
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1599–1615
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

1599

Teaching Machine Comprehension with Compositional Explanations

Qinyuan Ye1 Xiao Huang1 Elizabeth Boschee2 Xiang Ren1,2

1Department of Computer Science, University of Southern California
2Information Science Institute, University of Southern California

{qinyuany, huan183}@usc.edu, boschee@isi.edu, xiangren@usc.edu

Abstract

Advances in machine reading comprehension

(MRC) rely heavily on the collection of large

scale human-annotated examples in the form

of (question, paragraph, answer) triples. In

contrast, humans are typically able to gener-

alize with only a few examples, relying on

deeper underlying world knowledge, linguis-

tic sophistication, and/or simply superior de-

ductive powers. In this paper, we focus on

“teaching” machines reading comprehension,

using a small number of semi-structured ex-

planations that explicitly inform machines why

answer spans are correct. We extract struc-

tured variables and rules from explanations and

compose neural module teachers that annotate

instances for training downstream MRC mod-

els. We use learnable neural modules and soft

logic to handle linguistic variation and over-

come sparse coverage; the modules are jointly

optimized with the MRC model to improve fi-

nal performance. On the SQuAD dataset, our

proposed method achieves 70.14% F1 score

with supervision from 26 explanations, compa-

rable to plain supervised learning using 1,100

labeled instances, yielding a 12x speed up1.

1 Introduction

Recent advances in neural sequence learning and

pre-trained language models yield strong (human-

level) performance on several reading comprehen-

sion datasets (Lan et al., 2020; Raffel et al., 2019).

However, state-of-the-art results mainly rely on

large-scale annotated corpora, which are often time-

consuming and costly to collect (Rajpurkar et al.,

2016). This often leads to a large gap between

methods in the research settings and practical use

cases, as large amounts of annotated data rarely ex-

ist for a new task or a low-resource domain (Linzen,

2020). To reduce this dependency on annotation

efforts, we seek to improve the efficiency in obtain-

ing and applying human supervision.

1Our code and data can be found at https://github.
com/INK-USC/mrc-explanation.

Reference Instance

Q: When was Queen Victoria’s funeral
✿✿✿✿

held?

C: Her funeral was
✿✿✿✿

held on Saturday, 2 February, in St George’s

Chapel, Windsor Castle, and after two days of lying-in-state ...

A: Saturday, 2 February

Semi-structured Explanation

X is “funeral”. Y is “
✿✿✿✿

held”. In the question X is within 4 words

after “when was” and Y is directly after X. “on” is directly before

the answer. Y is within 2 words before the answer. X is within 3

words left of Y. The question starts with “when”, so the answer

should be a date.

Strictly-matched Instance

Q: When was independence
✿✿✿✿✿✿✿✿

declared?

C: ... Independence was
✿✿✿✿✿✿✿✿

declared on 24 September 1973.

A: 24 September 1973

Softly-matched Instance

Q: When was Brazelton
✿✿✿✿✿

killed?

C: ... Brazelton was eventually tracked down and
✿✿✿✿✿

killed on Mon-

day August 19, 1878, in a mesquite bosque ...

A: Monday August 19, 1878 (Confidence z = 93.75%)

Note: X is 5 words left of Y, slightly violating “within 3 words”.

Table 1: Key elements in proposed work. Semi-structured
explanations characterize why an answer is correct and sum-
marize the human’s deductive process. Strictly and softly
matched instances are automatically generated from explana-
tions and provide supervision for training MRC models.

One strength of human cognition is the ability

to generalize from relatively few examples; shown

only a few instances of a problem and solution,

humans often deduce patterns more readily than a

machine, typically by bringing to bear a wealth of

background information about what “really matters”

in each example (DeJong and Mooney, 1986; Gold-

wasser and Roth, 2014; Lake et al., 2019). This

ability to quickly abstract “deduction rules” is the

inspiration for this work, and we aim to gather these

rules in the form of semi-structured explanations.

In this paper, we focus on the extractive machine

reading comprehension (MRC) task, where the sys-

tem is given a query and is asked to identify an

answer span from a particular paragraph. Previous

work soliciting explanations as part of the annota-

tion process has been limited to classification tasks

(Hancock et al., 2018; Wang et al., 2020). However,

MRC is more challenging, since it lacks explicit

anchor words (e.g., subject and object in relation

extraction), has no pre-defined set of labels, and

there is sparser coverage for each explanation.

1600

Q: What is the atomic number for Zinc?

C: … Zinc is a chemical element with symbol Zn

and atomic number 30. …
A: 30

Explanation: X is atomic number. Y is Zinc. The

question contains "number" so the answer should

be a number. The answer is directly after X. "for" is

directly before Y and directly after X in the question.

Crowd-sourcing Explanation Neural Module Teacher

X

xa

xb

xc

Variable Candidates

Y

ya

/

/

ANS

ansa

ansb

/

Executable Rules

Softly-

matched Data

Efficient Annotation Train Student Model

FIND(X) ANS

DISTANCE

COMPARE

0

AND

… …

Unlabeled Data (∞)

Strictly-

matched Data

Any Trainable RC Model

Figure 1: Overview of proposed work. We first collect a small set of semi-structured explanations, from which we extract key
information such as variables and rules. These structured results are formulated into programs called neural module teachers
(NMTeachers), which we use to curate supervision for training machine reading comprehension models.

To tackle these challenges, we propose the con-

cept of a Neural Module Teacher (NMTeacher) –

an executable program constructed from human-

provided, semi-structured explanations that is (1)

dynamically composed of modules based on the

explanation; (2) capable of taking sequential steps

and combinatorial search; and (3) capable of fuzzy

matching using softened constraints. Fig. 1 shows

an overview of our approach. We first use a Com-

binatory Categorial Grammar parser (Zettlemoyer

and Collins, 2005) to turn explanations into struc-

tured variables and rules (Sec. 3.2). A neural mod-

ule teacher is constructed with basic learnable mod-

ules (Sec. 3.1) based on parsing results and func-

tions as a weak model for the specific type of ques-

tion described in the explanation (Sec. 3.3). All

neural module teachers act together and identify

strictly- and softly-matched instances from an unla-

beled corpus, which are used to train a downstream

“student” MRC model (Sec. 4.2). It is important to

note that while this work is tied to the particular

task of MRC, we believe it can be extended to a

wide range of NLP tasks.

We evaluated our approach on two datasets in

MRC setting: SQuAD v1.1 (Rajpurkar et al., 2016)

and Natural Questions (Kwiatkowski et al., 2019).

Experimental results show the efficiency of the

proposed approach in extremely low-resource sce-

narios. Using 26 explanations gathered in 65 min-

utes, NMTeacher achieves 56.74% exact match and

70.14% F1 score on the SQuAD dataset, while the

performance is 9.71% and 16.37% with traditional

annotation using the same amount of time. More-

over, our analysis shows that explanations continue

to improve model performance when a medium-

sized annotated dataset is readily available.

2 Problem Formulation

Our goal is to efficiently train an extractive MRC

model F, which takes as input a tuple (q, c) of

question q and context c, and extracts an answer

span a within the context c. We assume a low-

resource situation where a large set S of (q, c) pairs

(without answer annotation) already exists, but we

are limited in time to annotate only a small subset

So (< 200 instances) of S .

Overview and Notations. We provide an

overview of our proposed method in Fig. 1. First,

we collect an answer ai and an explanation ei
for each (qi, ci) instance in So, resulting in an

updated So = {(q, c, a, e)}. A neural module

teacher Gi will be constructed from each expla-

nation ei, enabling it to answer questions similar

to (qi, ci). All neural module teachers acting to-

gether can be viewed as an ensemble teacher G.

We then apply G to unannotated (q, c) pairs in S,

getting Sa = {(q, c, a)}, a strictly-labeled dataset

that G can directly answer. The remaining un-

matched instances are denoted as Su = {(q, c)}.

After softening the constraints in each Gi, we

get a noisily-labeled dataset Sp = {(q, c, a, z)}
from Su, where z is a confidence score given by

G. Notably, we will refer to the (qi, ci, ai) part

in (qi, ci, ai, ei) ∈ So as the “reference instance”

for explanation ei, since we will frequently check

(qi, ci, ai) “for reference” when we apply Gi to

new, unseen instances.

Sa and Sp are significantly larger in size than

So and thus provide more sufficient supervision.

We use Sa and Sp to train a downstream MRC

model F. We denote this method as NMTeacher-

DA. We further explore several variants, such as

(1) leveraging Su with semi-supervised methods;

and (2) joint training of G and F. We construct

our final model NMTeacher-Joint by incorporating

these variants. Note that our approach is model-

agnostic so that F can take any trainable form.

3 Neural Module Teacher

A neural module teacher (NMTeacher) acts as a

program that tries to answer questions following

an explanation. In this section, we introduce the

basic modules used for rule execution (Sec. 3.1),

discuss how variables and rules are obtained from

explanations (Sec. 3.2), and present how a neural

module teacher derives answers (Sec. 3.3).

1601

FILL Module: (sref , pref , s) → p

Description: Select the span p in a given sentence s that plays the

same syntactic role of span pref in sentence sref .

Example: sref = How is packet switching characterized?

pref = [2,3] (packet switching)

s = How is hunting regulated?

→ p = [2,2] (hunting)

FIND Module: (qref , pref , s) → p

Description: Find the span p in a context sentence s that refers to the

span pref in the question qref .

Example: qref = How is a promoter sequence recognized?

pref = [2,4] (a promoter sequence)

s = The promoter is recognized and bound by ...

→ p = [1,1] (promoter)

COMPARE Module: (d0, d1) → p

Description: Softly evaluate the statement d1 ≤ d0.

Example: d0 = 0, d1 = 1 → p = 0.75; d0 = 4, d1 = 2 → p = 1

LOGICAND Module: (p1, p2) → p

Description: Perform soft logic AND to two scalar probabilities.

Example: p1 = 0.9, p2 = 0.8 → p = 0.7; p1 = 1, p2 = 1 → p = 1

Table 2: Summary of atomic modules used in rule
execution. Rules constructed from explanations inter-
nally call these modules to fulfill complex functionali-
ties. For example, LEFT(X,Y) is transformed to COM-
PARE(DISTANCE(FIND(X), FIND(Y)), 0)

3.1 Atomic Modules

We define four types of atomic modules that can be

composed to create neural module teachers: FILL,

FIND, COMPARE and LOGIC. Each can support

strict and softened matching criteria as a part of

generating training instances for downstream use.

We summarize their usage in Table 2 and introduce

them in detail in the following.

FILL. When humans encounter a new question,

they can detect structural similarities to previous

questions. For example, humans will note that How

is hunting
✿✿✿✿✿✿✿✿

regulated? is structually similar to How

is packet switching
✿✿✿✿✿✿✿✿✿✿✿✿

characterized?, enabling them

to infer that answers to both might have a similar

structure (e.g., by doing sth...). To mimic this hu-

man intuition, we design a FILL module: given a

sentence sref and a span of interest pref , FILL will

predict analogous spans p in a new sentence s.

The strict version of FILL outputs spans p whose

named entity type, dependency parse structure, or

constituent parse structure1 matches pref . We en-

courage over-generation, since the rule execution

step later on will verify each candidate. When strict

matching produces nothing, we employ softened

matching techniques. Here, we first produce a con-

textualized phrase representation e
′ for pref . We

rank each candidate constituent p in sentence s

according to the similarity between e
′ and an anal-

ogous phrase representation e for p. We return the

1Identified using spaCy (https://spacy.io/)

top k such constituents along with their score.

To generate phrase representations, we first

encode the sentence with BERT-base model

(Devlin et al., 2019) and get representations

[h1,h2, ...,hm] for each token. We then apply

pooling over all tokens in span p to get the phrase

representation e. We considered both mean pool-

ing and attentive pooling (Bahdanau et al., 2014).

The similarity score between e and e
′ can be calcu-

lated using either cosine similarity or learned bilin-

ear similarity, i.e., Sim(e, e′) = tanh(eAe
′ + b),

where A is a learnable matrix. We discuss pre-

training and design choices for softened FILL mod-

ule in Sec. 4.1.

FIND. The FILL module finds a span p that plays

the same role as pref in its containing sentence.

In contrast, FIND looks for a span p that has the

same meaning as pref . For instance, if a query

mentions the explosion, we might want to identify

exploded as its counterpart in the paragraph being

searched for an answer. This module is similar to

the find module in Jiang and Bansal (2019) in its

motivation, while we design ours to be a ranking-

based module with discrete boundaries, so that the

output fits in the search procedure in Sec. 3.3.

The strict version of FIND module directly

looks for exact matches of the key pref . To ac-

count for synonyms, co-reference, and morpholog-

ical/spelling variation, we also build a softened

version using the same model structure as the FILL

module. We discuss the design choices and training

for the softened FIND module in Sec. 4.1.

COMPARE. In our annotation guidelines, we en-

courage annotators to describe the relative location

of spans in their explanations, e.g., X is within 3

words after Y. The COMPARE module executes

such distance comparisons. The strict version re-

quires the condition to be met exactly: P (d1 ≤
d0) = 1 when d1 ≤ d0, and P (d1 ≤ d0) = 0 oth-

erwise. In the softened version, we attempt instead

to indicate how close d1 ≤ d0 is to being true:

P (d1 ≤ d0) =

{

1 d1 ≤ d0;

max(1− 1
4
(d1−d0
|d0|+1

)2, 0) d1 > d0.
(1)

As an example, P (1 ≤ 0) = 0.75 (a near miss)

but P (5 ≤ 0) = 0 (due to the max in Eq. (1)).

LOGIC. The logic operations “and” and “or” of-

ten appear in explanations. A single explanation

may also contain multiple sentences, requiring a

1602

logical AND to aggregate them. In the strict ver-

sion of LOGIC, only boolean outputs of True (1)

and False (0) are allowed. In the softened ver-

sion, we use soft logic to aggregate two probabili-

ties, i.e., AND(p1, p2) = max(p1 + p2 − 1, 0) and

OR(p1, p2) = min(p1 + p2, 1).

3.2 Parsing Explanations to Executable Rules

When soliciting explanations, we encourage anno-

tators to think of each explanation as a collection

of variables and rules. This framing allows us to

effectively transform these explanations into exe-

cutable forms. We formally define the terms here:

Variables are phrases that may be substituted in a

question or answer when generalizing to unseen in-

stances. In Table 1, underlined and colored phrases

are all considered variables. Annotators are guided

to mark these spans explicitly, e.g., X is funeral.

Y is held. X is within 5 words of Y. Variables are

closely related to the design of the FILL module

since FILL aims to propose potential assignments

to these variables when it is given unseen instances.

Rules are statements that describe the characteris-

tics of variables and relationships between them.

When all variables in a rule are assigned, execution

of a rule will output either True or False (strict)

or a score between 0 and 1 (softened). Following

previous work (Srivastava et al., 2017; Wang et al.,

2020), we first use a Combinatory Categorial Gram-

mar (CCG) based semantic parser P (Zettlemoyer

and Collins, 2005) to transform explanations into

logical forms (e.g., from e to pj in Table 3). We

build a domain-specific lexicon for common ex-

pressions used in explanations. We then implement

the operation for each supported predicate (e.g.,

“@Is”, “@Direct”, “@Left”), which may internally

call atomic modules described in Sec 3.1. These

predicate implementations, together with the inher-

ent λ-calculus hierarchy from CCG, will yield the

final executable function fj as shown in Table 3.

3.3 Extracting Answer Spans

Rules introduced in Sec 3.2 can be executed to ver-

ify whether variable assignments are correct. In

other words, given a (q, c, a) triple, executing all

rules will give a boolean value (strict) or a confi-

dence score (softened) indicating the triple’s cor-

rectness. To actively output an answer, we need to

re-formulate the problem so that each neural mod-

ule teacher Gi takes (q, c) as input and gives an

answer span a and confidence score z as output.

To this end, we formulate the task of extracting

Explanation e: The answer is directly after X.

Parse pj: @Is(Answer, @Direct(@Right(X)))

Execution fj: COMPARE(DISTANCE(Ans,FIND(X)),0)

Explanation e: The answer is within 3 words before Z and

within 4 words after Y.

Parse pj: @Is(Answer,@And(@LessThan(@Left(Z), 3),

@LessThan(@Right(Y, 4)))

Execution fj: AND(COMPARE(DISTANCE(FIND(Z),Ans),3),

COMPARE(DISTANCE(Ans,FIND(Y)),4))

Table 3: Rules in three equivalent forms: explanation,
parse and underlying execution. Semi-structured explana-
tions are first parsed and later transformed to executable func-
tions. The execution form is composed of atomic modules
(Sec. 3.1).

the best answer span into a combinatorial search

problem, i.e., searching for the best combination of

variable assignments (including the answer).

To apply explanation ei to a new question,

candidates for each variable are first proposed

by the FILL module. We then look for the

best combination of variable assignments (achiev-

ing highest confidence) when evaluated using

the rules generated from ei. As a minimal

example, if FILL proposes {x1, x2} as poten-

tial assignments to variable X, and {a1, a2} to

ANS, we evaluate the four possible combinations

{(x1, a1), (x2, a1), (x1, a2), (x2, a2)} by applying

ei and select the one achieving the highest confi-

dence score. As the number of combinations ex-

pands significantly with the number of variables

and their candidates, we solve this problem with

beam search, progressively filling each variable and

in each step keeping the most promising combina-

tions (see Figure 6 and Algorithm 2 in Appendix

for more details). By doing so, we have com-

pleted our construction of neural module teacher

Gi from one semi-structured explanation ei. We

use Gi(q, c) = (a, z) to denote that given question

q and context c, neural module teacher Gi identi-

fies the answer span a with a confidence score z.

Multiple neural module teachers Gi may ensemble

into G by listing answer spans outputted by each

Gi and selecting the one with the highest z.

4 Learning to Augment with NMTeacher

4.1 Pre-training the Fill and Find Module

The softened FILL module is pre-trained with pairs

of (positive) matches (qref , sref , q, s) from strictly-

matching results Sa, including 99153 questions and

55202 contexts, divided into 70% train, 10% dev

and 20% test datasets. We use random constituents

in the sentence as negative training examples. For

the FILL module, we evaluated various model de-

1603

Algorithm 1 Learning with Explanations

Input: Tiny Dataset So = {(q, c)}, Large Unlabeled
Dataset S = {(q, c)}, Confidence Threshold t

Output: MRC Model F : (q, c)→ a
1: Collect Ans+Explanation for So: So ← {(q, c, a, e)}
2: // Construct Neural Module Teachers
3: G← ∅

4: for (qi, ci, ai) ∈ So do
5: Parse ei and construct neural module teacher Gi

6: if Gi(qi, ci) = (ai, 1.0) then
7: G = G ∪ {Gi} // Gi is validated
8: // Generate pseudo labels for S
9: Sa ← ∅, Sp ← ∅

10: for (q, c) ∈ S do
11: (a, z) = G(q, c) // z is confidence score
12: if z = 1 then
13: Sa ← Sa ∪ {(q, c, a)} // Strict Match
14: else
15: Su ← Su ∪ {(q, c)} // Unlabeled
16: if z > t then
17: Sp ← Sp ∪ {(q, c, a, z)} // Softened Match
18: // Train Downstream MRC Model F
19: F←Train(Sa,Sp,Su)
20: return F

signs described in section 3.1 and choose to use

attentive pooling and bilinear similarity.

The softened FIND module assesses semantic

similarity of phrases. We tried various datasets

as proxies for pre-training this ability, including

coreference resolution results on SQuAD corpus

(produced by Stanford CoreNLP (Manning et al.,

2014)) and paraphrase dataset (PPDB (Pavlick

et al., 2015)). We manually evaluated FIND module

performance with So, and we observe that using

mean pooling and cosine similarity without any

pre-training yields the best performance. We con-

jecture this may be caused by data bias (the train-

ing data not aligning with the purpose of the mod-

ule). Therefore, we use untrained BERT-base as

our FIND module to capture semantic similarities.

We leave manual evaluation results in Appendix B.

4.2 Training the MRC Model F

Our learning framework (Algorithm 1) uses our

ensemble neural module teacher G to answer each

(q, c) instance in S, resulting in three splits of

data instances: a strictly-matched set Sa, a softly-

matched dataset Sp and an unlabeled set Su. We

use these three sets to jointly learn our downstream

MRC model and NMTeacher, as described below.

Learning from Strictly-matched Data Sa. We

start by simply treating Sa as a labeled dataset, and

first train the downstream MRC model F with tra-

ditional supervised learning. We compare different

MRC models in our experiments. For simplicity,

we denote MRC Loss(B(i)) as the loss term de-

fined in these MRC models for the i-th instance in

batch B. In each step, we sample a batch Ba from

Sa and update the model with loss term L(Ba):

L(Ba) =

|Ba|
∑

i=1

1

|Ba|
· MRC Loss(B(i)

a). (2)

Learning from Softly-matched Data Sp. The

softly-matched set Sp is significantly larger in size

(than Sa) and may contain useful information for

training F. We blend in supervision from Sp by

adding a weighted loss term to the original loss

L(Ba). That is, we simultaneously sample a batch

Ba from Sa and a batch Bp from Sp. The loss term

for Bp is weighted and normalized by the confi-

dence score z from NMTeacher G,

wi =
exp(θtzi)

∑|Bp|
j=1 exp(θtzj)

, (3)

L(Bp) =

|Bp|
∑

i=1

wi · MRC Loss(B(i)
p), (4)

where θt in Eq. 3 is a temperature that controls

the normalization intensity. We then aggregate the

loss terms from Sp and Sa with coefficient β, i.e.,

Lap = L(Ba) + βL(Bp). We denote the method

up to this step as NMTeacher-DA.

Learning from Unlabeled Data Su. We further

learn from unlabeled data in Su by integrating ex-

isting semi-supervised methods. In brief, pseudo

labeling (PL) samples a batch Bu from Su, an-

notates it with the current MRC model F, and

calculates the loss term on this pseudo-labeled

batch Bu. The overall loss L term thus becomes

Lau = L(Ba) + βL(Bu). To mix in supervision

from unlabeled data, we formulate a r + 1 rotation

between sampling unlabeled batch Bu and softly-

matched batch Bp; we update MRC model F for r

steps using the semi-supervised method and loss

term Lau, and then update the model for one step

using softly-matched data and the loss term Lap.

Joint Training. Instance weight wi (Eq. 3) for

each softly-labeled instance in batch Bp is calcu-

lated with NMTeacher G, so we further allow gra-

dient backpropagation to trainable FILL and FIND

modules in G when optimizing loss term Lau. We

fix G at first and allow joint training after training

on F converges. This helps form consensus be-

tween NMTeacher G and the learned downstream

MRC model F, which we believe is helpful in de-

noising and refining the final MRC model. We

denote this final method as NMTeacher-Joint.

1604

#Explanations (|Sa|, |Sp|)
13 (131, 314) 26 (424, 1048) 52 (766, 2329)

EM F1 EM F1 EM F1

BiDAF (Sa) 3.66 ± 0.92 7.80 ± 0.84 5.49 ± 0.50 9.91 ± 0.34 8.21 ± 0.25 14.15 ± 0.40

+ NMTeacher-DA (Sp) 5.15 ± 0.45 8.51 ± 0.22 6.65 ± 0.34 11.46 ± 0.49 12.63 ± 0.86 19.99 ± 1.06

BERT-base (Sa) 10.52 ± 1.57 17.88 ± 2.09 19.90 ± 1.53 30.42 ± 1.53 28.84 ± 1.69 39.26 ± 2.12

+ NMTeacher-DA (Sp) 13.80 ± 1.29 23.39 ± 1.43 22.30 ± 2.78 32.96 ± 5.00 30.74 ± 2.48 41.28 ± 3.14

BERT-large (Sa) 13.27 ± 1.09 21.11 ± 2.26 25.90 ± 2.55 38.35 ± 2.38 34.66 ± 0.65 47.32 ± 0.60

+ NMTeacher-DA (Sp) 15.80 ± 1.64 27.45 ± 2.32 28.07 ± 2.27 41.95 ± 2.95 39.05 ± 1.36 51.65 ± 2.08

+ Self Training (Su) 15.25 ± 2.49 23.13 ± 2.84 30.43 ± 6.30 40.80 ± 4.53 43.55 ± 3.39 54.62 ± 4.40

+ Mean Teacher (Su) 11.84 ± 2.36 19.62 ± 2.37 32.80 ± 5.72 45.50 ± 4.61 41.86 ± 7.22 54.74 ± 5.80

+ Pseudo Labeling (Su) 14.82 ± 1.70 21.67 ± 2.96 38.10 ± 5.62 50.62 ± 7.30 50.45 ± 2.11 61.82 ± 1.32

+ NMTeacher-Joint (Sp + Su) 34.80 ± 14.16 44.00 ± 17.74 56.74 ± 1.27 70.14 ± 2.58 58.11 ± 0.95 70.67 ± 1.58

ALBERT-base (Sa) 30.12 ± 1.00 42.95 ± 1.65 39.24 ± 1.80 53.40 ± 2.87 44.57 ± 1.90 58.09 ± 0.59

+ NMTeacher-DA (Sp) 34.31 ± 1.23 46.59 ± 1.16 40.79 ± 0.78 55.22 ± 0.29 46.55 ± 1.04 59.80 ± 0.64

+ Self Training (Su) 35.45 ± 3.58 45.27 ± 3.71 46.21 ± 3.46 58.20 ± 4.04 47.08 ± 3.70 60.57 ± 4.11

+ Mean Teacher (Su) 29.35 ± 1.79 41.73 ± 1.07 40.92 ± 2.05 55.17 ± 2.36 52.16 ± 0.66 65.83 ± 1.52

+ Pseudo Labeling (Su) 27.35 ± 2.66 39.95 ± 4.24 38.56 ± 2.81 51.77 ± 2.53 43.76 ± 1.88 56.69 ± 2.50

+ NMTeacher-Joint (Sp + Su) 40.67 ± 5.48 52.49 ± 4.74 54.88 ± 3.16 70.21 ± 3.21 57.69 ± 0.77 71.75 ± 0.48

Table 4: Performance comparison on SQuAD using 13/26/52 explanations. Sa is the set of strictly matched instances
annotated by NMTeacher. Sp is the set of softly matched instances by using softened modules in rule execution. Sp constantly
brings improvements over model trained solely on Sa, showing that the usage of softly-matched but noisy data are beneficial.
Such improvement is most significant in extreme low-resource cases with 13 explanations. Best performance is achieved when
semi-supervised learning on unlabeled data Su and joint training of NMTeacher and MRC model are enabled (NMTeacher-Joint).

Statistics / Dataset SQuAD NQ

Collected raw explanations 2,065 1,220

Accepted explanations 570 343

Parsable explanations 163 109

Validated explanations 130 89

Average # sentences per explanation 4.31 4.51

Average # tokens per explanation 38.87 41.28

Average # variables per explanation 1.96 1.47

Table 5: Statistics of the collected explanations.

5 Experiments

5.1 Experiment Setup

Datasets. (1) SQuAD v1.1 (Rajpurkar et al.,

2016) contains over 10k crowd-sourced MRC in-

stances. All questions are answerable. (2) Natural

Questions (NQ) (Kwiatkowski et al., 2019) con-

tains questions from Google search queries, paired

with related Wikipedia articles. To keep consistent

with our settings, we assume “the long answer is

given, and a short answer is known to exist” and

preprocess NQ into the same format as SQuAD.

We discard instances whose (1) long answer is not

free-form text (e.g., table, list); or (2) short answer

contains multiple short spans.

Evaluation. Use of the official SQuAD and NQ

test sets is restricted, so we construct our own dev

and test sets by splitting the official dev sets in

half.2 Hyper-parameters and the best checkpoint

are selected on the dev set. We use the SQuAD offi-

cial evaluation script and report Exact Match (EM)

and F1 score on both the dev set (in Appendix)

and test set (in Sec 5.2). Note that this is different

2SQuAD: 5537 dev / 5033 test. NQ: 1252 dev / 1252 test.

from the long-/short-answer metrics for NQ official

evaluation. We report 3-run average and standard

deviation using 3 different random seeds.

MRC Models. Importantly, our approach is

model-agnostic. We test our framework using the

following three models as MRC model F. (1)

BiDAF (Seo et al., 2016), which adopts hierarchi-

cal architecture and attention mechanism to model

question-context interactions; (2) BERT (Devlin

et al., 2019), a pre-trained language model with

an additional output layer for MRC3; and (3) AL-

BERT (Lan et al., 2020), a lite and top-performing

model on SQuAD leaderboard.

Semi-supervised Methods. We compare and

enhance NMTeacher with the following semi-

supervised methods: (1) Self Training (ST)

(Rosenberg et al., 2005) iteratively annotates unla-

beled instances with maximal confidence in each

epoch; (2) Pseudo Labeling (PL) (Lee, 2013)

trains a weak model on labeled data first and anno-

tates unlabeled batches as supervision. (3) Mean

Teacher (MT) (Tarvainen and Valpola, 2017) in-

troduces consistency loss between a student model

and a teacher model (the exponential moving aver-

age of student models from previous steps).

Explanation Collection. Table 5 provides statis-

tics on the explanations we collected for this effort.

We refer readers to Appendix E for more details,

including our crowd-sourcing interface and guide-

lines. On average, annotators spend 43 seconds to

3We use BERT-l as a short hand for BERT-large and BERT-
b for BERT-base in following analysis.

1605

#Explanations (|Sa|, |Sp|)
18 (98, 539) 36 (107, 647) 54 (273, 1047)

EM F1 EM F1 EM F1

BERT-l (Sa) 11.63 ± 1.52 20.86 ± 1.78 15.26 ± 0.55 24.89 ± 1.47 14.24 ± 0.74 24.85 ± 1.77

+ NMTeacher-DA (Sp) 17.47 ± 0.76 28.30 ± 0.42 20.77 ± 2.04 31.86 ± 2.37 19.33 ± 2.44 31.56 ± 2.55

+ Self Training (Su) 15.92 ± 2.13 25.17 ± 0.65 18.42 ± 0.67 27.85 ± 0.46 17.49 ± 1.67 26.18 ± 0.55

+ Mean Teacher (Su) 14.67 ± 0.32 24.63 ± 0.57 17.94 ± 0.93 27.71 ± 0.98 17.63 ± 1.32 27.12 ± 1.24

+ Pseudo Labeling (Su) 17.86 ± 1.71 25.47 ± 0.36 20.18 ± 2.35 27.60 ± 2.40 16.56 ± 0.41 25.80 ± 0.66

+ NMTeacher-Joint (Sp + Su) 17.36 ± 0.70 28.36 ± 1.09 23.22 ± 1.74 33.93 ± 2.16 24.04 ± 2.90 34.90 ± 2.65

ALBERT-b (Sa) 19.62 ± 2.39 27.84 ± 2.89 21.78 ± 2.93 31.20 ± 3.46 21.19 ± 1.80 32.08 ± 1.48

+ NMTeacher-DA (Sp) 21.17 ± 1.48 30.67 ± 2.47 25.93 ± 3.91 35.82 ± 3.73 23.16 ± 4.26 33.89 ± 3.59

+ Self Training (Su) 19.41 ± 1.31 28.04 ± 1.71 22.15 ± 2.50 31.09 ± 2.30 21.65 ± 2.92 31.08 ± 2.93

+ Mean Teacher (Su) 20.26 ± 0.65 29.25 ± 0.14 24.71 ± 3.38 33.66 ± 3.65 28.06 ± 2.48 37.91 ± 2.15

+ Pseudo Labeling (Su) 18.88 ± 1.98 27.28 ± 1.88 23.30 ± 2.67 31.96 ± 1.46 20.23 ± 1.43 30.62 ± 2.63

+ NMTeacher-Joint (Sp + Su) 24.12 ± 4.12 34.65 ± 5.03 30.56 ± 2.42 41.14 ± 3.10 29.45 ± 3.64 41.14 ± 3.14

Table 6: Performance comparison on NQ using 18/36/54 explanations. Similar trends as in Table 4 can be observed.

annotate an answer and 151 seconds to annotate

both an explanation and an answer (3.5x slower

compared to annotating answer only).

5.2 Performance Comparison

Main Results. Tables 4 and 6 show results of dif-

ferent MRC models, with different numbers of

explanations used. The baseline for each model

uses as training the strictly-matched instances (Sa)

generated using the explanations. For all models,

performance then improves when we include the

softly-matched instances (Sp). We show in Fig. 2

that this pattern largely continues even as we further

increase the number of explanations, showing that

noisy labels are of highest value in low-resource

settings but still continue to provide value as train-

ing sizes increase. In most cases, performance im-

proves further when trained with semi-supervised

learning and Su. Finally, performance is best when

we make full use of Sa, Sp and Su, and jointly train

F and G (NMTeacher-Joint).

Efficiency Study. We demonstrate NMTeacher’s

efficiency by controlling annotation time. Given

a fixed amount of time t, we denote S
(t)
r as plain

answers that could be collected in t; S
(t)
a and S

(t)
p

as strictly and softly matched data generated by

answers + explanations collected in t. We train a

BERT-l MRC model in the following settings: (1)

Supervised learning with S
(t)
r ; (2) NMTeacher-DA

with S
(t)
a and S

(t)
p ; (3) NMTeacher-Joint. Fig. 3

shows that NMTeacher significantly improves per-

formance over the baseline when annotation time

is constant. Additionally, we found that the 70.14%

F1 score achieved with 26 explanations, requires

1,100 annotated examples if put in supervised learn-

ing setting. This gives a 12x annotation speed up.

No. Training Supervision EM F1

(1) Sa 44.57 ± 1.90 58.09 ± 0.59

(2) Sa+Sp 46.55 ± 1.90 59.80 ± 0.64

(3) S∗

a 52.14 ± 2.02 64.25 ± 1.89

(4) S∗

a+S∗

p 59.67 ± 0.33 71.55 ± 0.34

(5) Sr(|Sr| = |Sa|) 59.15 ± 0.88 71.40 ± 0.61

(6) Sr(|Sr| = |Sa|+ |Sp|) 69.27 ± 0.30 80.09 ± 0.66

Table 7: Analysis on Matching Quality. Sa and Sp are
obtained with 52 explanations. S∗

a denotes instances in Sa
paired with human annotations. Sr is randomly sampled from
SQuAD with size controlled to be equal to |Sa| or |Sa|+ |Sp|.

13 19 26 39 52 104 130
Explanations

20

30

40

50

60

70

F1
 sc

or
e

(%
)

BERT-l(a)
 +Mean Teacher(u)
 +NMTeacher-DA(p)
 +NMTeacher-Joint(p + u)

Figure 2: Performance changes with respect to number
of explanations on SQuAD. Performance of the proposed
method grow progressively with more explanations.

5.3 Performance Analysis

Matching Noise/Bias. Our proposed method hy-

pothesizes new training examples, which may be

noisy even when “strictly matched”. The matched

instances may also be more similar than desired

to the reference instances. To assess the impact of

these two factors, we look at the strictly-matched

set Sa and the softly-matched set Sp generated with

52 SQuAD explanations. We define S∗

a and S∗

p , ver-

sions of these sets with human-annotated answers

(i.e., no noise). We then train an ALBERT-b model

with supervision in the following six settings: (1)

Sa; (2) Sa and Sp; (3) S∗

a ; (4) S∗

a and S∗

p ; (5) Sr, a

set of randomly sampled SQuAD training instances

with size |Sa|; (6) Sr of size |Sa| + |Sp|. Results

are listed in Table 7. Comparing (1) and (3), we

observe a 6.16% F1 gap caused by noise in strict

matching; Comparing (2) and (4), we see that the

1606

3365 131 261 326
Time (min)

0

100

200

300

400

500

600

of

 A
nn

ot
at

io
n

26 52
104 130

92

184

368

460
#Ans
#Ans+Expl

33 65 131 261 326
Time (min)

0

10

20

30

40

50

60

70

80

F1
 sc

or
e

(%
)

57.3153.64

35.22

16.37
10.27

62.7558.17
51.65

41.95

27.45

72.4272.1670.6770.14

44.00

Supervised (Ans)
NMTeacher-DA (Ans+Expl)
NMTeacher-Joint (Ans+Expl)

Figure 3: Study on Annotation Efficiency. We compare
model performance when annotation time is held constant;
NMTeacher-Joint consistently outperforms the baseline with-
out explanations (e.g., 70.14% vs. 16.37% F1 score with 65
minutes annotation). BERT-l is used as MRC model.

102 103 104 105

Number of Additional Training Data
10

20

30

40

50

60

70

80

90

F1
 sc

or
e

(%
)

Supervised(r)
+NMTeacher-DA(a + p)

Figure 4: Augmenting Labeled Instances with Explana-
tions in medium-/high-resource scenarios. Please refer to
Sec 5.3 for in-depth analysis.

gap is further widened, since there are more noises

in softly-matched data. Comparing (3) and (5), we

see a 7.15% F1 gap mainly caused by bias in the

instances matched by NMTeachers. We believe

addressing these two issues will improve model

performance, and we leave this as future work.

Medium and High Resource Scenarios. Go-

ing beyond low-resource scenarios, we examine

NMTeacher’s capability in medium- and high-

resource scenarios. Similar to the few-shot eval-

uation in Lewis et al. (2019), we randomly sam-

ple different number of human-annotated instances

from SQuAD as Sr. The size of Sr range from 100

to 80k. We train a BERT-l MRC model using Sr

along with Sa, Sp generated with 52 explanations.

We compare with training the MRC model using

Sr only. Fig. 4 shows that when a medium-size

Sr is readily available (|Sr| < 5k), augmenting

it with NMTeacher is still beneficial. In practice,

this could be particularly useful when a defect is

observed in the trained model (e.g., a certain type

of question is answered poorly). A small set of ex-

planations could be collected rapidly and used by

NMTeacher to remedy the defect. Benefits brought

by NMTeacher become marginal when labeled data

set become larger (|Sr| > 10k).

Ablation Study on Modules. To evaluate the ef-

fect of the softened module execution, we progres-

sively turn on the softened version of FIND, FILL

26 exps 52 exps
20

25

30

35

40

45

25
.90

34
.66

27
.32

34
.22

27
.49

35
.64

28
.07

39
.05

Exact Match
base
+find
+fill
+compare

26 exps 52 exps
30

35

40

45

50

55

60

38
.35

47
.32

41
.40

48
.08

41
.40

48
.76

41
.95

51
.65

F1 score

Figure 5: Ablation study on atomic modules. Fill, Find and
compare modules are switched to softened mode consecutively.
Rule softening in each module contributes to improve final
MRC model performance.

and COMPARE in NMTeacher matching process,

use matched data to train the downstream MRC

model F in NMTeacher-DA setting, and report the

final performance. The evaluation results are pre-

sented in Fig. 5. Results show that softening each

module contributes to performance improvement.

Additional Analysis. We refer readers to Ap-

pendix B for additional matching quality analysis,

and manual evaluation of trainable modules.

5.4 Discussion

Assumptions on Unlabeled Data. In Sec. 2 we as-

sumed that a large set S of (q, c) pairs (without an-

swer annotation) is readily available. We acknowl-

edge that annotators for SQuAD dataset are shown

only context c and then required to provide (q, a)
pairs, so that (q, c) pairs are not free. However,

the curation of Natural Questions starts with users’

information-seeking questions and draws support

from information retrieval to get (q, c) pairs. In this

case our method has its practical value. We con-

sider SQuAD as a testbed for our approach, while

NQ fits the assumptions better.

Design efforts and time cost. Our approach high-

lights efficiency during annotation, while the ef-

forts in designing are not taken into account. We

agree these efforts are non-trivial, yet they’re hard

to quantify. We’re optimistic about efficiency since

these efforts will be amortized when our approach

is reused or extended to other datasets/tasks. In our

study, we started with building lexicons and mod-

ules for SQuAD, but we didn’t make additional

efforts when we adapted to NQ. This demonstrates

flexibility across different datasets. To extend our

work to new tasks, some components in our study

may be reused, and we hope users can learn from

our experience to expedite their customization.

Results with 36/54 explanations on NQ. It is ob-

served that on NQ dataset (Tabel 6), using 36 and

54 explanations both achieves 41% F1 score. We

1607

conjecture part of the reason to be random sub-

sampling of expalantions from a larger pool, since

(1) each explanation has different representation

power and generalization ability; (2) subsampled

explanations could describe similar things and lack

diversity. Our discussion on matching quality/bias

(Sec. 5.3) may also account for this. We think en-

suring diversity during explanation collection and

enforcing instance weighting during training may

help alleviate these issues, but will leave this as

future work.

6 Related Work

Learning with Explanations. Srivastava et al.

(2017) first propose to use explanations as fea-

ture functions in concept learning. Hancock et al.

(2018) proposed BABBLELABBLE for training clas-

sifiers with explanations in data programming set-

ting, which uses explanations to provide labels in-

stead of features. Wang et al. (2020) proposed

NEXT to improve generalization of explanations

with softened rule execution. Both BABBLELAB-

BLE and NEXT highlight annotation efficiency in

low-resource settings. To the best of our knowl-

edge, we are the first to study soliciting explana-

tions for MRC, which is intrinsically more chal-

lenging than classification tasks in existing works.

Concurrent with our work, Lamm et al. (2020) pro-

posed QED, a linguistically-grounded framework

for QA explanations, which decomposes the steps

to answer questions into discrete steps associated

with linguistic phenomena. Related to our work,

Dua et al. (2020) collect context spans that “should

be aggregated to answer a question” and use these

annotations as auxiliary supervision.

Learning from Unlabeled data. A notable line

of work focuses on enforcing consistency on un-

labeled data by regularizing model predictions to

be invariant to noise-augmented data (Xie et al.,

2019; Yu et al., 2018). Consistency can also be en-

forced through temporal ensemble (Laine and Aila,

2017; Tarvainen and Valpola, 2017). Another line

of work uses bootstrapping – first training a weak

model with labeled data; then use model prediction

on unlabeled data as supervision (Carlson et al.,

2009; Yang et al., 2018a). Our proposed method

is non-conflicting with semi-supervised strategies

and we enhance NMTeacher with these strategies

to achieve the best performance.

Neural Module Networks. Neural module net-

works (NMNs) are dynamically composed of indi-

vidual modules of different capabilities. It was first

proposed for VQA tasks (Andreas et al., 2016b,a;

Hu et al., 2017). Recently in NLP community, read-

ing comprehension requiring reasoning (Yang et al.,

2018b; Dua et al., 2019; Amini et al., 2019) are pro-

posed and widely studied. Recent works (Jiang and

Bansal, 2019; Gupta et al., 2020) generally adopt a

parser that gives a sequence of operations to derive

the final answer. Our work differs in that (1) opera-

tions are constructed from explanations instead of

questions; (2) NMTeacher provides supervision, in-

stead of being used as final MRC model and trained

in a fully-supervised manner. We limit our scope

to SQuAD-style MRC tasks in this paper and leave

other challenging tasks as future work.

Unsupervised and Few-shot Learning for MRC.

Several lines of work share the same goal of reduc-

ing dependency on human annotation for MRC.

This goal can be approached from different per-

spectives. (1) “Distant” Supervision: to generate

“proxy” training examples automatically (Dhingra

et al., 2018; Lewis et al., 2019; Li et al., 2020);

(2) Learning Efficiency: a model learns quickly

with minimal supervision (Radford et al., 2019;

Chan et al., 2019); (3) Annotation Efficiency: to

create a dataset efficiently with time limit/budget;

our work falls into this category. We believe these

perspectives are non-conflicting with each other. It

would be interesting to see whether and how meth-

ods from these perspectives can be integrated, and

we leave this as future work.

7 Conclusion

In this paper, we propose to teach extractive MRC

with explanations, with a focus on annotation effi-

ciency. We believe explanations stating “why” and

justifying “deduction process” opens up a new way

to communicate human’s generalization abilities

to MRC model training. We begin with a small

set of semi-structured explanations and compose

NMTeachers to augment training data. NMTeach-

ers are modularized functions where each module

has a strict and softened form, enabling broader

coverage from each explanation. Extensive ex-

periments on different datasets and MRC models

demonstrate the efficiency of our system. Having

achieved encouraging results for MRC, we look

forward to extending this framework to tasks such

as non-fact-based QA and multi-hop reasoning.

1608

Acknowledgments

This research is based upon work supported in part

by the Office of the Director of National Intelli-

gence (ODNI), Intelligence Advanced Research

Projects Activity (IARPA), via Contract No. 2019-

19051600007, United States Office Of Naval Re-

search under Contract No. N660011924033, and

NSF SMA 18-29268. The views and conclusions

contained herein are those of the authors and should

not be interpreted as necessarily representing the

official policies, either expressed or implied, of

ODNI, IARPA, or the U.S. Government. We would

like to thank anonymous reviewers and collabora-

tors in USC INK research lab for their constructive

feedback.

References

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. MathQA: Towards interpretable math
word problem solving with operation-based for-
malisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2357–2367, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016a. Learning to compose neural net-
works for question answering. In Proceedings of the
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1545–1554, San
Diego, California. Association for Computational
Linguistics.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016b. Neural module networks. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Andrew Carlson, Scott Gaffney, and Flavian Vasile.
2009. Learning a named entity tagger from gazetteers
with the partial perceptron. In AAAI Spring Sympo-
sium: Learning by Reading and Learning to Read.

William Chan, Nikita Kitaev, Kelvin Guu, Mitchell
Stern, and Jakob Uszkoreit. 2019. Kermit: Genera-
tive insertion-based modeling for sequences. arXiv
preprint arXiv:1906.01604.

Gerald DeJong and Raymond Mooney. 1986.
Explanation-based learning: An alternative view.
Machine learning, 1(2):145–176.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Bhuwan Dhingra, Danish Danish, and Dheeraj Ra-
jagopal. 2018. Simple and effective semi-supervised
question answering. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages
582–587, New Orleans, Louisiana. Association for
Computational Linguistics.

Dheeru Dua, Sameer Singh, and Matt Gardner. 2020.
Benefits of intermediate annotations in reading com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5627–5634, Online. Association for Computa-
tional Linguistics.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2368–2378, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Dan Goldwasser and Dan Roth. 2014. Learning from
natural instructions. Machine learning, 94(2):205–
232.

Nitish Gupta, Kevin Lin, Dan Roth, Sameer Singh, and
Matt Gardner. 2020. Neural module networks for
reasoning over text. In International Conference on
Learning Representations.

Braden Hancock, Paroma Varma, Stephanie Wang, Mar-
tin Bringmann, Percy Liang, and Christopher Ré.
2018. Training classifiers with natural language ex-
planations. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1884–1895, Mel-
bourne, Australia. Association for Computational
Linguistics.

Ronghang Hu, Jacob Andreas, Marcus Rohrbach,
Trevor Darrell, and Kate Saenko. 2017. Learning
to reason: End-to-end module networks for visual
question answering. In Proceedings of the IEEE In-
ternational Conference on Computer Vision (ICCV).

Yichen Jiang and Mohit Bansal. 2019. Self-assembling
modular networks for interpretable multi-hop rea-
soning. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing

1609

and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4474–4484, Hong Kong, China. Association for Com-
putational Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452–466.

Samuli Laine and Timo Aila. 2017. Temporal ensem-
bling for semi-supervised learning. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

B. M. Lake, Tal Linzen, and M. Baroni. 2019. Human
few-shot learning of compositional instructions. In
CogSci.

Matthew Lamm, Jennimaria Palomaki, Chris Alberti,
Daniel Andor, Eunsol Choi, Livio Baldini Soares,
and Michael Collins. 2020. Qed: A framework and
dataset for explanations in question answering. arXiv
preprint arXiv:2009.06354.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Confer-
ence on Learning Representations.

Dong-Hyun Lee. 2013. Pseudo-label: The simple and
efficient semi-supervised learning method for deep
neural networks. In Workshop on challenges in rep-
resentation learning, ICML, volume 3, page 2.

Patrick Lewis, Ludovic Denoyer, and Sebastian Riedel.
2019. Unsupervised question answering by cloze
translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4896–4910, Florence, Italy. Association for
Computational Linguistics.

Zhongli Li, Wenhui Wang, Li Dong, Furu Wei, and
Ke Xu. 2020. Harvesting and refining question-
answer pairs for unsupervised QA. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 6719–6728, On-
line. Association for Computational Linguistics.

Tal Linzen. 2020. How can we accelerate progress
towards human-like linguistic generalization? In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5210–
5217, Online. Association for Computational Lin-
guistics.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language

processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguis-
tics: system demonstrations, pages 55–60.

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch,
Benjamin Van Durme, and Chris Callison-Burch.
2015. PPDB 2.0: Better paraphrase ranking, fine-
grained entailment relations, word embeddings, and
style classification. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 425–430, Beijing, China. Asso-
ciation for Computational Linguistics.

A. Radford, Jeffrey Wu, R. Child, David Luan, Dario
Amodei, and Ilya Sutskever. 2019. Language models
are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Chuck Rosenberg, Martial Hebert, and Henry Schneider-
man. 2005. Semi-supervised self-training of object
detection models. WACV/MOTION, 2.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603.

Shashank Srivastava, Igor Labutov, and Tom Mitchell.
2017. Joint concept learning and semantic parsing
from natural language explanations. In Proceedings
of the 2017 conference on empirical methods in natu-
ral language processing, pages 1527–1536.

Antti Tarvainen and Harri Valpola. 2017. Mean teachers
are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning re-
sults. In Advances in neural information processing
systems, pages 1195–1204.

Ziqi Wang, Yujia Qin, Wenxuan Zhou, Jun Yan,
Qinyuan Ye, Leonardo Neves, Zhiyuan Liu, and Xi-
ang Ren. 2020. Learning from explanations with
neural execution tree. In International Conference
on Learning Representations.

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Lu-
ong, and Quoc V Le. 2019. Unsupervised data aug-
mentation for consistency training. arXiv preprint
arXiv:1904.12848.

1610

Yaosheng Yang, Wenliang Chen, Zhenghua Li,
Zhengqiu He, and Min Zhang. 2018a. Distantly su-
pervised NER with partial annotation learning and
reinforcement learning. In Proceedings of the 27th
International Conference on Computational Linguis-
tics, pages 2159–2169, Santa Fe, New Mexico, USA.
Association for Computational Linguistics.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018b. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Adams Wei Yu, David Dohan, Quoc Le, Thang Luong,
Rui Zhao, and Kai Chen. 2018. Qanet: Combining
local convolution with global self-attention for read-
ing comprehension. In International Conference on
Learning Representations.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.
In Proceedings of the Twenty-First Conference on
Uncertainty in Artificial Intelligence, UAI’05, page
658–666, Arlington, Virginia, USA. AUAI Press.

1611

A Case Study

Strictly-matched instances. Table 8 shows two

examples of strictly-matched instances. In the first

example, the explanation specified how to answer

questions similar to “In what year did X (sth.)

begin”. Intuitively, the answer should be a year

number right after “since”, and the entity before

“begin” should be a keyword. In the second exam-

ple, questions following the pattern “when was X

(sth.) Y (done)” are explained and the answer

is typically a date after “on”. Also, the verb “done”

should be directly before “on” and the answer.

Softly-match Instances. Table 9 shows two ex-

amples of softly-matched instances. In the first

example, the distance between Y and Z is three in

the question, while the explanation specifies there

should be less than two words between them. With

COMPARE module, the correct answer is found

with high confidence of 97.22%. In the second

example, the explanation specifies Y to be an ad-

jective phrase. With FILL module, a verb in the

past tense, “purified”, is also listed as a potential fit

for variable Y, and this gives the correct answer “a

secret lake” with a confidence score of 72.48%.

Reference Instance

Q: In what year did Film Fest New Haven begin?

C: ... The Film Fest New Haven has been held annually since

1995.

A: 1995

Semi-structured Explanation

X is “Film Fest New Haven”. The question starts with “In what

year”, so the answer should be a year. “begin” is in the question. X

is directly after “did” and directly before “begin” in the question.

“since” is directly before the answer.

Strictly-matched Instance

Q: In what year did the Music of the Night begin?

C: ... Since 1992 the Music of the Night has been performed

in the Royal Citadel by the 29 Commando Regiment and local

performers to raise money for local and military charities. ...

A: 1992

Reference Instance

Q: When was Queen Victoria’s funeral
✿✿✿✿

held?

C: Her funeral was
✿✿✿✿

held on Saturday, 2 February, in St George’s

Chapel, Windsor Castle, and after two days of lying-in-state ...

A: Saturday, 2 February

Semi-structured Explanation

X is “funeral”. Y is “
✿✿✿✿

held”. In the question X is within 4 words

after “when was” and Y is directly after X. “on” is directly before

the answer. Y is within 2 words before the answer. X is within 3

words

left of Y. The question starts with “when”, so the answer should

be a date.

Strictly-matched Instance

Q: When was independence
✿✿✿✿✿✿✿✿

declared?

C: ... Independence was
✿✿✿✿✿✿✿✿

declared on 24 September 1973.

A: 24 September 1973

Table 8: Examples of strictly-matched instances.

Reference Instance

Q: Who did Estonia
✿✿✿✿

rebel
✿✿✿✿✿✿✿✿

against in 1343?

C: ... In 1343, the people of northern Estonia and Saaremaa
✿✿✿✿✿

rebel

✿✿✿✿✿✿✿

against German rule in the St. George’s Night Uprising , which

was put down by 1345. ...

A: German rule

Semi-structured Explanation

X is “Estonia”. Y is “
✿✿✿✿✿

rebel
✿✿✿✿✿✿✿

against”. Z is “1343”. In the question,

Y is directly after X and Z is within 2 words after Y. Z is a year.

The answer directly follows Y. X is within 3 words before Y.

Softly-matched Instance

Q: The Slavs
✿✿✿✿✿✿✿✿✿

appeared
✿✿✿✿

on whose borders around

the 6th century?

C: ... Around the 6th century, Slavs
✿✿✿✿✿✿✿✿✿

appeared
✿✿✿

on Byzantine

borders in great numbers. ...

A: Byzantine borders (Confidence z = 97.22%)

Note

Z (the 6th century) is 3 words after Y (appeared on) in the question,

which slightly breaks the constraint “Z is within 2 words after Y”.

This is captured by COMPARE module.

Reference Instance

Q: Where is hydrogen
✿✿✿✿✿✿

highly
✿✿✿✿✿✿✿

soluble?

C: ... Hydrogen is
✿✿✿✿✿✿

highly
✿✿✿✿✿✿✿

soluble in many rare earth and transi-

tion metals and is soluble in both nanocrystalline and amorphous

metals. ...

A: many rare earth and transition metals

Semi-structured Explanation

X is “hydrogen”. Y is “
✿✿✿✿✿✿

highly
✿✿✿✿✿✿✿

soluble”. Y is directly after X and

X is directly after “where is” in the question. X is within 5 words

before Y. Y is within 2 words before the answer. “in” directly

before the answer. “is” is between X and Y.

Softly-matched Instance

Q: Where is the divinity herself
✿✿✿✿✿✿✿✿

purified?

C: ... Afterwards the car, the vestments, and, if you like to believe

it, the divinity herself, are
✿✿✿✿✿✿✿✿

purified in a secret lake. ...

A: a secret lake (Confidence z = 72.48%)

Note

In the reference instance, Y (highly soluble) is supposed to be

an adjective phrase. In the new instance, FILL module suggested

“purified” to be a promising candidate for variable Y.

Table 9: Examples of softly-matched instances.

B Additional Performance Analysis

Performance of Fill and Find module The

FILL module is evaluated on the test split of hard-

matched question pairs and context pairs, as de-

scribed in Sec. 4.1. The FIND module is evalu-

ated through manual inspection on model’s pre-

dictions on instances in So. For each sentence in

the test set, we enumerate all possible constituents,

let the model rank these spans. We take top-n

(n = 1, 3, 5, 10 for FILL module and n = 1 for

FIND module) spans as output. We use recall (at

n) rn = p
q

as metric for evaluation, where p is the

number of correct spans found in top-n outputs and

q is the number of all correct spans. Evaluation

results for Fill and Find module are shown in Ta-

ble 10. As n gets large, the top-n outputs from

the FILL module are able to identify most of the

correct spans.

1612

Recall@n (%) Top-1 Top-3 Top-5 Top-10

Fill (Questions) 68.50 88.01 94.66 98.93

Fill (Contexts) 95.64 97.45 98.22 98.73

Find 41.00 - - -

Table 10: Evaluation on Fill and Find module. We evalu-
ate Fill on the test split (described in Sec. 4.1) and Find on
collected explanations and their reference instances.

Further Analysis on Matching Quality. To ex-

amine the distribution of matched data, we list the

“question heads” in Sa and found the top 8 to be:

when did (22.08%); what year (8.51%); how many

(8.1%); who was (7.27%); what did (6.43%); what

percentage (5.39%); what does (5.26%); how long

(4.35%). This observation demonstrates the expla-

nations we collect cover a wide range of question

types. Yet, the distribution of input data has far

more aspects than question heads. Our current im-

plementation and design may not explain complex

questions that require multi-step reasoning abilities,

and this may result in strong biases in Sa and Sp.

To examine the labeling accuracy, we directly

evaluate annotations obtained with the neural mod-

ule teacher G against human annotations. On

SQuAD with 52 explanations, 72.19% EM and

83.35% F1 is achieved on the 766 strictly-matches

instances in Sa. Noises in annotations generated

with neural module teachers G will also cause per-

formance downgrade in the final model F; and thus

denoising matched instances will help improve per-

formance. Joint training may partially resolve this

by encouraging consensus between G and MRC

model F; meanwhile we encourage future research

in this direction.

C Beam Search Algorithm for Neural

Module Teacher

In Sec. 3.3 we mentioned the usage of beam search

algorithm to search for the best combination of

variable assignments. We provide the details in the

Algorithm 2.

D Reproducibility

Computing Infrastructure. Based on GPU

availability, we train our models on either Quadro

RT 6000, GeForce RTX 2080 Ti or GeForce GTX

1080 Ti. All of our models are trained on single

GPU. NMTeacher-Joint requires optimizing both

NMTeacher modules and MRC models, so we use

Quadro RT 6000 for related experiments.

Algorithm 2 Beam Search for NMTeacher

1: Input: Neural Module Teacher Gi, Instance (q, c), Vari-
able Candidates, Beam Width w, Threshold t

2: m = number of variables in Gi

3: Initialize PREVSTATES.
4: for j = 1 to m do
5: CURRENTSTATES← ∅

6: for STATE in PREVSTATES do
7: V ← next unfilled variable
8: for CANDIDATE in (CANDIDATES for V) do
9: Fill V in STATE

10: z ← confidence score of
evaluating STATE with Gi

11: if z > t then
12: CURRSTATES.append(STATE)
13: Sort (descending) CURRSTATES by z
14: PREVSTATES← top w states in CURRSTATES

15: return CURRSTATES

Number of Parameters. The two trainable mod-

ules (FILL and FIND) adopt BERT-base as back-

bone, using 110 million parameters for each. We

use several downstream MRC models in our exper-

iments, and BERT-large is the biggest among all

(340 million). To sum, NMTeacher-Joint uses 560

million parameters at most.

Hyper-parameters. We use Adam with linear

warmup as our optimizer and we tuned learning

rate in the range of {1e − 5, 2e − 5, 3e − 5, 4e −
5, 5e−5}. We set the warmup steps to be either 100

or 500. We tuned the loss balancing co-efficient

β (in Lap and Lau, see Sec. 4.2) in the range of

{0.1, 0.2, 0.3, 0.4, 0.5}. We adopt a greedy tuning

strategy: first select the best learning rate and fix

it; then select the best co-efficient β. We select

parameters based on F1 score on dev set.

We set the rotation interval r (see Sec. 4.2) to

be 8. We use batch size of 12 for BERT-l; 16 for

BERT-b; 16 for ALBERT-b. Gradient accumula-

tion is adopted to achieve such batch size with GPU

memory constraint.

Datasets. We download both datasets we

use from official websites. SQuAD: https:

//rajpurkar.github.io/SQuAD-explorer/;

Natural Questions: https://ai.google.com/

research/NaturalQuestions/download. Note

that we customized the settings of NQ dataset

as we limit our scope to MRC task. We aim to

analysis the capability of NMTeacher in different

scenarios, and thus we choose not to use the

official test set due to submission constraints (e.g.,

one attempt per week). We create our own dev and

test set (see Sec. 5.1).

1613

Neural Module Teacher

X

telephone number 1.0

telephone 1.0

cafeteria 0.73

Variable Candidates

Best combination: (X=telephone, Y=sunshine

cafeteria, ANS=234-567-CAFE),

Final Answer: 234-567-CAFE, Confidence: 0.70

“The answer is directly after X.”
[semantic parsing] --→ '@Is'('Answer','@Direct'('@Right'('X’)))

[underlying execution] --→ COMPARE(DISTANCE(FIND(X), ANS),0)

Executable Rules

FIND(X) ANS

DISTANCE

COMPARE

0

AND

…

SOFT MODULES

…Candidates are generated with Fill Module

Y

sunshine cafeteria 1.0

cafeteria 1.0

nyc 0.85

ANS

5 1.0

234-567-CAFE 0.80

/

Figure 6: Example for Beam Search and Extracting an Answer. Candidates are proposed by Fill module. The best
combination is selected by ranking and conducting beam search on possible combinations. Ranking is done by softened execution
of rules.

Development Set Performance. Table 4 and 6

in the main paper lists test set performance, while

their corresponding development set performance

can be found in Table 11 and 12.

E Explanation Collection

Our interface for collecting semi-structured expla-

nations with Amazon Mechanical Turk is shown

in Figure 7. Annotators are required to first read a

short paragraph of high-level instructions and then

read five provided examples. After that, they are

required to write an explanation for a provided an-

swered (q, c, a) triple in one single text input box,

using suggested expressions in a provided table.

Finally, annotators are required to double-check

their explanation before they submit. The reward

for each accepted explanation is $0.5.

We automatically rejected responses not follow-

ing instructions (e.g., not mentioning any variables,

quoted words do not appear in context). Statistics

of the collected explanations on SQuAD and NQ

datasets are previously shown in Table 5. We con-

structed and modified our parser simultaneously

with the explanation collection process. The accu-

racy of semantic parsing is 91.93% by manual in-

spection on 35 parsed explanations (161 sentences).

1614

Instructions:
Please read carefully to get accepted!
(1) You're not required to answer the question. The answer is already provided and marked in red. Read examples below
carefully to learn about what we want!
(2) Identify important short phrases that appear both in the question and in the context.
 Important: The two appearances of the phrase should be exactly the same (trivial differences like plural form or past tense
are still acceptable).
 Important: Write sentences like Y is "Switzerland". Make sure there is no typo in what you quote.
(3) Explain how you locate the answer with the phrases you marked; Only use the suggested expressions in the table in the
bottom.

Example 1:
Question: How long has Switzerland traditionally been neutral?
Context: Traditionally, Switzerland avoids alliances that might entail military, political, or direct economic action and has been
neutral since the end of its expansion in 1515.
Answer: since the end of its expansion in 1515
Explanation: X is "been neutral". Y is "Switzerland". X and Y appear both in the question and in the context. The answer directly
follows X. The answer starts with "since".

[4 Examples Omitted Here]

Your turn to write explanations:
Question: who is the author of brave new world
Context: Brave New World is a dystopian novel by English author Aldous Huxley . Published in 1932 , it propounds that
economic chaos and unemployment will cause a radical reaction in the form of an international scientific empire that
manufactures its citizens in the laboratory on a eugenic basis , without the need for human intercourse .
Answer: Aldous Huxley

You're required to only use the expressions in the table below.
□ This question is complicated; I cannot explain it with the expressions in the table below. (in this case please also input

"None" in the text box below)

Your explanation for the question answering example above: (i.e. How to locate the answer with XYZs?)

Before you submit, double check the following, or you may get rejected.
(1) XYZ are phrases that appear both in the question and the context. There is no typo when you quote these phrases.
(2) You explain how to locate the answer with XYZ by only using expressions in the table.
(3) What you describe sticks to the question answering example on this page.
Thank you!

Submit

Figure 7: Crowd-sourcing Interface on Amazon Mechanical Turk. The interface has four parts: (1) High-level instruction;
(2) 5 examples; (3) QA instance requiring explanation and an input box; (4) Final check instructions.

1615

#Explanations (|Sa|, |Sp|)
13 (131, 314) 26 (424, 1048) 52 (766, 2329)

EM F1 EM F1 EM F1

BiDAF (Sa) 3.68 ± 0.82 7.40 ± 0.61 4.68 ± 0.57 9.39 ± 0.22 8.31 ± 0.55 13.99 ± 1.01

+ NMTeacher-DA (Sp) 4.89 ± 0.18 8.31 ± 0.12 6.24 ± 0.07 11.29 ± 0.20 13.58 ± 1.51 21.80 ± 2.15

BERT-b (Sa) 11.70 ± 0.88 19.11 ± 1.28 22.32 ± 0.24 33.11 ± 0.47 32.22 ± 1.81 42.68 ± 2.58

+ NMTeacher-DA (Sp) 15.68 ± 1.10 25.43 ± 0.98 24.88 ± 3.01 35.65 ± 4.63 35.67 ± 3.23 46.86 ± 3.41

BERT-l (Sa) 15.51 ± 1.61 23.65 ± 2.69 29.50 ± 2.00 42.05 ± 2.23 39.03 ± 0.63 51.90 ± 0.52

+ NMTeacher-DA (Sp) 18.67 ± 1.94 30.87 ± 2.84 32.76 ± 2.38 46.52 ± 3.22 43.87 ± 2.36 56.60 ± 2.41

+ Self Training (Su) 15.59 ± 1.48 23.19 ± 1.78 35.48 ± 7.93 45.07 ± 6.04 46.14 ± 3.30 57.83 ± 3.81

+ Mean Teacher (Su) 13.28 ± 2.48 21.54 ± 3.15 35.27 ± 4.87 48.35 ± 4.32 45.75 ± 7.14 58.82 ± 5.65

+ Pseudo Labeling, PL (Su) 15.96 ± 2.45 23.51 ± 3.66 41.36 ± 5.59 53.71 ± 7.26 52.95 ± 2.26 65.10 ± 1.14

+ NMTeacher-Joint (Sp + Su) 37.06 ± 13.64 46.83 ± 17.34 61.27 ± 1.93 73.71 ± 2.81 62.22 ± 0.46 74.22 ± 1.24

ALBERT-b (Sa) 32.92 ± 1.59 45.62 ± 1.27 43.65 ± 1.63 57.12 ± 2.82 48.81 ± 1.73 62.06 ± 0.17

+ NMTeacher-DA (Sp) 37.66 ± 2.36 50.25 ± 1.99 44.97 ± 1.20 58.60 ± 1.02 51.35 ± 2.07 64.27 ± 0.75

+ Self Training (Su) 37.67 ± 4.36 48.32 ± 4.74 49.88 ± 3.06 61.81 ± 3.54 52.08 ± 2.45 65.34 ± 2.87

+ Mean Teacher (Su) 33.16 ± 2.95 45.42 ± 2.01 43.42 ± 2.58 58.14 ± 1.74 56.86 ± 1.75 70.67 ± 1.52

+ Pseudo Labeling, PL (Su) 31.02 ± 3.32 43.88 ± 4.76 42.63 ± 2.56 55.62 ± 2.72 48.28 ± 1.63 60.45 ± 2.45

+ NMTeacher-Joint (Sp + Su) 42.40 ± 7.47 56.60 ± 6.57 60.21 ± 3.05 74.44 ± 2.64 62.48 ± 1.23 75.76 ± 0.77

Table 11: Performance on the development set on SQuAD dataset using 13/26/52 explanations.

#Explanations (|Sa|, |Sp|)
18 (98, 539) 36 (107, 647) 54 (273, 1047)

EM F1 EM F1 EM F1

BERT-l (Sa) 12.33 ± 2.28 22.08 ± 2.55 15.18 ± 0.35 24.89 ± 1.97 14.62 ± 0.77 24.46 ± 1.02

+ NMTeacher-DA (Sp) 17.12 ± 1.04 28.20 ± 0.90 19.60 ± 1.45 31.05 ± 1.70 20.10 ± 1.13 31.48 ± 1.49

+ Self Training (Su) 15.76 ± 2.07 25.41 ± 0.46 18.61 ± 1.36 27.77 ± 0.31 18.02 ± 1.04 26.18 ± 0.54

+ Mean Teacher (Su) 15.68 ± 0.74 25.92 ± 0.59 17.41 ± 0.76 27.97 ± 1.11 18.64 ± 1.55 27.88 ± 1.69

+ Pseudo Labeling, PL (Su) 18.02 ± 2.07 25.64 ± 0.92 20.95 ± 2.52 28.55 ± 2.63 17.17 ± 0.42 26.12 ± 0.48

+ NMTeacher-Joint (Sp + Su) 16.69 ± 0.79 28.48 ± 1.16 21.62 ± 1.82 32.51 ± 2.06 22.90 ± 2.24 34.02 ± 2.20

ALBERT-b (Sa) 20.02 ± 2.05 28.80 ± 2.21 22.90 ± 1.74 32.19 ± 2.22 21.65 ± 0.83 32.23 ± 1.20

+ NMTeacher-DA (Sp) 21.27 ± 1.19 30.87 ± 1.99 25.80 ± 2.48 35.92 ± 2.78 23.22 ± 2.73 33.94 ± 2.98

+ Self Training (Su) 19.68 ± 1.66 28.67 ± 2.09 23.64 ± 2.70 32.73 ± 1.79 23.64 ± 2.36 32.78 ± 2.58

+ Mean Teacher (Su) 19.44 ± 0.12 28.84 ± 1.04 24.79 ± 2.92 33.96 ± 3.15 29.23 ± 3.63 38.84 ± 3.27

+ Pseudo Labeling, PL (Su) 19.04 ± 1.29 27.35 ± 2.11 22.98 ± 2.47 31.48 ± 1.29 20.34 ± 0.92 31.07 ± 2.59

+ NMTeacher-Joint (Sp + Su) 24.44 ± 4.08 35.09 ± 5.30 31.12 ± 2.38 41.74 ± 3.56 29.13 ± 3.77 40.22 ± 3.98

Table 12: Performance on the development set on Natural Questions dataset using 18/36/54 explanations.

