
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1746–1757
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

1746

Will This Idea Spread Beyond Academia? Understanding Knowledge
Transfer of Scientific Concepts across Text Corpora

Hancheng Cao∗

Stanford University

hanchcao@stanford.edu

Mengjie Cheng∗

Harvard Business School

macheng@hbs.edu

Zhepeng Cen∗

Carnegie Mellon University

zcen@andrew.cmu.edu

Daniel A. McFarland

Stanford University

dmcfarla@stanford.edu

Xiang Ren

University of Southern California

xiangren@usc.edu

Abstract

What kind of basic research ideas are more

likely to get applied in practice? There is a

long line of research investigating patterns of

knowledge transfer, but it generally focuses on

documents as the unit of analysis and follow

their transfer into practice for a specific sci-

entific domain. Here we study translational

research at the level of scientific concepts for

all scientific fields. We do this through text

mining and predictive modeling using three

corpora: 38.6 million paper abstracts, 4 mil-

lion patent documents, and 0.28 million clini-

cal trials. We extract scientific concepts (i.e.,

phrases) from corpora as instantiations of “re-

search ideas", create concept-level features

as motivated by literature, and then follow

the trajectories of over 450,000 new concepts

(emerged from 1995-2014) to identify factors

that lead only a small proportion of these ideas

to be used in inventions and drug trials. Re-

sults from our analysis suggest several mech-

anisms that distinguish which scientific con-

cept will be adopted in practice, and which

will not. We also demonstrate that our de-

rived features can be used to explain and pre-

dict knowledge transfer with high accuracy.

Our work provides greater understanding of

knowledge transfer for researchers, practition-

ers, and government agencies interested in en-

couraging translational research.

1 Introduction

Science generates a myriad of new ideas, only

some of which find value in practical uses (Backer,

1991; Lane and Bertuzzi, 2011). Large government

agencies (e.g., NSF, NIH) pour billions of dollars

into basic research in the hopes that it will span

the research-practice divide so as to generate pri-

vate sector advances in technologies (Narin and

∗Equal contribution

Figure 1: An illustration of scientific concept’s “knowl-
edge transfer" from basic research to practice use: we
analyze individual concept’s time-varying features (e.g., pop-
ularity) and relative positions with other concepts (i.e., co-
occurrence) to understand the key mechanisms behind knowl-
edge transfer, using Web of Science research papers, USPTO
patents and clinical trial documents.

Noma, 1985), social policies (McDonald and Mair,

2010), and pharmaceuticals (Berwick, 2003). To

this end, these agencies increasingly seek to nurture

“translational research" that succeeds at extending,

bridging and transforming basic research so it finds

greater applied value (Li et al., 2017). Surround-

ing this effort has arisen a line of research that

tries to identify when, where, and how academic

research influences science and technological in-

vention (Backer, 1991; Li et al., 2017).

However, prior research efforts are limited in

their ability to understand and facilitate the trans-

lation of research ideas. This is partially due to

a shortage of data, a biased focus on successful

examples, and specialized modeling paradigms. In

practice, only a small proportion of knowledge

outputs are successfully translated into inventive

outputs (∼ 2.7% concepts from WoS to patent,

and ∼ 11.3% concepts from WoS to clinical trials,

according to our data analysis). Previous studies

conduct post-hoc analyses of successful scientific-

technological linkages, but are unable to explain

why the majority of scientific innovations do not
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Figure 2: Concepts’ knowledge transfer over time

transfer into technological inventions. Additionally,

prior work mostly look at document-level linkages

across research and applied domains, i.e., citations

from patents into research papers or shared inven-

tors across them, rather than diving into the docu-

ment content where ideas are discussed (Narin and

Noma, 1985; Ahmadpoor and Jones, 2017). Docu-

ments entail many ideas, and linkages across them

loosely capture which intellectual innovation is in

focus and being transferred.

By contrast, we conceptualize knowledge trans-

fer in terms of scientific concepts, rather than doc-

uments associated to particular desirable outcomes,

and demonstrate the importance of our derived fea-

tures in knowledge transfer through machine learn-

ing model in a large-scale original dataset.

In this paper, we focus on studying patterns be-

hind knowledge transfer from academia to research.

We use “knowledge transfer from academia to re-

search” in our study to mean a “concept’s transfer

from research papers to patent documents/clinical

trials”, or a concept that first appear in academia

later get used a non-trivial frequency (decided by a

pre-defined threshold) in practical outlets (patents,

clinical trials). 1 In scientific writing, a scientific

concept is a term or set of terms that have semanti-

cally coherent usage and reflect scientific entities

– e.g., curricula, tools, programs, ideas, theories,

substances, methods, processes, and propositions,

which are argued to be the basic units of scientific

discovery and advance (Toulmin). We use the titles

and abstracts of 38.6 million academic publications

from the Web of Science (WoS) to identify 0.45

million new scientific concepts emerging between

1995 to 2014 through state of the art phrase mining

techniques (AutoPhrase), and follow their trajec-

tories in 4 million patent documents of the United

States Patent and Trademark Office (USPTO), and

0.28 million clinical trials from U.S. National Li-

brary of Medicine.

In our analysis, we compare the properties of

1We use knowledge transfer, concept transfer and idea
transfer interchangeably throughout the paper

Table 1: Examples of extracted scientific concepts

Transferred Concepts Non-transferred Concepts

Internet, world wide web, ethnographic exploration,

interactive visualization, web server, immersive virtual reality,

gpu, recombinant protein production, european maize,

hcci engine, cloud service, institutional demand,

artificial magnetic conductor automatic imitation,

multifunctional enzym, network reorganization,

tissue remodeling, human capital,

single photon detector amercian theatre

new scientific concepts that successfully transfer

into patents with those that did not. We find that

(a) the intrinsic properties of ideas and their tempo-

ral behavior, and (b) relative position of the ideas

are the two mechanisms that determine whether an

idea could transfer successfully. In particular, we

find new engineering-focused scientific concepts

situated in emotionally positive contexts are more

likely to transfer than other concepts. Furthermore,

increased scientific hype and adoption across sci-

entists, as well as usage in interdisciplinary venues

over time, are early signs of impending knowledge

transfer into technological inventions. Finally, we

find that new concepts positioned close to concepts

that already transferred into patents are far more

likely to transfer than their counterparts. Based on

the derived features, we further built model to pre-

dict the likelihood of knowledge transfer from pa-

pers to patents/clinical trials at individual concept

level, and demonstrated our derived feature can

achieve great performance, indicating that our pro-

posed features can explain majority of the knowl-

edge transfer cases.

Contributions Our main contributions are summa-

rized as follows: (1) To the best of our knowledge,

we present the first ever research that aims at under-

standing knowledge transfer at a large scale, using

multiple corpora. (2) We are the first to leverage

text mining techniques to understand transfer on

scientific concept level, rather than document level.

(3) We systematically analyzed the differences be-

tween transferable and non-transferable concepts,

and identified the key mechanisms behind knowl-

edge transfer. We showed our derived insights can

help explain and predict knowledge transfer with

high accuracy.

2 Data Preparation and Processing

In this section we introduce the dataset used in our

study (Sec. 2.1), and present the concept extraction

process (Sec. 2.2).
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2.1 Collection of Text Corpora

Research Papers from WoS. We used scientific

concepts extracted from Web of Science (WoS)

as representation of knowledge in academia. We

use the complete corpus from WoS (1900-2017)

totaling 38,578,016 papers.

Patent Documents from USPTO. We used

concepts extracted from 4,721,590 patents in

the United States Patent and Trademark Office

(USPTO) from 1976 to 2014 to represent general

knowledge in the application domain.

Clinical Trials. We used concepts extracted from

279,195 clinical trials from U.S. National Library

of Medicine2 (1900 to 2018) to represent bio &

health sciences knowledge used in practice.

More details of the leveraged datasets are fur-

ther elaborated in Appendix A. Note that our study

inevitably suffer from data bias. For instance, not

all practitioners will patent their idea, or file clini-

cal trials, and that some clinical trails and patents

are unused, thus there will be some false positives

and negatives of ‘transferred’ labels through our

approach. Yet so far patent and clinical trial have

been demonstrated to be the best proxy to study

translational science from research to practice (Ah-

madpoor and Jones, 2017). Moreover, we have

tried our best to mitigate such bias by investigating

transfer patterns in both patent-heavy and patent-

light fields, where we found very similar patterns

emerge.

2.2 Scientific Concept Extraction

Using titles and abstracts of articles, patents and

clinical trials, we employ phrase detection tech-

nique AutoPhrase (Shang et al., 2018), to identify

key concepts in the two corpora and trace their

emergence and transfer across domains over time.

Phrase detection identifies 1,471,168 concepts for

research papers, 316,442 concepts for patents, and

112,389 concepts for clinical trials. Some samples

of transferred concepts and non-transferred con-

cepts extracted from WoS and USPTO by phrase

detection are shown in Table. 1. We observe that

phrase detection results in high-quality concepts

(92% are labelled as high quality through our eval-

uations) that are suitable to investigate knowledge

transfer across domains. Details of the phrase de-

tection techniques, cleaning and evaluations are

further discussed in Appendix B.

2Retrieved from clinicaltrials.gov

New Concept Identification. The focus of this

study is on new concepts and their careers. How-

ever, our sample of 1.5 million distinct concepts

occur at any time in the corpus, some of which

emerged long ago and others more recent. To avoid

left-censoring issue (certain concepts appear before

the start time of the recorded data thus we do not

fully observe their behaviors) and identify ‘real’

new concepts, we aggregate (or “burn in”) the set

of concepts over time, and count the number of

new concepts that arrive each year. Early papers

(starting 1900) identify many new concepts, but

this quickly decelerates by around 1995 and then

assumes a linear growth in vocabulary afterwards

(see Fig. 2(a)). To identify that point, we aggregate

the set of concepts every year with prior years until

the rate of new concepts’ introduction is approx-

imately linear and stable. The point occurs after

1995, when 0.45 million scientific concepts are left.

Then we follow knowledge transfer via these new

scientific concepts, and find only ∼2.7% of all con-

cepts get transferred to patent, and only ∼11.3%

of bio & health concepts get transferred to clinical

trials across years. The number of transferred con-

cepts each year from WoS to USPTO is illustrated

in Fig. 2(b).

3 Feature Creation and Analysis

Based on the concepts extracted from research pa-

pers, patent and clinical trial documents, we first

create concept level features as motivated by prior

literature on knowledge diffusion, and present a

large-scale data analysis on transferred and non-

transferred concepts to better understand properties

facilitating the knowledge transfer process. Here

we present transfer patterns from research paper to

patent and omit clinical trial due to page limit 3.

3.1 Intrinsic Properties of Concepts

Motivated by previous works on knowledge dif-

fusion and transfer, we extracted intrinsic concept

features that would most likely facilitate a scientific

idea’s transfer into technological inventions, which

can be classified into four categories: 1) hype fea-

tures (Latour, 1987; Rossiter, 1993), 2) bridge posi-

tioning features (Shi et al., 2010; Kim et al., 2017),

3) ideational conditions (Berger and Heath, 2005),

and 4) technological resonance (Narin and Noma,

3We find very similar transfer patterns emerge from re-
search paper to clinical trial.
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1985)4. The four sets of features represent the char-

acteristic of individual concept from diverse angles,

and as we will show signify the differences between

transferred and non-transferred concepts, both in

mean value (Appendix E) and temporal behavior.

To illustrate concepts’ temporal behavior over

time, we plot the feature curves of transferred and

non-transferred concepts over concept age. Details

could be found in Figs. 3-8.

Hype. This group of features draws on prior work

concerning concept hype (Latour, 1987; Acharya

et al., 2014; Larivière et al., 2014). We include two

features: the adopter size using the concept, and the

degree to which authors repeatedly use the concept.

We measure adopter size as the total number of

authors who employ a concept in a particular year,

and author repeated usage as the total number of

previous authors continuing to use the concept.

(a) Adopter size (b) Author repeated usage

Figure 3: Hype features.

We found that transferred concepts generally

demonstrate higher numbers of adopters and re-

peated usage. Furthermore, transferred concepts

attract adopters at a faster rate than non-transferred

concepts. We also found that transferred concepts

are repeatedly used much more often by the pre-

vious authors when controlling for concept age.

What’s more, we observe an increasing gap with

regard to ‘hype’ features between transferred and

non-transferred concepts over time, possibly due to

the preferential attachment effect (Newman, 2001).

Bridge Positioning. This group of features iden-

tify the disciplinary placement of concepts. Pre-

vious works argue that knowledge transfer is fa-

cilitated when ideas are placed at the boundary

of fields and in fields especially relevant to tech-

nological invention ((Shi et al., 2010)). Here we

include two features: discipline diversity and en-

gineering relation in this group. Discipline diver-

sity is computed as a concept’s average entropy

across NRC discipline subject codes (sociology,

math, economics, etc.), and engineering relation is

4While these features are not exhaustive, to the best of
our knowledge they are the key factors most salient to the
knowledge diffusion as discussed in literature

computed as the proportion of engineering fields

among all the fields using the concept.

We found transferred concepts are more likely to

be used in interdisciplinary and engineering venues.

Moreover, transferred concepts gained greater inter-

disciplinary attention over time compared to non-

transferred concepts, as shown in Fig. 4. The

finding is consistent with the assumption that trans-

ferred concepts are likely to achieve a more diverse

audience than non-transferred concepts. Engineer-

ing focused concepts also achieved a higher knowl-

edge transfer rate, which supports our hypothesis

that knowledge transfer is facilitated when ideas

are placed at the boundary of fields especially rel-

evant to technological invention like engineering

(e.g. mechanical engineering). Once again, we

observed the difference of ‘bridge positioning’ fea-

ture values between transferred and non-transferred

concepts increase over time.

(a) Discipline diversity (b) Engineering Focus

Figure 4: Bridge positioning features.

Ideational Conditions. This group of features rep-

resents the semantic context and expression of a

concept. How the concept is related to other con-

cepts and the style with which the concept is ex-

pressed can both influence the diffusion and trans-

fer process (Hamilton et al., 2016). Here we select

emotionality, and accessibility in this group, and

calculated them through LIWC and Dale Chall met-

ric (details in Appendix C).

We found transferred concepts are embedded in

more emotional context, and described in more dif-

ficult language, compared to non-transferred coun-

terparts. In a similar way, we plot ideational con-

dition features over time for transferred concepts

and non-transferred concepts in Fig. 5. We found

that transferred concepts were consistently placed

in increasingly positive contexts and conveyed in

more difficult language over time, compared to non-

transferred concepts, although the accessibility gap

decreases over time.
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(a) Journal Linkage (b) University-Industry Rela-
tionship

Figure 6: Science technology linkage.

(a) Emotionality (b) Accessibility

Figure 5: Ideational conditions features.

Technological Resonance. This group of features

quantifies the extent to which a concept is estab-

lished within an environment conducive to link

scientific publications with patents and other out-

comes (Narin and Noma, 1985; Tijssen, 2001).

We measure this as journal linkage and university-

industry relationship in our study. journal linkage

is computed as the percentage of journals where the

concept is situated that have been cited by patents

before. university-industry relationship is calcu-

lated as the proportion of industry-affiliated authors

out of all the authors employing the term each year.

Should a scientific concept be in a high bridging

space like these, they will more likely transfer.

Transferred concepts are more likely to be men-

tioned in journals that have been cited by patents,

and this relationship strengthens over time. We

also find that if a concept is associated with more

industry-affiliated authors, the concept has a higher

potential to transfer. While the industry-affiliate

author percentage between transferred and non-

transferred concepts remain relatively stable, the

gap between them with regard to journal linkage

gets greater over time.

3.2 Relative Position in Concept

Co-occurrence Graph

In addition to the above features, we investigate the

same data with a relational approach (Hofstra et al.,

2019). Intuitively, how a concept get positioned/co-

used with other concepts may be associated with

knowledge transfer.

As a motivating example, we plot the local co-

occurrence network of concept search engine in

Fig. 7. The central grey circle is search en-
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Figure 7: Illustration of the dynamic graphs that capture
interactions between search engine and its co-occurrence
concepts. The orange circles denote transferred concepts
while the blue denotes non-transferred ones; the circle size
represents the node degree.
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Figure 8: Graph features.

gine, and the orange nodes denote the transferred

neighbor concepts while the blue denotes the non-

transferred one. Search engine first emerged in

WoS in 1992 and entered USPTO in 1998. Coinci-

dentally, the percentage of its transferred neighbors

increased rapidly right before 1998, which indi-

cates the neighboring concepts that get co-used

with a concept may embed useful signals that ex-

plain concept transfer. The consistency between

co-occurrence network and transfer status is also

common in other concepts.

To facilitate analysis, we construct a dynamic

graph G for concept co-occurrence. Each node in

graph denotes a concept which has occurred in the

corpus. Each edge between two nodes indicates the

two concepts co-occur in at least one document in

the corpus, and we define the edge weight as the

number of documents the two concepts co-occur.

We sort all documents by year and construct a graph

at each time-stamp, then we will get a set of graphs

{G} = {G(1), · · · ,G(t)} as dynamic concept co-

occurrence graph. This set of graphs reflects the

dynamic succession of concepts’ neighbors and

provides us with extra temporal information on lo-

cal graph structures. Based on dynamic concept

co-occurrence network, we derived two graph fea-

tures: weighted degree and weighted percentage of

transferred neighbors as specified in Appendix D.

The curves of the two features over time are

shown in Fig. 8(a) and Fig. 8(b). We find that

transferred concepts indeeed have higher weighted

degrees and weighted percentages compared to
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prediction
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3 training 
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cutoff year
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history length

Input history data: concept 

features. Exclude transferred 

concepts.

Label: positive if concept 

transfers in this interval 

and negative else. 

Figure 9: Illustration of the concept’s knowledge trans-
fer prediction task and the partition of training/test sets.
The green lines denote historical input while the red lines
denote prediction window. The prediction intervals of training
and test sets should not overlap.

non-transferred ones, which indicates the impor-

tance of utilizing concept co-occurrence for knowl-

edge transfer prediction.

Field Comparison & Feature Correlation We

further carried out analysis on feature correlation,

and comparison across fields, which is discussed

in detail in Appendix F and Appendix G.

Summary. Results of our data analysis support

the conclusion that knowledge transfer is not by

chance but follows specific patterns. Whether a

concept will transfer from research to practice in

the immediate future depends largely on their (a)

individual properties over time, and (b) relative

positions with respect to other concepts.

4 Predictive Analysis of Features

So far we have systematically analyzed the poten-

tial factors that reflect the process of knowledge

transfer from research to practice. But how well

can these features explain and predict knowledge

transfer in practice? In this section, we seek to shed

light on this question through predictive analysis.

4.1 Prediction Task Formulation

Will a scientific concept transfer from academic

papers to patent documents in the next X years?

Here we consider the predictive task which aims to

predict concept transfer status given all observed

historical data. As there can be only two potential

outcomes — either the concept transfers or not —

the proposed prediction task is essentially a binary

classification problem. We label a concept as trans-

ferred if it first originates in research papers and

later get used at least 5 times in practical outlets

(patents, clinical trials) within X years after the

concept’s birth in research papers.

We denote all N concepts’ time-series attributes

at one particular time-stamp as X ∈ RN×Nx ,

where Nx is the dimension of attributes. As shown

in Fig. 9, the goal of the transfer prediction prob-

lem is to construct a function f(·) mapping his-

torical time-series attributes to the future transfer

probability of concept,

f :
[(

x
(t−k)
i

)

, · · · ,
(

x
(t−1)
i

)]

→ P
(

y
(t)
i = 1

∣

∣

∣ ·
)

where xi = Xi,: denotes the attribute vector of

concept i, P
(

y
(t)
i

∣

∣

∣ ·
)

is the conditional probability

and k is input history length. yi denotes transfer

status of concept i in next T years, i.e., the ground

truth label of y
(t)
i is 1 if it transfers in t ∼ t+T −1

else 0, and T denotes prediction window length.

Particularly, we note t as cutoff year and our model

inputs the attributes previous to this time-stamp and

predicts future transfer probability. For simplicity,

we denote P
(

y
(t)
i = 1

∣

∣

∣ ·
)

as p
(t)
i .

Accordingly, if the true transfer status is y
(t)
i , the

loss function for cutoff year t is

L = −
∑

i

[

y
(t)
i log p

(t)
i +

(

1− y
(t)
i

)

log
(

1− p
(t)
i

)]

4.2 Prediction Models

Feature based Model. We use logistic regression

(LR) as an interpretable model. To better validate

our finding, we also run a mixed effects logistic re-

gression detailed in Appendix I, a form of General-

ized Linear Mixed Model (GLMM), to help explain

variance both within-concept and across-concept.

The results from the mixed effects logistic regres-

sion are nearly identical with our findings from the

vanilla logistic regression, except for slight changes

in the magnitude of coefficients, so we only report

performance of LR in our analysis.

Deep Sequence Model. To model a concept’s tem-

poral features, i.e. time-series attributes, we fur-

ther propose RNN sequence models. According

to Sec.3, some time-series features are strongly

related to potential transfer; therefore, we adopt

Recurrent Neural Network (RNN) models (e.g.,

LSTM and GRU) which are built to capture tempo-

ral dependencies (Details in Appendix H).

5 Experiments

Experiment Set-up. We apply Z-score normaliza-

tion on time-series attributes and divide dataset into

training/test sets as Fig. 9 shows. Given test cut-

off year t, we first ensure the prediction intervals

(red line in Fig. 9) of training and test set have

no overlap to avoid data leakage, and then use the

latest three cutoff years as train cutoff years. For
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Table 2: Performances (mean AUC) of next-3-year trans-
fer prediction for cutoff year 2008 from Web of Science to
patent, and from Web of Science (Biology & Health Sci-
ences papers) to clinical trial. All results are generated by
3-run experiments.

Patent Clinical Trial

Method / History length 3 years 5 years 3 years 5 years

LR w. graph features 0.792 0.792 0.656 0.661

LR w. all features 0.794 0.800 0.675 0.677

RNN w. graph features 0.793 0.797 0.706 0.726

RNN w. all features 0.803 0.809 0.715 0.734

instance, if test cutoff year is 2008 and prediction

window is 5 years long, the latest training predic-

tion interval should be 2003∼2007 and thus we

use 2001, 2002, 2003 as training cutoff years. As

concept transfer status is irreversible, we exclude

all transferred concepts from test set but still use

them to train.

Details of model training and hyperparameter

settings are discussed in Appendix J. Here we pri-

marily report experimental results on knowledge

transfer prediction from WoS to USPTO, while

using clinical trial as a robustness check.

Evaluation Metric. We adopt area-under-curve

(AUC) as evaluation metric, which is not affected

by data imbalance in test set.

5.1 Results

We first compared the performances of all afore-

mentioned models for cutoff year 2008 on datasets:

from WoS to patent, and from WoS bio & health

science papers to clinical trials5. For each cutoff

year, we ran two sets of experiments with train-

ing history lengths of 3 and 5 years and repeated

3 times for each experiment. The performances

(mean AUC) are summarized in Table. 2.

Patent vs. Clinical Trial As a robustness check,

we tested our model on both knowledge transfer

from WoS to patent, and to clinical trial. We ob-

tained consistent main attribute importance results

based upon clinical trial data.

As can be observed from Table. 2, our derived

features achieve good result, i.e. AUC 0.80, in pre-

dicting knowledge transfer, demonstrating knowl-

edge transfer can be largely explained by our pro-

posed mechanisms.

Study of Feature Importance. In Fig. 10, we

further plot the standardized coefficients of each

temporal feature from the logistic regression to

understand how a specific attribute contributes to

5Note that for knowledge transfer to clinical trial, we ex-
cluded bridge positioning features since we focused on bio &
health science only.

adopter size
author repeated usage

discipline diversity
engineering focus

emotionality
accessibility

journal linkage
university-industry relationship

weighted degree
weighted pct of transferred neighbors

varnam
e

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 10: Feature Importance Study

the knowledge transfer. We observed that author

repeated usage, adopter size, and weighted graph

degree are the three most important factors in influ-

encing knowledge transfer.

Next, we studied feature importance in our pro-

posed models, where we ran both models with dif-

ferent sets of features on knowledge transfer from

WoS to patent. The result is summarized in Ta-

ble. 3. As reflected by experiment results with

RNN model, graph features achieve best prediction

results compared to other feature sets, followed

by “bridge positioning" features, “ideational con-

ditions”, and “hype” features, suggesting that the

relative position position of the concept in the se-

mantics network is the single most useful feature

set that explains concept transfer.

Study on Field Difference We studied the predic-

tion performance of the proposed model in differ-

ent fields. We partitioned the concepts used in

Web of Science based on their field, trained and

tested models separately using 5-year historical

data as training inputs with train cutoff year 2003

and tested cutoff year 2008 for next 3-year pre-

diction. We observed that it is easiest to predict

knowledge transfer from academia to practice in

humanity (AUC 0.973), followed by physical &

math science (AUC 0.791), bio & health science

(AUC 0.783), engineering (AUC 0.782), social sci-

ence (AUC 0.706) and agriculture (AUC 0.633),

which indicates our proposed mechanism can ex-

plain knowledge transfer quite well in most fields

other than agriculture.

5.2 Sensitivity Analysis

Finally, we tested our proposed models under dif-

ferent settings on WoS to patent. We investigated

whether our proposed transfer model is influenced

as a result of 1) varying length of historical obser-

vations, 2) varying prediction time window, and 3)

varying cutoff year.
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Table 3: Performance with different feature groups.

Method AUC

LR w. “hype" features 0.629

LR w. “bridge positioning" features 0.681

LR w. “ideational conditions" features 0.662

LR w. “sci-tech linkage" features 0.670

LR w. graph features 0.792

LR w. all features 0.800

RNN w. “hype" features 0.641

RNN w. “bridge positioning" features 0.708

RNN w. “ideational conditions" features 0.686

RNN w. “sci-tech linkage" features 0.676

RNN w. graph features 0.797

RNN w. all features 0.809

1 2 3 5 7
History data length / year(s)

0.65

0.70

0.75

0.80

0.85

0.90

AU
C

0.733

0.771

0.794 0.800
0.810

0.730

0.781

0.806 0.809 0.817

LR w. all features
RNN w. all features

Figure 11: Performances of next-3-year knowledge
transfer prediction with cutoff year 2008. We use differ-
ent length of historical data as training data.

1. Length of Observation History. Fig. 11

demonstrates the effects of historical observation

length on performance, where we selected 1 year,

2 years, 3 years, 5 years and 7 years of observa-

tion before cutoff year 2008 as training sets. We

found that the longer the observation data, the bet-

ter prediction result we will get for the transfer

prediction, which can be explained by the fact that

longer observation better captures knowledge trans-

fer patterns. We also note that performance starts

to plateau when observation length gets larger, in-

dicating that longer training sets only provide lim-

ited additional signal. All this indicates knowledge

transfer is most influenced by behavior of concepts

in the recent few years.

2. Length of Prediction Time Window. Fig. 12

further illustrates the knowledge transfer predic-

tion performance with prediction window of 1 year,

3 years and 5 years, representing the case when

predicting whether a concept will transfer in next

1 year, 3 years or 5 years, respectively. To com-

pare them fairly, we fix both training and testing

cutoff years to keep time interval from training

set to test set unchanged, which is different from

the setting in previous experiments. As can be ob-

served, prediction performance is consistently best

when prediction window is 1 year, indicating the

increasing difficulty in capturing long-term tempo-

1 3 5
Prediction window length / year(s)

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

AU
C

0.800 0.801

0.770

0.813 0.808

0.779

LR w. all features
RNN w. all features

Figure 12: Performances under different lengths of pre-
diction time windows. 5-year historical data was used for
training with train cutoff year 2003 and test cutoff year 2008.

ral pattern of knowledge transfer of our proposed

mechanisms.

3. Cutoff Year. We also tested our model with

different cutoff years (i.e., 2008, 2009 and 2010),

representing knowledge transfer prediction with

different training and testing sets. As illustrated

by Fig. 13, Our model achieves consistent results,

which further verifies the generalizability of our

proposed knowledge transfer mechanism.

6 Related Work

Knowledge Diffusion and Transfer. Extensive

studies have been dedicated to study the diffusion

of knowledge (Kuhn, 1962; Rogers Everett, 1995;

Hallett et al., 2019), and the transfer of knowledge

from science to more applicable domains like tech-

nology (Narin and Noma, 1985; Tijssen, 2001).

The majority of these studies focus on identifying

contributing factors to knowledge diffusion and

transfer (Rossiter, 1993; Azoulay et al., 2010; Shi

et al., 2010; Kim et al., 2017). However, this line

of work falls short in that (a) they focus primarily

on successful / post-hoc knowledge diffusion and

transfer, and little comparison of successful with

unsuccessful transfer are presented, and (b) poorly

specify what idea is being transferred because it

focuses entirely at the document / invention level.

In contrast, we contribute by empirically investi-

gating properties of knowledge transfer through

large-scale data analysis at the concept-level by us-

ing text mining approaches, through which we not

only verified existing findings, but also revealed

the significance of knowledge co-occurrence and

ideational context in shaping knowledge transfer.

Temporal Sequence Modelling. As one funda-

mental task in behavior modelling and NLP, numer-

ous techniques for modelling and predicting tempo-

ral sequence have been proposed (Kurashima et al.,

2018; Pierson et al., 2018). In recent years, leverag-

ing recurrent neural network (RNN) (Mikolov et al.,

2010) and its variants (e.g. LSTM, GRU) (Chung
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2008 2009 2010
cutoff year

0.76

0.78

0.80

0.82

0.84

AU
C 0.800 0.801 0.802

0.809 0.808 0.811

LR w. all features
RNN w. all features

Figure 13: Performances of next-3-year transfer predic-
tion under different cutoff years. We use 5-year historical
data as training inputs.

et al., 2014) for sequence modelling has been es-

pecially popular due to the structure’s expressive

power of temporal dynamics, and has been widely

used in time series modelling (Lai et al., 2018).

7 Conclusion

In this paper, we systematically studied the process

and properties of knowledge transfer from research

to practice. Specifically, we used a sample of 38.6

million research papers, 4 million patents and 280

thousand clinical trials, where we leveraged Au-

toPhrase to extract concepts from text and focus

on the applicable career of nearly 450,000 new

scientific concepts that emerged from 1995-2014.

Through extensive analysis, we found that ‘trans-

ferable’ ideas distinguish themselves from ‘non-

transferable’ ideas by their (a) intrinsic properties

and their temporal behavior, and (b) their relative

position to other concepts. Through predictive anal-

ysis, we showed our proposed features can explain

majority of transfer cases. Our research not only

provides significant implications for researchers,

practitioners, and government agencies as a whole,

but also introduces a novel research question of

real world impact for computer scientists.
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A Details of Corpora Data

Research Papers from WoS. The corpus covers

both STEM - bio & health sciences (16,252,065

papers), physical & math sciences (8,390,777 pa-

pers), engineering (5,000,172 papers) and agricul-

ture (2,568,702 papers) and non-STEM subjects

- humanity (3,219,403 papers) and social science

(3,146,897 papers). The WoS dataset also includes

meta-data for each paper, i.e., author name, in-

stitution, subjects, publication year and citations,

which help construct measures concerning different

knowledge transfer mechanisms.

Patent Documents from USPTO. We include

4,721,590 granted patents from the main USPTO

corpus (1976-2014) covering both STEM (science,

technology, engineering and mathematics) and non-

STEM subjects. Furthermore, the USPTO dataset

also includes meta-data for each patent, i.e., in-

ventor name, institution, award year and citations,

which help construct several science-technology

linkage measures in the knowledge transfer pro-

cess.

Clinical Trials from U.S. National Library of

Medicine. The clinical trial dataset includes

279,195 government registered clinical trials rang-

ing from 1900 to 2018. The corpus include the

clinical trial title, their brief summary.

B Phrase Detection Techniques, and

Evaluations

The phrase detection technique we adopted is

AutoPhrase (Shang et al., 2018), a widely-used

method that extracts frequent and meaningful

phrases through weak supervision. AutoPhrase first

extracts single-word and multi-word expressions

(i.e. phrases) from the text corpus as candidate

concepts, and then applies salient concept selection

functions to pick the most representative concepts

for each document. Given a word sequence (e.g., a

sentence in an abstract), phrase segmentation can

partition the word sequence into non-overlapping

segments, each representing a cohesive semantic

unit as illustrated in the first step in. We used

default parameters as suggested by (Shang et al.,

2018) in our study.

We further conducted data cleaning on the out-

put of AutoPhrase to ensure the quality of the ana-

lyzed concepts. Specifically, we filtered out general

phrases used for scientific writing (e.g. ’signifi-

cantly important’) and publisher name (e.g., ’Else-

vier’).

To quantitatively evaluate AutoPhrase for con-

cept extraction, we randomly sampled 200 outputs

and asked three experts to manually label whether

they are good-quality concepts or not, where 184

(92%) are labelled as good-quality by all three ex-

perts.

C Calculations of Emotionality and

Accessibility

Emotionality is computed as the percentage of

words that were classified as either positive or neg-

ative where a concept is used. The number of posi-

tive and negative words in each article is counted by

the Linguistic Inquiry and Word Count computer

program (LIWC), which adopts a list of words clas-

sified as positive or negative by human readers

beforehand (Pennebaker et al., 2015). We quan-

tify accessibility through a variation of Dale Chall

readability (Powers et al., 1958) by substituting

the ‘easy term list’ with college student vocabulary.

This widely used index variable essentially mea-

sures the difficulty or appropriateness of the writ-

ing for each article. We then weighted the average

Dale Chall readability score of all the documents

associated with a concept.

D Calculations of Graph Features

Given co-occurrence graph G = {V, E , s,W} de-

fined in subsection 3.2, the weighted degree di and

weighted percentage of transferred neighbors pi
are calculated as follows.

di =
∑

j∈Ni

Wji; pi =

∑

j∈Ni,sj=1Wji

di
.

Different from unweighted features, weighted de-

gree and weighted percentage use co-occurrence

weights to stress the influence of high-frequency

correlations. The edge weights is necessary espe-

cially when central concept co-occurs with a large

amount of non-transferred concepts.

E Characteristic Difference between

Transferred and Non-transferred via

t-test

Table 4 illustrates the mean value for each at-

tribute with regard to transferred concepts and non-

transferred concepts, where we observe a statisti-

cally significant gap between the two groups.
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Table 4: Mean attribute value for transferred and non-
transferred concepts. The two groups demonstrate statistically
significant difference through t-test. p<0.001: ***.

Concept attribute Transferred Non-transferred

Adopter size *** 89.6 14.9

Repeat usage *** 10.6 1.2

Discipline diversity *** 0.68 0.32

Engineering relation *** 0.15 0.04

Emotionality *** 0.31 0.20

Accessibility *** 4.88 4.82

Journal Linkage *** 0.28 0.15

Univ.-Industry relation *** 0.33 0.24

Figure 14: Correlations between different features.

F Field Comparison.

We studied transfer patterns in different fields. We

identified the field of each concept as one of the

six disciplines – biology & health sciences, physi-

cal & math sciences, the humanities, engineering,

agriculture, and the social sciences, based on the

maximum TF-IDF value component of its field

use frequency distribution. While different fields

demonstrate distinct transfer rates from research to

patent — engineering 7.5%, physical & math sci-

ences 1.9%, the social sciences 1.1%, bio & health

sciences 0.96% (11.3% concepts in bio & health

sciences transferred to clinical trial), agriculture

0.83% and the humanities 0.39% — we found that

the aforementioned features show consistent pat-

terns in different fields.

G Feature Correlation

We further studied the correlation between the ex-

tracted features. As illustrated in Fig.14, within

concept individual level features, apart from hype

features, and journal linkage/engineering focus,

most features are rather independent. Meanwhile,

graph feature ‘edge weight’ highly correlates with

hype feature. In comparison, graph feature ‘trans-

lated neighbor rate’ brings signal not covered else-

where, thus we conclude that modelling through

both intrinsic values and graph is important.

H Details of Temporal Feature Model

The RNN model is given as

h
(t)
x,i = RNN

(

h
(t−1)
x,i , x

(t)
i

)

(1)

where hx is the hidden states of attributes. Suppose

the concept transfer status is Markovian, then the

model should be

P
(

y
(t)
i

∣

∣

∣ h
(t−k)
x,i , · · · , h

(t−1)
x,i

)

= P
(

y
(t)
i

∣

∣

∣ h
(t−1)
x,i

)

= g
(

h
(t−1)
x,i

)

Here we adopt GRU as RNN and one fully con-

nected layer with sigmoid activation as classifier

g(·).

I Details on Mixed Effect Logistic

Regression

We ran a mixed effects logistic regression as a ro-

bustness check of logistic regression. Mixed ef-

fect logistic regression is a form of Generalized

Linear Mixed Model (GLMM). Mixed effects lo-

gistic regression accounts for both within-concept

variation (how concept use changes) and between-

concept variation (how concept use differs on aver-

age), while a single measure of residual variance

from the vanilla logistic regression can’t account

for both.

J Model Training and Hyperparameters.

To deal with the data imbalance problem – the

positive samples (concepts which will transfer in

the future) are much less than the negative, we

over-sample positive samples to make their amount

equal to negative ones in training set while keeping

the original distribution in test set.

The hidden state size in RNN is set as 32. We ex-

perimented on different state sizes, and 32 achieved

best performance on testing set.


