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Abstract

Constituency parsing is a fundamental and im-
portant task for natural language understand-
ing, where a good representation of contex-
tual information can help this task. N-grams,
which is a conventional type of feature for con-
textual information, have been demonstrated
to be useful in many tasks, and thus could
also be beneficial for constituency parsing if
they are appropriately modeled. In this pa-
per, we propose span attention for neural chart-
based constituency parsing to leverage n-gram
information. Considering that current chart-
based parsers with Transformer-based encoder
represent spans by subtraction of the hidden
states at the span boundaries, which may cause
information loss especially for long spans,
we incorporate n-grams into span representa-
tions by weighting them according to their
contributions to the parsing process. More-
over, we propose categorical span attention
to further enhance the model by weighting n-
grams within different length categories, and
thus benefit long-sentence parsing. Experi-
mental results on three widely used benchmark
datasets demonstrate the effectiveness of our
approach in parsing Arabic, Chinese, and En-
glish, where state-of-the-art performance is ob-
tained by our approach on all of them.'

1 Introduction

Constituency parsing, which aims to generate a
structured syntactic parse tree for a given sentence,
is one of the most fundamental tasks in natural
language processing (NLP), and plays an impor-
tant role in many downstream tasks such as re-
lation extraction (Jiang and Diesner, 2019), nat-
ural language inference (Chen et al., 2017), and
machine translation (Ma et al., 2018). Recently,

fCorresponding author.
'Our code and the best performing models are released at
https://github.com/cuhksz-nlp/SAPar.
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Figure 1: The treelet of an example of the form
“V+NP+PP”, where the “PP” should attach to the “V”
(in green) rather than the “NP” (in red).

neural parsers (Vinyals et al., 2015; Dyer et al.,
2016; Stern et al., 2017; Kitaev et al., 2019) with-
out using any grammar rules significantly outper-
form conventional statistical grammar-based ones
(Collins, 1997; Sagae and Lavie, 2005; Glaysher
and Moldovan, 2006; Song and Kit, 2009), because
neural networks, especially recurrent models (e.g,
Bi-LSTM), are adept in capturing long range con-
textual information, which is essential to modeling
the entire sentence. Particularly, a significant boost
on the performance of chart-based parsers is ob-
served from some recent studies (Kitaev and Klein,
2018; Kitaev et al., 2019; Zhou and Zhao, 2019)
that employ advanced text encoders (i.e., Trans-
former, BERT, and XL Net), which further demon-
strates the usefulness of contexts for parsing.

In general, besides powerful encoders, other ex-
tra information (such as pre-trained embeddings
and extra syntactic information) can also provide
useful contextual information and thus enhance
model performance in many NLP tasks (Penning-
ton et al., 2014; Song et al., 2018a; Zhang et al.,
2019; Mrini et al., 2019; Tian et al., 2020a,b). As
one type of the extra information, n-grams are used
as a simple yet effective source of contextual fea-
ture in many studies (Song et al., 2009; Song and
Xia, 2012; Yoon et al., 2018; Tian et al., 2020c)
Therefore, they could be potentially beneficial for
parsing as well. However, recent chart-based parers
(Stern et al., 2017; Kitaev and Klein, 2018; Gaddy
et al., 2018; Kitaev et al., 2019; Zhou and Zhao,
2019) make rare effort to leverage such n-gram
information. Another potential issue with current
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Figure 2: The architecture of the chart-based constituency parser with span attention, with an example partial
input sentence and its output. The right part of the figure shows the categorical span attention, where extracted
n-grams in span (i, j) are categorized by their length so that n-grams in different categories are weighted separately
(different colors refer to different n-gram categories). Note that for normal span attention, all n-grams are weighted

together, where attention a; ; directly corresponds to e; ;. in the figure.

chart-based parsers is that they represent spans by
subtraction of hidden states at the span boundaries,
where the context information in-between may be
lost and thus hurt parsing performance especially
for long sentences. N-grams can be a simple yet
useful source to fill the missing information. For
instance, Figure 1 illustrates the treelet of an ex-
ample in the form of “V+NP+PP”. As a classic
example of PP-attachment ambiguity, a parser may
wrongly attach the “PP” to the “NP” if it only fo-
cuses on the words at the boundaries of the text
span “flag ... year” and in-between information
is not represented properly. In this case, n-grams
within that span (e.g., the uni-gram “felescope’)
can provide useful cues indicating that the “PP”
should be attached to the “V”’. Although there are
traditional non-neural parsers using n-grams as fea-
tures to improve parsing (Sagae and Lavie, 2005;
Pitler et al., 2010), they are limited in treating them
euqally without learning their weights. Therefore,
unimportant n-grams may deliver misleading infor-
mation and lead to wrong predictions.

To address this problem, in this paper, we pro-
pose a span attention module to enhance chart-
based neural constituency parsing by incorporat-
ing appropriate n-grams into span representations.
Specifically, for each text span we extract all its sub-
strings that appear in an n-gram lexicon; the span
attention uses the normal attention mechanism to
weight them with respect to their contributions to

predict the constituency label of the span. Because
in general short n-grams occur more frequently
than long ones, they may dominate in the attention
if all n-grams are globally weighted, We further en-
hance our approach with a categorical mechanism
which first groups n-grams into different categories
according to their length and then weights them
within each category. Thus, n-grams with different
lengths are separately treated and the infrequent
long ones carrying more contextual information
can be better leveraged. The effectiveness of our
approach is illustrated by experimental results on
three benchmark datasets from different languages
(i.e., Arabic, Chinese, and English), on all of which
state-of-the-art performance is achieved.

2 The Approach

Our approach follows the chart-based paradigm for
constituency parsing, where the parse tree 7 of
an input sentence X' = x1xg - x; - T; - Tq 18
represented as a set of labeled spans. A span is
denoted by a triplet (i, 7, [) with 7 and j referring to
the beginning and ending positions of a span with
alabel [ € L. Here, L is the label set containing
d; constituent types. The architecture of our ap-
proach is shown in Figure 2. The left side is the
backbone chart-based parser. It assigns real value
scores s(1, j, () to the labeled spans, then computes
the score of a candidate tree by summing up the
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scores of all its spans, and finally chooses a valid
tree 7 with the highest score s by

T = arg max Z s(i,7,1) (1)

T Ggber

0<i<j<q
The right side of Figure 2 shows the proposed
span attention to enhance the backbone parser,
where n-grams in X’ are extracted from a pre-
constructed lexicon N and are weighted through
the attention module according to their contribution
to the parsing process. Therefore, the process of
computing s(i, j, 1) of the labeled spans through

our approach is formalized by

s(i,3,0) = p(I|X, SAXI N)) ()

where Xij is the text in range [7, j] of X'; S.A rep-
resents the span attention module and p computes
the probability of labeling [ € L to the span (i, j).

In this section, we start with a brief introduction
of neural chart-based parsing, then describe our
span attention, and end with an illustration of in-
corporating span attention into the parsing process.

2.1 Neural Chart-based Parsing

Recent neural chart-based parsers (Stern et al.,
2017; Kitaev and Klein, 2018; Kitaev et al., 2019;
Zhou and Zhao, 2019) follow the encoder-decoder
way, where the encoder receives X and generates
a sequence of context-sensitive hidden vectors (de-
noted as h; and h; for z; and x;, respectively),
which are used to compute the span representation
r;; € R for (4, j) by subtraction: ri; =h; —h,.
This span representation assumes that, for a recur-
rent model, e.g., LSTM, its hidden vector at each
time step relies on the previous ones so that such
subtraction could, to some extent, capture the con-
textual information of all the words in that span.?
For decoders, most recent neural chart-based
parsers follow the strategy proposed by Stern et al.
(2017), where all span representations r; ; are fed
into a variant of CYK algorithm to generate a glob-
ally optimized tree for each sentence. Normally,
r; ; is fed into multi-layer perceptrons (MLP) to
compute its scores s(i, j,-) over the label set L.
Afterwards, a recursion function is applied to find
the highest score s*(7, j) of span (i, j), which is
2Note that this paper focuses on improving the current
best performing span representation (i.e., by hidden vector
subtraction) proposed by Stern et al. (2017) so as to make a

fair comparison, although there are other possible approaches
to representing a span (e.g., max pooling).

computed by searching the best constituency label
and the corresponding boundary k (i < k < j) by
S — oy
s(6,5) =maxs(,j,0)

+ max [s” (i, k) + 5" (K, )]

3)

Note that in the special case where j =i + 1, the
best score only relies on the candidate label:

s (i,J) = max s(i, j, 1) )
lel

Therefore, to parse the entire sentence, one com-
putes s*(1, q) through the above steps and use a
back pointer to recover the full tree structure.

2.2 Span Attention

Although the encoding from subtraction of hid-
den states is demonstrated to be effective (Stern
et al., 2017; Kitaev and Klein, 2018; Kitaev et al.,
2019), the subtraction might not represent all the
crucial information in the text span. Especially,
for Transformer-based encoders, unlike recurrent
models, their h; and h; have no strong dependency
on each other so that subtraction may fail to fully
capture the contextual information in the span, es-
pecially when the span is long. Since n-grams are a
good source of the information in the text span, we
propose span attention to incorporate weighted n-
gram information into span representations to help
score the spans (4, 7,1).

In detail, for each span (i,5) in X, we
extract all n-grams in that span that ap-
pear in Lexicon A to form a set C;; =
{61'7]'71, Cij,2y " Cijuws " Cm"mi’j} and use the set
in span attention. The attention of each n-gram
¢i,jv for (7, 7) is activated by

S exp(rzj € jv)
M exp(r] - eigo)
where e; j, € R% is the embedding of ¢; ;,, whose
dimension is identical to that of r; ;. The resulted
attention vector a; ; € R is thus computed by the
weighted average of n-gram embeddings by
ml"j

a;;j = E @i j,v€i,5,v (6)
v=1

6))

and it is used to enhance the span representation.
In normal attention, all n-grams are weighted
globally and short n-grams may dominate the at-
tention because they occur much more frequently
than long ones and are intensively updated. How-
ever, there are cases that long n-grams can play
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an important role in parsing when they carry use-
ful context and boundary information. There-
fore, we extend the span attention with a cate-
gory mechanism (namely, categorical span atten-
tion) by grouping n-grams based on their lengths
and weighting them within each category.® In
doing so, all n-grams in N are categorized into
n groups according to their lengths, i.e., C;; =
{Cij1:Cij2, Ciju, - Cijn}, Wwithu € [1,n]
denoting the n-gram length. Then, for each cate-
gory with n-grams in length u, we follow the same

(u)

process in Eq. (5) and (6) to compute a, ;,, and

a%). The final attention is obtained from the con-
catenation of all categorical attentions by
a; j = @ 5ua§3) (7)
1<u<n

with a trainable parameter J,, € R™ to balance the
contribution of attentions from different categories.

2.3 Parsing with Span Attention

The backbone parser follows Kitaev et al. (2019)
to use BERT as the encoder, where r; ; = h; — h;
is applied to represent the span (4, j). Once a; ; is
obtained from the span attention for (4, j), we incor-
porate it into the backbone parsing process by di-
rectly concatenating it with r; j: r; ; = r; j®a; j €
R4 ("+1) " Then, we apply two fully connected
layers with ReLU activation function to r; ; and
compute the span scores s(3, j, -) over the label set
L, which can be formalized by:

O; 5 = ReLU(LN(Wl . r;,j + bl)) (8)
and
5(i,7,-) = Wa-0;; + b )

Here, LN denotes the layer normalization opera-
tion; W1, Wy and by, bs are trainable parameters
in the fully connected layers. Afterwards, we use
Eq. (3) and (4) to recursively find the highest score
spest(1, ), and use a back pointer to recover the
globally optimized parse tree.

3 Experimental Settings
3.1 Datasets

We test our approach on Arabic, Chinese and En-
glish benchmark datasets, namely part 1-3 of the

3We use length as the categorization criterion because (1)
n-gram frequencies vary in different datasets and it is hard to
find an appropriate scheme to divide them; (2) n-grams with
the same length may have similar ability to deliver contextual
information so they are suitable to be grouped by such ability.

DATASETS |  SENT TOKEN | ASL
TRAIN 16K 596K 31.4

ATB DEV 2K 70K 30.5
TEST 2K 70K 29.9

TRAIN 17K 478K 27.4

CTB5 DEV 350 7K 19.5
TEST 348 8K 23.0

TRAIN 40K 950K 23.9

PTB DEV 2K 40K 23.6
TEST 2K 57K 23.5

BrROWN (FULL) 24K 458K 19.0
GENIA (FULL) 17K 446K 26.2

Table 1: The statistics of all experimental datasets (with
splits) in terms of sentence and token numbers, and av-
erage sentence length (ASL).

Arabic Penn Treebank 2.0 (ATB) (Maamouri et al.,
2004), the Chinese Penn Treebank 5 (CTBS) (Xue
et al., 2005), and Penn Treebank 3 (PTB) (Marcus
et al., 1993).* For ATB, we follow Chiang et al.
(2006) and Green and Manning (2010) to use their
split® to get the training/dev/test sets and convert
the texts in the dataset from Buckwalter transliter-
ation® to modern standard Arabic. For CTB5 and
PTB, we follow Shen et al. (2018) and Kamigaito
et al. (2017) to split the datasets. Moreover, we
use the Brown Corpus (Marcus et al., 1993) and
Genia (Tateisi et al., 2005) for cross-domain exper-
iments.” For all datasets, we follow Suzuki et al.
(2018) to clean up the raw data® and report the
statistics of each resulted dataset in Table 1.

3.2 N-gram Lexicon Construction

For n-gram extraction, we compute the pointwise
mutual information (PMI) of any two adjacent
words z’, 2’ in the dataset by

1,01
PMI(x',2") =log LCE) (10)
p

(@)p(z")
where p is the probability of an n-gram (i.e., =/, ="
and z'z") in a dataset. A high PMI score suggests

“All the datasets are obtained from the official release of
Linguistic Data Consortium. The catalog numbers for ATB
part 1-3 are LDC2003T06, LDC2004T02, LDC2005T20, for
CTBS is LDC2005T01, and for PTB is LDC99T42.

>Such split uses the “Johns Hopkins 2005 Workshop” stan-
dard, for which we follow the detailed split guideline of-
fered by https://nlp.stanford.edu/software/
parser—arabic-data-splits.shtml.

®http://languagelog.ldc.upenn.edu/myl/
ldc/morph/buckwalter.html

"The Brown Corpus is obtained together with PTB
(LDC99T42), and the Genia corpus is obtained by its offi-
cial PTB format from https://nlp.stanford.edu/
~mcclosky/biomedical.html.

8We use the clean-up code from https://github.
com/nikitakit/parser—data-gen.

1694


https://nlp.stanford.edu/software/parser-arabic-data-splits.shtml
https://nlp.stanford.edu/software/parser-arabic-data-splits.shtml
http://languagelog.ldc.upenn.edu/myl/ldc/morph/buckwalter.html
http://languagelog.ldc.upenn.edu/myl/ldc/morph/buckwalter.html
https://nlp.stanford.edu/~mcclosky/biomedical.html
https://nlp.stanford.edu/~mcclosky/biomedical.html
https://github.com/nikitakit/parser-data-gen
https://github.com/nikitakit/parser-data-gen

- POS + POS
DATA | MODEL
ODELS PARM | P R F1 | M PARM | P R F1 | M
BERT 188M | 82.99 82,99 8299 | 18.87 188M | 82.96 83.17 83.07 | 19.09
ATB + SA 191M | 83.36 83.05 83.21 | 19.13 || 191M | 83.37 83.12 83.24 | 19.43
+ CATSA 192M | 83.33 83.20 83.27 | 20.04 || 192M | 83.41 83.20 83.30 | 19.65
BERT 113M | 93.95 93.35 93.65 | 47.71 113M | 94.30 93.88° 94.09 | 48.86
+SA 116M | 94.07 93.39 93.73 | 49.43 116M | 94.80 93.73 94.26 | 49.14
CTBS | * CATSA 117M | 94.02 93.65 93.83 | 50.00 || 117M | 94.70 94.00 94.35 | 50.00
ZEN 235M | 93.82  93.65 93.73 | 50.29 || 235M | 94.37 93.69 94.03 | 48.87
+SA 238M | 94.08 93.53 93.80 | 51.14 || 238M | 94.68 93.81 94.24 | 51.43
+ CATSA 239M | 94.23 93.66 93.94 | 51.41 || 239M | 94.69 93.91 94.30 | 52.00
BERT-LC 344M | 9571 95.53 95.62 | 54.06 || 344M | 95.71 95.61 95.66 | 53.35
+ SA 349M | 95.80 95.55 95.68 | 53.94 || 349M | 95.71 95.70 95.70 | 54.29
+ CATSA 350M | 96.02 95.51 95.77 | 54.64 || 350M | 95.79 95.85 95.82 | 55.79
BERT-LU 345M | 95.61 95.59 95.60 | 54.29 || 345M | 95.59 95.76 95.67 | 54.24
PTB +SA 350M | 95.61 9571 95.66 | 54.24 || 350M | 95.69 95.75 95.72 | 54.53
+ CATSA 351IM | 95.76 95.74 95.75 | 55.29 || 351M | 95.77 95.84 95.80 | 54.71
XLNET-LC | 37IM | 95.78 95.79 95.78 | 54.81 || 37IM | 95.97 95.60 95.79 | 54.70
+ SA 375M | 95.83 9595 95.89 | 54.94 || 375M | 9592 9595 95.93 | 55.71
+ CATSA 376M | 96.02 95.84 95.93 | 55.88 || 376M | 95.97 96.02 95.99 | 56.06

Table 2: Experimental results in terms of precision (P), recall (R), F-score (F1) and complete match score (M) of
our models on the development set of ATB, CTBS5 and PTB with different configurations, i.e., with and without
POS, span attention (SA), and categorical span attention (CATSA). The boldface is added to the highest result (P,
R, F1, and M) within each group of three models (one from BERT/XLNet baseline, one with SA, and the other
with CATSA). For English, we use large cased (LC) version of BERT and XLNet and large uncased (LU) version
of BERT. PARM reports the number of trainable parameters in each model.

that the two words co-occur a lot in the dataset
and are more likely to form an n-gram. We set
the threshold to 0 to determine whether a delimiter
should be inserted between the two adjacent words
2’ and 2”. In other words, to build the lexicon N
from a dataset, we use PMI as an unsupervised
segmentation method to segment the dataset and
collect all n-grams (n < 5)° appearing at least twice
in the training and development sets combined.'”

3.3 Model Implementation

In our experiments, we use BERT (Devlin et al.,
2019) as the basic encoder for all three languages
and use ZEN (Diao et al., 2019) and XL Net-large
(Yang et al., 2019) for Chinese and English, respec-
tively.11 For BERT, ZEN, and XLNet, we use the
default hyper-parameter settings. (e.g., 24 layers
with 1024 dimensional hidden vector for the large
models). In addition, following Kitaev et al. (2019),
Zhou and Zhao (2019) and Mrini et al. (2019), we

“We empirically set the max n-gram length to 5 as a unified
threshold for all three languages.

10We show the details of extracting the lexicon with exam-
ple n-grams in the Appendix.

""'We download BERT models for Arabic and English from
https://github.com/google-research/bert,
and for Chinese from https://s3.amazonaws.com/
models.huggingface.co/. We download ZEN and
XLNet at https://github.com/sinovation/ZEN
amd https://github.com/zihangdai/x1lnet.

add three additional token-level self-attention lay-
ers to the top of BERT, ZEN, and XLNet.

For other settings, we randomly initialize all n-
gram embeddings used in our attention module'?
with their dimension matching that of the hidden
vectors obtained from the encoder (e.g., 1024 for
BERT-large). Besides, we run our experiments
with and without predicted part-of-speech (POS)
tags. Following previous studies, for the experi-
ments without POS tags, we take sentences as the
only input; for the experiments with POS tags, we
obtain the POS tags from Stanford POS Tagger
(Toutanova et al., 2003) and incorporate the POS
tags by directly concatenating their embeddings
with the output of the BERT/ZEN/XLNet encoder.
Following previous studies (Suzuki et al., 2018;
Kitaev et al., 2019), we use hinge loss during the
training process and evaluate different models by
by precision, recall, F1 score, and complete match
score via the standard evaluation toolkit EVALB!'3.

During the training process, we try three learning
rates, i.e., Se-5, le-5, S5e-6, with a fixed random
seed, pick the model with the best F1 score on the
development set, and evaluate it on the test set.

12We also try initializing the n-grams with pre-trained em-
beddings (Pennington et al., 2014; Song et al., 2018b; Yamada
et al., 2020), where the results show small differences.

Bhttps://nlp.cs.nyu.edu/evalb/
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ATB CTBS5 PTB

MODELS P R Fl | P R Fl | P R FI
GREEN AND MANNING (2010) 78.92 77.72 78.32 - - - - - -

SHEN ET AL. (2018) - - - 86.6 86.4 86.5 | 92.0 91.7 91.8
TENG AND ZHANG (2018) - - - 88.0 86.6 87.3 925 922 924
JOSHI ET AL. (2018) - - - - - - 94.8 93.8 94.3
SUZUKI ET AL. (2018) - - - - - - - - 94.32
KITAEV AND KLEIN (2018) - - - - - - 95.40 94.85 95.13
KITAEV ET AL. (2019) (BERT) - - - 91.96 91.55 91.75 | 95.73 95.46 95.59
FRIED ET AL. (2019) (BERT) - - - - - 92.14 - - 95.71
ZHOU AND ZHAO (2019) (BERT) - - - 92.03 92.33 92.18 | 95.70 95.98 95.84
ZHOU AND ZHAO (2019) (XLNET) - - - - - - 96.21 96.46 96.33
*MRINI ET AL. (2019) (BERT/XLNET + POS) - - - 91.85 93.45 92.64 | 96.24 96.53 96.38
SCT (MANNING ET AL., 2014) 68.33 71.78 70.02 T T T 86.21 86.73 86.47
BNP (KITAEV AND KLEIN, 2018) 72.84 76.59 74.67 | 91.83 91.53 91.68 | 95.46 94.89 95.17
BERT 83.06 82.87 82.96 | 92.16 91.98 92.07 | 95.91 95.17 95.54
+ SA 83.25 82.85 83.05| 92.31 92.03 92.17 | 96.04 95.40 95.72
+ CATSA 83.40 83.11 83.26 | 92.25 92.14 92.20 | 96.11 95.58 95.85
ZEN/XLNET - - - 92.20 92.05 92.13 | 96.52 95.70 96.11
+ SA - - - 92.34 92.02 92.18 | 96.58 96.03 96.31
+ CATSA - - - 92.50 91.98 92.24 | 96.64 96.07 96.36
*BERT + POS 82.98 82.97 82.97 | 92.52 92.06 92.29 | 95.92 95.27 95.60
+ SA 83.36 82.80 83.08 | 92.61 92.20 92.40 | 95.96 95.51 95.73
+ CATSA 83.48 83.07 83.27 | 92.83 92.50 92.66 | 96.09 95.62 95.86
*ZEN/XLNET + POS - - - 92.37 92.16 92.26 | 96.42 95.86 96.14
+ SA - - - 92.40 92.32 92.36 | 96.56 96.10 96.33
+ CATSA - - - 92.61 92.42 92.52| 96.61 96.19 96.40

Table 3: Comparing (in terms of Precison, Recall and F1 scores) our best performing models (BERT-LC and
ZEN/XLNET-LC) with previous studies and prevailing toolkits (i.e., SCT and BNP) on the test sets of ATB, CTB5
and PTB. The results for SCT are not comparable to other systems including ours (as indicated by ) because SCT
is trained on a different dataset. Models marked by * use predicted POS tags as additional input.

4 Results and Analyses

4.1 Overall Performance

In the main experiment, we compare the proposed
models with and without the span attention to ex-
plore the effect of the span attention on chart-based
constituency parsing. For models with the span
attention, we also run the settings with and with-
out the categorical mechanism. The results (i.e.,
precision, recall, F1 score, and complete match
scores of all models, as well as their number of
trainable parameters) with different configurations
(including whether to use the predicted POS tags)
on the development sets of ATB, CTB5, and PTB
are reported in Table 2.

There are several observations. First, the span at-
tention over n-grams shows its generalization abil-
ity, where consistent improvements of F1 over the
baseline models are observed on all languages un-
der different settings (i.e., with and without us-
ing predicted POS tags; using BERT or XLNet
encoders). Second, compared with span atten-
tion without the category mechanism, in which
n-grams are weighted together, models with cate-
gorical span attention perform better on both F1

and complete match scores with a relatively small
increase of parameter numbers (around 1M). Par-
ticularly, for the complete match scores, the span
attention with normal attentions does not outper-
form the baseline models in some cases, whereas
the categorical span attention mechanism does in
all cases. These results could be explained by that
frequent short n-grams dominate the general atten-
tions so that the long ones containing more con-
textual information fail to function well in filling
the missing information in the span representation,
and thus harm the understanding of long spans,
which results in inferior results in complete match
score. In contrast, the categorical span attention
is able to weight n-grams in different length sepa-
rately, so that the attentions are not dominated by
high-frequency short n-grams and thus reasonable
weights can be assigned to long n-grams. There-
fore, our model can learn from the important long
n-grams and have a good performance on the long
spans, which results in consistent improvements
over baseline models in complete match scores.
Third, on CTB5, models with ZEN encoder con-
sistently outperform the ones with BERT without
using POS tags, while they fail to do so with the
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MODELS | BROWN GENIA
BERT (FRIED ET AL., 2019) | 93.10  87.54
BERT 93.13 87.58
+ SA 93.24 87.50
+ CATSA 93.29 87.53

Table 4: Cross-domain experiment results (F1 scores)
from previous studies and our models (based on BERT-
LC), on the entire Brown and Genia corpora when
trained from the training set of PTB.

POS tags as the additional input, which suggests
that the predicted POS tags may have more conflict
with ZEN compared with BERT.

Moreover, we run our models on the test set of
each dataset and compare the results with previ-
ous studies, as well as the ones from prevailing
parsers, i.e., Stanford CoreNLP Toolkits (SCT)*
(Manning et al., 2014) and Berkeley Neural Parser
(BNP)" (Kitaev and Klein, 2018). The results are
reported in Table 3, where the models using pre-
dicted POS tags are marked with “*”.1% Our mod-
els with CATS A outperform previous best perform-
ing models from Zhou and Zhao (2019) and Mrini
et al. (2019) under different settings (i.e., whether
to use the predicted POS tags), and achieve state-
of-the-art performance on all datasets. Compared
with Zhou and Zhao (2019) and Mrini et al. (2019)
which improve constituency parsing by leveraging
the dependency information when training their
head phrase structure grammar (HPSG) parser, our
approach enhances the task from another direction
by incorporating n-gram information through the
span attentions as a way to address the limitation of
using hidden vector subtraction to represent spans.

4.2 Cross-domain Experiments

To further explore whether our approach can be
generalized across domains, we follow the setting
of Fried et al. (2019) to conduct cross-domain ex-
periments on the Brown and Genia corpus using
the models with SA and CATSA, as well as their
corresponding baseline. Note that, for fair com-
parison, we use BERT-large cased as the encoder
without using the predicted POS tags. We follow
Fried et al. (2019) to train models on the training
set of PTB and evaluate them on the entire Brown
corpus and the entire Genia corpus. To construct

4We use the version of 3.9.2 obtained from https://
stanfordnlp.github.io/CoreNLP/.

15We obtain their models from https: //github.com/
nikitakit/self-attentive—-parser.

'SFor our models with BERT encoder, we only report the
results of the ones using the cased version of BERT-large.
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Figure 3: The F1 curves with respect to the minimal
test sentence length (the horizontal axis) of different
models performed on ATB (a), CTB (b), and PTB (c).

N in this experiment, we extract n-grams by PMI
from the training set of PTB. The results (F1 scores)
are reported in Table 4. From the table, we find
that our model with categorical span attentions (+
CATSA) outperforms the BERT baseline (Fried
et al., 2019) on the Brown corpus while fails to do
so on the Genia corpus. The explanation cloud be
that the distance between Genia (medical domain)
and PTB (news wire domain) is much larger than
that between Brown and PTB, so that the n-gram
overlap in two domains are limited and thus has
little influence to the target domain.

4.3 Effect of CATSA on Long Sentences

To explore the effect of our approach, we investi-
gate our best performing models (where predicted
POS tags are used) with the span attention mod-
ule and the corresponding baselines on different
length of sentences in the test sets. The curves of
F1 scores with respect to the minimal test sentence
length (the horizontal axis) from different models
on ATB, CTBS5, and PTB are illustrated in Figure
3(a), 3(b), and 3(c), respectively.!’

In general, long sentences are harder to parse and
thus all models’ performance degrades when sen-
tence length increases. Yet, our models with CatSA

Given the variance of average sentence length in different

datasets (see Table 1), we set the minimal length from 5 to 50
on CTBS5 and PTB, and 15 to 60 on ATB, with a step of 5.
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Figure 4: The F1 curves with respect to the max length

(the horizontal axis) of n-grams used in different mod-
els performed on ATB (a), CTB (b), and PTB (c).

outperform the baseline for all sentence groups
and the gap is bigger for long sentences, which
indicates our approach can handle long sentences
better than the baselines. One possible explana-
tion for this is that long sentences will have larger
text spans and may require more long-distance con-
textual information. Our approach incorporates
n-gram information into the span representation
and thus can appropriately leverages the infrequent
long n-grams by separately weighting them in dif-
ferent categories.

4.4 Analysis on Different N-gram Lengths

To test using n-grams in different length, we con-
duct an ablation study on the n-grams with respect
to their length. In doing so, we conduct experi-
ments on the best performing models (where pre-
dicted POS tags are used) with the span attention
module, by restricting that n-grams whose length
are larger than a threshold is excluded from the
lexicon /. We try the threshold from 1 to 5 and
demonstrate the curves (F-scores) on the test set
of ATB, CTBS, and PTB in Figure 4(a), (b), and
(c), respectively. The results of their corresponding
baselines are also represented in red curves for ref-
erence. It is found from the curves that our models
with span attentions consistently outperform the
baseline models, which indicates the robustness
of our approach with respect to different n-grams

0.5

0.4 SA @CatSA

ATB

3 4 5
(@)
CTBS
’
é
%
3 4 5
(®)
PTB

N ¥

Figure 5: The histograms of average weights assigned
to n-gram categories in different lengths, with weights
from SA and CATSA show different patterns.

used in the model. In addition, for different lan-
guages, the n-gram threshold varies when the best
performance is obtained. For example, the best
performing model on English is with three words
as the maximum length of n-grams, while that is
five for Arabic and four for Chinese.

Moreover, to investigate how the categorical
span attention addresses the problem that high-
frequency short n-grams can dominate the general
attentions, we run the best performing models with
span attentions on the whole ATB, CTBS, and PTB
datasets, obtain the total weight assigned to each
n-gram, and compute the average weight for the
n-grams in each n-gram length category. Figure 5
shows the histograms of the average weights from
models with SA and CATSA.

The histograms show that the models with SA
(the orange bars) tend to assign short n-grams rela-
tively high weights, especially the uni-grams. This
is not surprising because short n-grams occur more
frequently and are thus updated more times than
long ones. In contrast, the models with CATSA
show a different weight distribution (the blue bars)
among n-grams with different lengths, which in-
dicates that the CATS A module could balance the
weights distribution and thus enable the model to
learn from infrequent long n-grams.
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Figure 6: An example sentence with its parsing results
from the best performing baseline and our model. The
correct and wrong parsing results are highlighted on the
span labels by green and red, respectively. The super-
scripts on the span labels illustrate the heights of them.
“V” is a POS tag so there is no height for it.

4.5 Case Study

To illustrate how our model improves baselines
with the span attention, especially for long sen-
tences, we show the parse trees produced by the
two models for an example sentence in Figure
6, where the superscript for the internal node is
the height of the subtree rooted at that node. In
this case, our model correctly attaches the “PP”
(“with two ... utilities”) containing 24 words to the
verb “compete”, while the baseline attach it to the
noun “customers”. Since the distances between
the boundary positions of the wrongly predicted
spans (highlighted in red) are relatively long, the
baseline system, which simply represents the span
as subtraction of the hidden vectors at the bound-
ary positions, may fail to capture the important
context information within the text span. In con-
trast, the span representations used in our model
are enhanced by weighted n-gram information and
thus contain more context information. Therefore,
in deciding which component (i.e., “compete” or
“customer’) the with-PP should attach to, n-grams
(e.g., the uni-gram “companies’) may provide use-
ful cues, since “customers with companies” is less
likely than “compete with companies”.

5 Related Work

There are two main types of parsing methodolo-
gies. One is the transition-based approaches (Sagae
and Lavie, 2005); the other is the chart-based ap-
proaches (Collins, 1997; Glaysher and Moldovan,
2006). Recently, neural methods start to play a
dominant role in this task, where improvements
mainly come from powerful encodings (Dyer et al.,
2016; Cross and Huang, 2016; Liu and Zhang,
2017; Stern et al., 2017; Gaddy et al., 2018; Ki-

taev and Klein, 2018; Kitaev et al., 2019; Fried
etal., 2019). Moreover, there are studies that do not
follow the aforementioned methodologies, which
instead regard the task as a sequence-to-sequence
generation task (Vinyals et al., 2015; Suzuki et al.,
2018), a language modeling (Choe and Charniak,
2016) task or a sequence labeling task (Gémez-
Rodriguez and Vilares, 2018). To further improve
the performance, some studies leverage extra re-
sources (such as auto-parsed large corpus (Vinyals
et al., 2015), pre-trained word embeddings (Kitaev
and Klein, 2018)), HPSG information (Zhou and
Zhao, 2019; Mrini et al., 2019), or use model en-
sembles (Kitaev et al., 2019). Compared to these
studies, our approach offers an alternative way to
enhance constituency parsing with effective lever-
aging of n-gram information. Moreover, the pro-
posed span attention addresses the limitation of
previous studies (Kitaev and Klein, 2018; Kitaev
et al., 2019) that spans are represented by the sub-
traction of encoded vectors at span boundaries (i.e.,
the hidden states at initial and ending positions of
the span) and thus reduces information loss accord-
ingly. In addition, the categorical span attention
provides a simple, yet effective, improvement over
the normal attention to process n-grams in a more
precise way, which could become a reference for
leveraging similar resources in future research.

6 Conclusion

In this paper, we proposed span attention to inte-
grate n-gram into span representations to enhance
chart-based neural constituency parsing. Specifi-
cally, for each text span in an input sentence, we
firstly extracted n-grams in that span from an n-
gram lexicon, and then fed them into the span atten-
tion to weight them according to their contribution
to the parsing process. To better leverage n-grams,
especially the long ones, categorical span attention
was proposed to improve the normal attention by
categorizing n-grams according to their length and
weighting them separately within each category.
Such span attention not only leverages important
contextual information from n-grams but also ad-
dresses the limitation of current Transformer-based
encoders using subtraction for span representations.
To the best our knowledge, this is the first work
using n-grams for neural constituency parsing. The
effectiveness of our approach was demonstrated by
experimental results on three benchmark datasets
from Arabic, Chinese, and English, where state-of-
the-art performance is obtained on all of them.
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Appendix A: Extracting the Lexicon using
PMI

In our experiments, we build the n-gram lexicon
N based on pointwise mutual information (PMI)
with n-gram probability estimated from the union
of the training and development set of each dataset.
Specifically, we compute the PMI of any two adja-

cent words 2/, 2" in the dataset by
!0

p(z'z")
p(@")p(z")
where p is the probability of an n-gram (i.e., 2/, 2"
and z'x") in the dataset. A high PMI score sug-
gests that the two words co-occur frequently in the
dataset and are more likely to form an n-gram. For
each pair of adjacent words x;_1, x; in a sentence
X =x1x9 - Xi_1X; - - Ty, We use a threshold to
determine whether a delimiter should be inserted
in between them. As a result, the sentence X is
segmented into pieces of n-grams; we extract those
n-grams to form the lexicon . For example, for a
given sentence

PMI(2',2") = log (11)

X = T1T2X3X 45 (12)

and the PMI of all adjacent words (i.e., z1x2, x2T3,
T3T4, T4X5) In it, where

PMI(z,23) > t (13)

PMI(z3,34) >t (14)
and

PMI(.T1,J,’2) <t (15)

PM[($4,$5) <t (16)

with ¢ denoting the threshold. We add delimiters
(denoted by “/’) between x; and z3, and x4 and
x5 since their PMI is lower than ¢t. As a result, we
obtain a segmented sentence

A7

and from which we are able to extract three n-
grams, i.e., X1, £22324, and x5 accordingly.

X' = a1/r2w324 /75

Appendix B: N-gram Examples in the
Lexicon N/

To explore the effect of each individual n-gram in
the lexicon AV, we rank the n-grams according to
their contributions to the constituency parsing task.
In doing so, we firstly run our best performing mod-
els (BERT/XLNet encoders with predicted POS
tags) with categorical span attentions (+ CATSA)
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N-GRAMS AVG. ATTENTION

said 0.0141
more than 0.0063
as well as 0.0167
from a year earlier 0.0267
in the past few years 0.0184

Table 5: Example n-grams with their average weights
obtained from our best performing model (i.e., XLNet
+ POS + CATSA) on the entire PTB dataset.

for Arabic, Chinese, and English on the entire ATB,
CTBS, and PTB datasets, respectively. Then, for
each n-gram, we compute its average attention
weights according to its appearance in the entire
dataset. Afterwards, we group n-grams by their
length and rank the n-grams according to their av-
erage attention weights within each group. The top
50 n-grams in each group as well as their attention
weights for each language are reported in the sup-
plemental material. As a demonstration, Table 5
shows a few n-grams with their average attention
weights on the entire PTB dataset.
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