /CML, pages 282-289.

Yijia Liu, Yue Zhang, Wanxiang Che, and Bing Qin.
2015. Transition-based syntactic linearization. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 113-122, Denver, Colorado. Association for
Computational Linguistics.

Ryan McDonald and Joakim Nivre. 2007. Character-
izing the errors of data-driven dependency parsing
models. In Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 122—-131, Prague,
Czech Republic. Association for Computational Lin-
guistics.

Ryan McDonald and Joakim Nivre. 2011. Analyzing
and integrating dependency parsers. Computational
Linguistics, 37(1):197-230.

Tahira Naseem, Regina Barzilay, and Amir Globerson.
2012. Selective sharing for multilingual dependency
parsing. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 629-637, Jeju Is-
land, Korea. Association for Computational Linguis-
tics.

Joakim Nivre, Mitchell Abrams, Zeljko Agié,
and et al. 2019. Universal dependencies 2.4.
LINDAT/CLARIAH-CZ digital library at the In-
stitute of Formal and Applied Linguistics (UFAL),
Faculty of Mathematics and Physics, Charles
University.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
22272237, New Orleans, Louisiana. Association
for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
Blog, 1(8):9.

1779

https://doi.org/10.18653/v1/N19-1253
https://doi.org/10.18653/v1/N19-1253
https://doi.org/10.18653/v1/N19-1253
https://doi.org/10.1162/tacl_a_00109
https://doi.org/10.1162/tacl_a_00109
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/D19-1277
https://www.aclweb.org/anthology/D12-1096
https://www.aclweb.org/anthology/D12-1096
https://www.aclweb.org/anthology/D12-1096
https://doi.org/10.3115/v1/N15-1012
https://www.aclweb.org/anthology/D07-1013
https://www.aclweb.org/anthology/D07-1013
https://www.aclweb.org/anthology/D07-1013
https://doi.org/10.1162/coli_a_00039
https://doi.org/10.1162/coli_a_00039
https://www.aclweb.org/anthology/P12-1066
https://www.aclweb.org/anthology/P12-1066
http://hdl.handle.net/11234/1-2988
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202

Teemu Ruokolainen, Pekka Kauppinen, Miikka Silfver-
berg, and Krister Lindén. 2019. A finnish news cor-
pus for named entity recognition. arXiv preprint
arXiv:1908.04212.

Allen Schmaltz, Alexander M. Rush, and Stuart
Shieber. 2016. Word ordering without syntax. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
2319-2324, Austin, Texas. Association for Compu-
tational Linguistics.

Magda §evéﬂ<ové, Zdenék Zabokrtsk)'/, and Oldfich
Krtza. 2007. Named entities in czech: Annotating
data and developing NE tagger. In Lecture Notes in
Artificial Intelligence, Proceedings of the 10th Inter-
national Conference on Text, Speech and Dialogue,
Lecture Notes in Computer Science, pages 188—195,
Berlin / Heidelberg. Springer.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 464—468,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Manuela Speranza. 2009. The named entity recogni-
tion task at evalita 2009. In EVALITA 2009.

Oscar Tackstrom, Ryan McDonald, and Joakim Nivre.
2013. Target language adaptation of discrimina-
tive transfer parsers. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1061-1071, Atlanta,
Georgia. Association for Computational Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142-147.

Wei Wang, Bin Bi, Ming Yan, Chen Wu, Jiangnan Xia,
Zuyi Bao, Liwei Peng, and Luo Si. 2020. Structbert:
Incorporating language structures into pre-training
for deep language understanding. In International
Conference on Learning Representations.

Wenhui Wang, Baobao Chang, and Mairgup Mansur.
2018. Improved dependency parsing using im-
plicit word connections learned from unlabeled data.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 2857-2863, Brussels, Belgium. Association
for Computational Linguistics.

Jie Yang, Shuailong Liang, and Yue Zhang. 2018. De-
sign challenges and misconceptions in neural se-
quence labeling. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,

pages 3879-3889, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Xingxing Zhang, Jianpeng Cheng, and Mirella Lapata.
2017. Dependency parsing as head selection. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, pages 665-676,
Valencia, Spain. Association for Computational Lin-
guistics.

Yue Zhang and Stephen Clark. 2015. Discrimina-
tive syntax-based word ordering for text generation.
Computational Linguistics, 41(3):503-538.

Appendices
A Detailed Experiment Settings

In this subsection, we describe the details of our
experiment settings, mainly including datasets and
hyper-parameter settings.

A.1 Datasets

Languages In this work, we explore four lan-
guages from different language family subdivi-
sions: English (Germanic), Finnish (Uralic), Czech
(Slavic) and Italian (Romance). It may be inter-
esting to see how the effects of pre-training are
influenced by specific language characteristics, for
example, the agglutination in Finnish and relatively
free word order in Czech. We would like to include
more languages in future work, especially those in
different language families.

Unlabeled data For pre-training, we use the
unlabeled data collected from the 2018-Fall
Wiki-dump®. We extract raw texts using
WikiExtractor’ and then do sentence-splitting
and tokenization using UDPipe®. Due to the lim-
itation of computational resources, for each lan-
guage, we sample 1M sentences whose length is
between 5 and 80 for the purpose of pre-training.
Our empirical results show that for the basic struc-
tured prediction tasks explored in this work, such
relative small amount of unlabeled data is already
enough to bring obvious improvements.

Vocabularies Except for models that directly use
pre-trained BERT, all models regard words as the
basic inputting and modeling units. Therefore, for
pre-trained encoders, we collect vocabularies from
the unlabeled corpus, filtering out rare words that
appear less than five times. Table 4 summaries

Shttps://dumps.wikimedia.org
"https://github.com/attardi/wikiextractor
8http://ufal.mff.cuni.cz/udpipe

1780

https://doi.org/10.18653/v1/D16-1255
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/N18-2074
https://www.aclweb.org/anthology/N13-1126
https://www.aclweb.org/anthology/N13-1126
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419
https://openreview.net/forum?id=BJgQ4lSFPH
https://openreview.net/forum?id=BJgQ4lSFPH
https://openreview.net/forum?id=BJgQ4lSFPH
https://doi.org/10.18653/v1/D18-1311
https://doi.org/10.18653/v1/D18-1311
https://www.aclweb.org/anthology/C18-1327
https://www.aclweb.org/anthology/C18-1327
https://www.aclweb.org/anthology/C18-1327
https://www.aclweb.org/anthology/E17-1063
https://doi.org/10.1162/COLI_a_00229
https://doi.org/10.1162/COLI_a_00229

Lang NER Parsing/POS

’ Train Dev Test Train Dev Test
en 15.0k/203.6k 3.5k/51.4k 3.7k/46.4k | 12.5k/204.6k 2.0k/25.1k 2.1k/25.1k
fi 13.5k/180.2k 1.0k/13.6k 3.5k/46.4k | 12.2k/162.8k 1.4k/18.3k 1.6k/21.1k
cs 7.2k/160.0k 0.9k/20.0k 0.9k/20.1k 68.5k/1.2m 9.3k/159.3k 10.1k/173.9k
it 10.0k/189.1k 1.2k/23.4k 4.1k/86.4k | 13.1k/276.0k 0.6k/11.9k 0.5k/10.4k

Table 3: Statistics (#Sent./#Token) of the original Parsing/POS and NER datasets. In our experiments, we adopt
the original development and test sets, but sample training sets with different sizes from the original training sets.

Lang. ‘ #Sent. #Token #Vocab OOV%
en 1M 23.6M 103k 2.7%
fi M 14.1M 177k 10.9%
cs IM 19.2M 175k 5.1%
it M 25.3M 128k 2.6%

Table 4: Statistics of the unlabeled Wiki corpus for pre-
training. For each language (Lang.), we sample 1M
sentences (“#Sent.”). “#Token” indicates the number of
tokens (words), “#Vocab” denotes the vocabulary size
after rare words filtering. The final column represents
the out-of-vocabulary (OOV) rate over the 1M corpus.

the related statistics. We adopt word-level inputs
mainly to follow the conventions of the target tasks
explored in this work and to compare with baseline
models without pre-trained encoders. It will be
interesting to explore other input schemes (such as
sub-words as in BERT) in future work, which is
orthogonal to the main focus of this work.

Target tasks We explore three typical structured
prediction tasks: dependency parsing, part-of-
speech (POS) tagging and Named Entity Recog-
nition (NER). For the tagging and parsing tasks,
we utilize annotations from UDv2.4°. Specifically,
we use the following treebanks: “English-EWT”,
“Finnish-TDT”, “Czech-PDT” and “Italian-ISDT”.
For NER, we utilize various datasets, including
CoNLLO03'" (Tjong Kim Sang and De Meulder,
2003) for English, Digitoday!' (Ruokolainen et al.,
2019) for Finnish, Czech Named Entity Corpus'?
(§evéikové et al., 2007) for Czech and EVALITA
20093 (Speranza, 2009) for Italian. We only adopt
simple settings for the NER tasks, specifically, ig-
noring nested annotations for Finnish NER and con-
sidering Supertypes for Czech NER. For it-NER,
we take the first 10k sentences as training set and
the rest 1.2k as development set. Table 3 lists the

°http:/hdl.handle.net/11234/1-2988
Ohttps://www.clips.uantwerpen.be/conll2003/ner/
"https://github.com/mpsilfve/finer-data
Phttp:/fufal.mff.cuni.cz/cnec
Bhitp://www.evalita.it/2009/tasks/entity

demp 300
Embeddings dehar 50
dproj. 512
N layer 6
Encoder dmodel 512
dyy 1024
position-encoding Relative
optimizer Adam
learning-rate 4e-4
PreTrain warmup-steps Sk
total-steps 200k
batch-size 480
POS Enumeration
Decoding Parsing Graph-based(o1)
NER CRF
optimizer Adam
FineTune learning-rate 2e-4
total-epochs 250
batch-size 80

Table 5: Hyper-parameter settings of the model and
training.

statistics of the original datasets.

We mainly follow the default dataset splittings,
but for the training set, we explore three different
training sizes by sampling 1k, 5k and 10k sen-
tences'*. These settings aim at exploring how
pre-trained encoders can improve the structured
learners in middle- and low-resource settings. For
evaluations, POS tagging is evaluated by tagging
accuracies and NER is evaluated by the standard
F1 scores. For dependency parsing, we report first-
level Labeled Attachment Scores (LAS) over all
tokens including punctuations.

A.2 Hyper-parameter Settings
Table 5 lists our main hyper-parameter settings.

Encoder Throughout our experiments, we adopt
Transformer encoders with almost the same archi-
tecture. For the inputting parts of the encoder, we
include representations of words and characters.
Word representations are from a randomly initial-

4Only Czech-NER has less than 10k training sentences,
therefore we take the whole 7k training set for the 10k setting.

1781

pred

root conj
'
i

- N i c
0D~ c
J COP= i

Th;:y are kind and helpful

acl obj acl
det

0
let i obj,
TN nsubj,

the pr(;cess which he opposed

Figure 10: Examples of the higher-order frame patterns.

dotted ones) are not included.

ized word lookup table, while character represen-
tations are from a character-level CNN. Further, a
linear layer is added to project these input features
to the model dimension. Notice that there are no
other input factors, since these are the ones that are
directly available from the unlabeled corpus.

Pre-training We adopt almost identical pre-
training schemes for all pre-training strategies, in-
cluding optimizer, learning rate scheme and batch
sizes. We employ one RTX 2080 Ti GPU for the
pre-training. To fit the GPU memory, we split one
mini-batch into multiple pieces and do gradient ac-
cumulation. The pre-training stage takes around 3
days for the MaskLM, L.Bag and Hybrid strategies,
while the BiLM requires around 5 days.

Decoders For specific target tasks, we specify
corresponding decoders. Since our main focus is
not on decoders, we adopt the standard choices for
these tasks. For dependency parsing, we adopt non-
projective first-order (o1) graph-based decoder. For
POS tagging, we do simple enumeration and select
the maximally scored POS tag for each word. Since
dependency parsing and POS tagging share the
same datasets, we apply simple multi-task learning
and train one joint model for these two tasks. For
NER, we adopt a standard CRF layer and perform
decoding with the Viterbi algorithm.

Fine-tuning For the training or fine-tuning of the
target tasks, we also adopt similar schemes. In ad-
dition, the learning rate is decreased by a decay
rate of 0.75 every 8 epochs when there are no im-
provements on the development set, which is also
utilized for model selection. The training on tar-
get tasks usually takes several hours, depending on

mwe obl
e S |
ase.”” e !

case,” compoya !

o compoung |

from India Oil Building

/

ugh to

"
R Y

¥
It is to make money

The red solid edges are included, while others (black

training sizes.

B Details of Analysis
B.1 Details on Higher-order Matches

We provide extraction details and examples for the
five patterns we explore. We first define several
groupings of dependency relations according to the

UD documentation?:

e PRED={csubj, ccomp, xcomp, advcl, acl,
root}. This set denotes dependency relations
where the modifier is usually a clausal predi-
cate.

e CORE={nsubj, obj, iobj, csubj, ccomp,
xcomp}. This set includes the core arguments
of predicates.

e MWE={fixed, flat, compound}. This set in-
cludes the Multi-Word Expression (MWE) de-
pendency relations.

To extract the specified patterns, we go through
each word w and apply a filter to decide whether
there is a frame which we are looking for. If there is,
then we apply the extractor to obtain all the related
dependency edges, forming the frame that we want
to extract. Table 6 describes the extraction rules
(the filters and extractors) and Figure 10 further
provides some examples.

C Extra Results

C.1 Results on Development Sets

Figure 11 shows the results on development sets,
whose patterns are similar to those of the test sets
as shown in the main contents.

"Shttps://universaldependencies.org/u/dep/index.html

1782

Pattern Filter Extractor

pred lambda w: w.label in PRED [c for ¢ in w.children if c.label in CORE]

mwe lambda w: any(c.label in MWE for ¢ in w.children) [c for c in w.children if c.label in MWE]

conj lambda w: any(c.label==‘conj’ for ¢ in w.children) [c for c in w.children if c.label=="conj’]+[g for g in
w.grandchildren if g.label=="cc’]

expl lambda w: any(c.label=="expl’ for ¢ in w.children) [c for ¢ in w.children if c.label=="expl’]+[c for ¢ in
w.children if c.label in CORE]

acl lambda w: w.label=="acl’

[w]+[c for ¢ in w.children if c.label in CORE]

Table 6: Filter and extractor functions for the frame pattern extraction (in Python-styled pseudocode). We go
through each word w and apply the filter. If the filter returns True, then the extractor is applied to extract all related

dependency edges, forming the desired frame.

en-Parsing fi-Parsing

cs-Parsing it-Parsing

90

Sk 1k

fi-Tagging

5k 1k 5k 10k

cs-Tagging

it-Tagging

Accuracy%
)
N E

\©
(=]

(>
=]

90
85 85
80 80
80
— 857
= 75 " ”
80 70 70{
70
75 65 65
65
70 60 60
1k S5k 10k 1k S5k 10k 1k 5k 7k 1k 5k 10k
—=— Random = fastText --+-- MaskLM —— LBag —— Hybrid —=<—= BERT

Figure 11: Development results for dependency parsing (LAS), POS tagging (Accuracy%) and NER (F1 score).

1783

