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Abstract

The challenges of building knowledge-
grounded retrieval-based chatbots lie in how
to ground a conversation on its background
knowledge and how to match response
candidates with both context and knowledge
simultaneously. This paper proposes a method
named Filtering before Iteratively REferring
(FIRE) for this task. In this method, a
context filter and a knowledge filter are first
built, which derive knowledge-aware context
representations and context-aware knowledge
representations respectively by global and
bidirectional attention. Besides, the entries
irrelevant to the conversation are discarded
by the knowledge filter. After that, iteratively
referring is performed between context and
response representations as well as between
knowledge and response representations, in
order to collect deep matching features for
scoring response candidates. Experimental
results show that FIRE outperforms previous
methods by margins larger than 2.8% and
4.1% on the PERSONA-CHAT dataset with
original and revised personas respectively, and
margins larger than 3.1% on the CMU DoG
dataset in terms of top-1 accuracy. We also
show that FIRE is more interpretable by
visualizing the knowledge grounding process.

1 Introduction

Building a conversational agent with intelligence
has received significant attention with the emer-
gence of personal assistants such as Apple Siri,
Google Now and Microsoft Cortana. One approach
is to building retrieval-based chatbots, which aims
to select a potential response from a set of candi-
dates given the conversation context (Lowe et al.,
2015; Wu et al., 2017; Zhou et al., 2018b; Gu et al.,
2019a; Tao et al., 2019; Gu et al., 2020a).
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Figure 1: An example from CMU DoG dataset (Zhou
et al., 2018a). Words in the same color are related.

However, real human conversations are often
grounded on external knowledge. People may as-
sociate relevant background knowledge according
to current conversation, and then make their replies
based on both context and knowledge. Recently,
the tasks of knowledge-grounded response selec-
tion (Zhang et al., 2018a; Zhou et al., 2018a) have
been set up to simulate this scenario. In these tasks,
agents should respond according to not only the
given context but also the relevant knowledge, and
the knowledge is usually represented as unstruc-
tured entries which are common in practice. An
example is shown in Figure 1.

Some methods have been proposed for solving
these tasks (Mazaré et al., 2018; Zhao et al.,
2019; Gu et al., 2019b). In these methods, the
semantic representations of context, knowledge
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and responses candidates are usually derived by
encoding models at first. Then, the matching de-
gree between a response candidate and a {context,
knowledge} pair is calculated by neural networks.
Although these methods are capable of utilizing
external knowledge when selecting responses, they
still have several deficiencies. First, most of
them encode context and knowledge separately,
and neglect to ground the conversation on the
knowledge and to comprehend the knowledge
based on the conversation. Zhao et al. (2019)
proposed to alleviate this issue by fusing the
local matching information between each {context
utterance, knowledge entry} pair into their rep-
resentations. However, each utterance or entry
plays different functions in conversations. As
shown by the example in Figure 1, some utterances
are closely related with background knowledge
while some others are irrelevant to knowledge
but play the role of connection, such as the
greetings. Besides, some entries are redundant
and are not mentioned in the conversation at all,
such as Year, Director and Critical Response. Such
global functions of utterances and entries were
ignored in all existing methods. Second, the model
structures used by previous methods to calculate
the matching degree between a response candidate
and a {context, knowledge} pair were usually
shallow ones, which constrained the model from
learning deep matching relationship between them.

Therefore, this paper proposes a method named
Filtering before Iteratively REferring (FIRE) to
address these issues. First, this method designs a
context filter and a knowledge filter at the encoding
stage. Different from Zhao et al. (2019), these
filters collect the global matching information
between all context utterances and all knowledge
entries bidirectionally. Specifically, the context
filter makes the context refer to the knowledge and
derives knowledge-aware context representations.
On the other hand, the knowledge filter derives
context-aware knowledge representations utilizing
the same global attention mechanism. Considering
that the knowledge entries are independent of each
other and redundant entries may increase the dif-
ficulty of response matching, the knowledge filter
discards irrelevant entries, which are determined
by calculating the similarity between each entry
and the whole context.

Second, this method designs an iteratively refer-
ring network for calculating the matching degree

between a response candidate and a {context,
knowledge} pair. This network follows the dual
matching framework (Gu et al., 2019b) in which the
response refers to the context and the knowledge
simultaneously. Motivated by previous studies on
attention-over-attention (AoA) (Cui et al., 2017)
and interaction-over-interaction (IoI) (Tao et al.,
2019) models, this network performs the refer-
ring operation iteratively in order to derive deep
matching information. Specifically, the outputs of
each iteration are utilized as the inputs of the next
iteration. Then, the outputs of all iterations are
aggregated into a set of matching feature vectors
for scoring.

We evaluate our proposed method on the
PERSONA-CHAT (Zhang et al., 2018a) and
CMU DoG (Zhou et al., 2018a) datasets.
Experimental results show that FIRE outperforms
previous methods by margins larger than 2.8%
and 4.1% on the PERSONA-CHAT dataset with
original and revised personas respectively, and
margins larger than 3.1% on the CMU DoG
dataset in terms of top-1 accuracy, achieving a new
state-of-the-art performance on both tasks.

In summary, the contributions of this paper
are three-fold. (1) A Filtering before Iteratively
REferring (FIRE) method is proposed, which
employs two filtering structures based on global
and cross attentions for representing contexts and
knowledge, together with an iteratively referring
network for scoring response candidates. (2) Ex-
perimental results on two datasets demonstrate that
our proposed model outperforms state-of-the-art
models on the accuracy of response selection. (3)
Empirical analysis further verifies the effectiveness
of our proposed method.

2 Related Work

2.1 Response Selection

Response selection is an important problem in
building retrieval-based chatbots. Existing work
on response selection can be categorized according
to processing single-turn dialogues (Wang et al.,
2013) or multi-turn ones (Lowe et al., 2015; Wu
et al., 2017; Zhang et al., 2018b; Zhou et al.,
2018b; Gu et al., 2019a; Tao et al., 2019; Gu
et al., 2020a,b). Recent studies focused on multi-
turn conversations, a more practical setup for real
applications. Wu et al. (2017) proposed the sequen-
tial matching network (SMN) which accumulated
the utterance-response matching information by
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a recurrent neural network. Zhou et al. (2018b)
proposed the deep attention matching network
(DAM) to construct representations at different
granularities with stacked self-attention. Gu et al.
(2019a) proposed the interactive matching network
(IMN) to perform the bidirectional and global
interactions between the context and the response.
Tao et al. (2019) proposed the interaction over
interaction (IoI) model which performed matching
by stacking multiple interaction blocks. Gu et al.
(2020a) proposed the speaker-aware BERT (SA-
BERT) to model the speaker change information in
pre-trained language models.

2.2 Knowledge-Grounded Chatbots

Chit-chat models suffer from the lack of explicit
long-term memory as they are typically trained
to produce an utterance given only a very recent
dialogue history. Recently, some studies show
that chit-chat models can be more diverse and
engaging by conditioning them on the background
knowledge. Zhang et al. (2018a) released the
PERSONA-CHAT dataset which employs the s-
peakers’ profile information as the background
knowledge. Zhou et al. (2018a) built the C-
MU DoG dataset which adopts the Wikipedia
articles about popular movies as the background
knowledge. Mazaré et al. (2018) proposed to pre-
train a model using a large-scale corpus based
on Reddit. Zhao et al. (2019) proposed the
document-grounded matching network (DGMN)
which fused each context utterance with each
knowledge entry for representing them. Gu et al.
(2019b) proposed a dually interactive matching
network (DIM) which performed the interactive
matching between responses and contexts and
between responses and knowledge respectively.

The FIRE model proposed in this paper makes
two major improvements to the state-of-the-art
DIM model (Gu et al., 2019b). First, a context
filter and a knowledge filter are built to make the
representations of context and knowledge aware of
each other. Second, an iteratively referring network
is designed to collect deep and comprehensive
matching information for scoring responses.

3 Task Definition

Given a dataset D, an example is represented
as (c, k, r, y). Specifically, c = {u1, u2, ..., unc}
represents a context with {um}nc

m=1 as its utter-
ances and nc as the utterance number. k =

{e1, e2, ..., enk
} represents a knowledge descrip-

tion with {en}nk
n=1 as its entries and nk as the

entry number. r represents a response candidate.
y ∈ {0, 1} denotes a label. y = 1 indicates that r is
a proper response for (c, k); otherwise, y = 0. Our
goal is to learn a matching model g(c, k, r) from
D. For any context-knowledge-response triple
(c, k, r), g(c, k, r) measures the matching degree
between (c, k) and r.

4 FIRE Model

Figure 2 shows the overview architecture of our
proposed model. The context utterances, knowl-
edge entries and responses are first encoded by
a sentence encoder. Then the context and the
knowledge are co-filtered by referring to each
other. Next, the response refers to the filtered
context and knowledge representations iteratively.
The outputs of each iteration are aggregated into
a matching feature vector, and are utilized as
the inputs of next iteration at the same time.
Finally, the matching features of all iterations
are accumulated for scoring response candidates.
Details are provided in following subsections.

4.1 Word Representation

We follow the settings used in DIM (Gu et al.,
2019b), which constructs word representations by
combining general pre-trained word embeddings,
those estimated on the task-specific training set, as
well as character-level embeddings, in order to deal
with the out-of-vocabulary issue.

Formally, embeddings of the m-th utterance in a
context, the n-th entry in a knowledge description
and a response candidate are denoted as Um =

{um,i}lumi=1 , En = {en,j}lenj=1 and R = {rk}lrk=1

respectively, where lum , len and lr are the numbers
of words in Um, En and R respectively. Each um,i,
en,j or rk is an embedding vector.

4.2 Sentence Encoder

Note that the encoder can be any existing encoding
model. In this paper, the context utterances,
knowledge entries and response candidate are
encoded by bidirectional long short-term memories
(BiLSTMs) (Hochreiter and Schmidhuber, 1997).
Detailed calculations are omitted due to limited
space. After that, we can obtain the encoded
representations for utterances, entries and response,
denoted as Ūm = {ūm,i}lumi=1 , Ēn = {ēn,j}lenj=1

and R̄ = {r̄k}lrj=1 respectively. Each ūm,i, ēn,j or
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Figure 2: The overview architecture of our proposed FIRE model.

r̄k is an embedding vector of d-dimensions. The
parameters of these three BiLSTMs are shared in
our implementation.

4.3 Context and Knowledge Filters

As illustrated in Figure 1, not every context
utterance refers to the knowledge, and not every
knowledge entry is mentioned in the conversa-
tion. In order to ground the conversation on
the knowledge and to comprehend the knowledge
based on the conversation, we build a context
filter and a knowledge filter in the FIRE model.
These two filters obtain knowledge-aware context
representation C̄0 and context-aware knowledge
representation K̄0, which are further utilized to
match with the response.

Context Filter This filter first determines the
knowledge that each context token refers to by
a global attention between the whole context
and all knowledge entries. Then, it enhances
the representation of each context token with the
representations of its relevant knowledge.

Given the set of utterance representations
{Ūm}nc

m=1 encoded by the sentence encoder,
we concatenate them to form the context
representation C̄ = {c̄i}lci=1 with lc =

∑nc
m=1 lum .

Also, the knowledge representation K̄ = {k̄j}lkj=1

with lk =
∑nk

n=1 len is formed similarly by
concatenating {Ēn}nk

n=1. Then, a soft alignment
is performed by computing the attention weight
between each tuple {c̄i, k̄j} as

eij = c̄>i · k̄j . (1)

After that, the global relevance between the context
and the knowledge can be obtained using these
attention weights. For a word in the context, its
relevant representation carried by the knowledge is
identified and composed using eij as

c̃i =

lk∑
j=1

exp(eij)∑lk
z=1 exp(eiz)

k̄j , i ∈ {1, ..., lc}, (2)

where the contents in {k̄j}lkj=1 that are relevant to c̄i
are selected to form c̃i, and we define C̃ = {c̃i}lci=1.

To enhance the context representation C̄ with
the relevance representation C̃, the element-wise
difference and multiplication between {C̄, C̃} are
computed, and are then concatenated with the
original vectors. This enhancement operation can
be written as

Ĉ = [C̄; C̃; C̄− C̃; C̄� C̃], (3)

where Ĉ = {ĉi}lci=1 and ĉi ∈ R4d. Finally,
we compress Ĉ and obtain the knowledge-aware
context representation C̄0 as

c̄0i = ReLU(ĉi ·Wc + bc) + c̄i, (4)

where C̄0
= {c̄0i }

lc
i=1, Wc ∈ R4d×d and bc ∈ Rd

are parameters updated during training.
Here, we define a referring function to summa-

rize above operations in the context filter as

C̄0
= REFER(C̄, K̄), (5)

where C̄ acts as the query, and K̄ acts as the key
and value of the referring function respectively.



1416

Knowledge Filter Similarly, this filter enhances
the representation of each knowledge token with
the representations of its relevant context. Different
from the context filter, an additional selection
operation is conducted to directly filter out the
knowledge entries with low relevance with the
context since the entries are independent of each
other.

First, the referring function introduced above is
also performed as follows,

K̄0′
= REFER(K̄, C̄). (6)

where K̄0′ is the context-aware knowledge repre-
sentation and K̄0′

= {Ē0′

n }
nk
n=1.

Furthermore, the relevance between each entry
and the whole conversation is computed in order
to determine whether to filter out this entry. We
first perform the last-hidden-state pooling over
the representations of utterances and entries given
by the sentence encoder in Section 4.2. Then,
the utterance embedding {ūm}nc

m=1 and the entry
embedding {ēn}nk

n=1 are obtained. Next, we
compute the relevance score for each utterance-
entry pair as follows,

smn = ū>m ·M · ēn, (7)

where M ∈ Rd×d is a matrix that needs to be
estimated.

In order to obtain the overall relevance score
between each entry and the whole conversation, an
aggregation operation is required. Here, we make
an assumption that one entry is mentioned only
once in the conversation. Thus, for a given entry,
its relevance score with the conversation is defined
as the maximum relevance score between it and all
utterances. Mathematically, we have

sn = max
m

smn. (8)

Those entries whose scores are below a threshold
γ are considered as uninformative ones for the
conversation and are directly filtered out before
matching with responses. Mathematically, we have

Ē0
n = max(0, sgn(σ(sn)− γ)) · Ē0′

n , (9)

where σ is the sigmoid function and sgn is the sign
function. The final filtered knowledge representa-
tion is defined as K̄0

= {Ē0
n}

nk
n=1.

4.4 Iteratively Referring
Zhao et al. (2019) and Gu et al. (2019b) showed
that the referring operation between contexts and
responses and that between knowledge and respons-
es can both provide useful matching information
for response selection. However, the matching
information collected by these methods were very
shallow and limited, as each response candidate
referred to the context or the knowledge only
once in their models. In this paper, we design
an iteratively referring network which makes the
response refer to the filtered context and knowledge
iteratively. Each iteration is capable of capturing
additional matching information based on previous
ones. Accumulating these iterations can help
to derive the deep and comprehensive matching
features for response selection.

Take the context-response matching as an exam-
ple. The matching strategy adopted here considers
the global and bidirectional matching between two
sequences. Let C̄l

= {c̄li}
lc
i=1 and R̄l

= {r̄lk}
lr
k=1

be the outputs of the l-th iteration, i.e., the inputs of
the (l+1)-th iteration, where l ∈ {0, 1, ..., L − 1}
and L is the number of iterations. For response
representations, we have R̄0

= R̄.
First, the context refers to the response by

performing the referring function and the response-
aware context representation C̄l+1 is obtained as

C̄l+1
= REFER(C̄l

, R̄l
). (10)

Bidirectionally, the response refers to the context
and the context-aware response representation
R̄l+1 is obtained as

R̄l+1
= REFER(R̄l

, C̄l
). (11)

C̄l+1 and R̄l+1 are utilized as the input of next it-
eration. Finally, {C̄l}Ll=1 and {R̄l}Ll=1 are obtained
after L iterations.

On the other hand, the knowledge-response
matching is conducted identically to the context-
response matching process introduced above. The
response-aware knowledge representation K̄l and
knowledge-aware response representation R̄l∗ are
iteratively updated as

K̄l+1
= REFER(K̄l

, R̄l∗
), (12)

R̄l+1∗
= REFER(R̄l∗

, K̄l
), (13)

where R̄0∗
= R̄. Similarly, we obtain {K̄l}Ll=1 and

{R̄l∗}Ll=1 after L iterations.



1417

4.5 Aggregation

These sets of matching matrices {C̄l}Ll=1, {R̄l}Ll=1,
{K̄l}Ll=1, and {R̄l∗}Ll=1 are aggregated into a set
of matching feature vectors finally. As shown in
Figure 1, we perform the same aggregation opera-
tion after each referring iteration. The aggregation
strategy in DIM (Gu et al., 2019b) is adopted here.

Let us take the l-th aggregation as an example.
First, C̄l and K̄l are converted back to the matching
matrices {Ūl

m}
nc
m=1 and {Ēl

n}
nk
n=1 for separate

utterances and entries. Then, each matching
matrix Ūl

m, R̄
l
, Ēl

n, and R̄l∗ are aggregated by max
pooling and mean pooling operations to derive their
embedding vectors ūl

m, r̄l, ēln and r̄l∗ respectively.
Next, the sequences of {ūl

m}
nc
m=1 and {ēln}

nk
n=1 are

further aggregated to get the embedding vectors for
the context and the knowledge respectively.

As the utterances in a context are chronologically
ordered, the utterance embeddings {ūl

m}
nc
m=1 are

sent into another BiLSTM following the chrono-
logical order of utterances in the context. Com-
bined max pooling and last-hidden-state pooling
operations are then performed to derive the con-
text embeddings c̄l. On the other hand, as the
knowledge entries are independent of each other,
an attention-based aggregation is designed to derive
the knowledge embeddings k̄l. Readers can refer
to Gu et al. (2019b) for more details.

The matching feature vector of the l-th iteration
is the concatenation of context, knowledge and
response embeddings as

ml = [c̄l; r̄l; k̄l
; r̄l∗], (14)

which combines the outputs of both context-
response matching and knowledge-response
matching.

Last, we obtain a set of matching feature vectors
{ml}Ll=1 for all iterations.

4.6 Prediction

Each matching feature vector ml is sent into a
multi-layer perceptron (MLP) classifier. Here, the
MLP is designed to predict the matching degree
gl(c, k, r) between r and (c, k) at l-th iteration. A
softmax output layer is adopted in the MLP to
return a probability distribution over all response
candidates. The probability distributions calculated
from all L matching feature vectors are averaged
to derive the final distribution for ranking.

4.7 Model Learning

Inspired by Tao et al. (2019), the model parameters
of FIRE are learnt by minimizing the summation
of cross-entropy losses of MLP at all iterations.
By this means, each matching feature vector can
be directly supervised by labels in the training set.
Furthermore, inspired by Szegedy et al. (2016), we
employ the strategy of label smoothing by assign-
ing a small additional confidence ε to all candidates,
in order to prevent the model from being over-
confident. Let Θ denote the parameters of FIRE.
The learning objective L(D,Θ) is formulated as

L(D,Θ) = −
L∑
l=1

∑
(c,k,r,y)∈D

(y+ε)log(gl(c, k, r)).

(15)

5 Experiments

5.1 Datasets

We tested our proposed method on the PERSONA-
CHAT (Zhang et al., 2018a) and CMU DoG (Zhou
et al., 2018a) datasets which both contain dialogues
grounded on background knowledge.

The PERSONA-CHAT dataset consists of 8939
complete dialogues for training, 1000 for valida-
tion, and 968 for testing. Response selection is
performed at every turn of a complete dialogue,
which results in 65719 dialogues for training,
7801 for validation, and 7512 for testing in total.
Positive responses are true responses from humans
and negative ones are randomly sampled by the
dataset publishers. The ratio between positive
and negative responses is 1:19 in the training,
validation, and testing sets. There are 955 personas
for training, 100 for validation, and 100 for testing,
each consisting of 3 to 5 profile sentences. To make
this task more challenging, a version of revised
persona descriptions are provided by rephrasing,
generalizing, or specializing the original ones.

The CMU DoG dataset consists of 2881 com-
plete dialogues for training, 196 for validation,
and 537 for testing. Response selection is also
performed at every turn of a complete dialogue,
which results in 36159 dialogues for training, 2425
for validation, and 6637 for testing in total. Since
this dataset did not contain negative examples, we
adopted the version shared by Zhao et al. (2019),
in which 19 negative candidates were randomly
sampled for each utterance from the same set.
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Model
PERSONA-CHAT

CMU DoG
Original Revised

R@1 R@2 R@5 R@1 R@2 R@5 R@1 R@2 R@5

Starspace (Wu et al., 2018) 49.1 60.2 76.5 32.2 48.3 66.7 50.7 64.5 80.3
Profile Memory (Zhang et al., 2018a) 50.9 60.7 75.7 35.4 48.3 67.5 51.6 65.8 81.4
KV Profile Memory (Zhang et al., 2018a) 51.1 61.8 77.4 35.1 45.7 66.3 56.1 69.9 82.4
Transformer (Mazaré et al., 2018) 54.2 68.3 83.8 42.1 56.5 75.0 60.3 74.4 87.4
DGMN (Zhao et al., 2019) 67.6 80.2 92.9 58.8 62.5 87.7 65.6 78.3 91.2
DIM (Gu et al., 2019b) 78.8 89.5 97.0 70.7 84.2 95.0 78.7 89.0 97.1
FIRE (Ours) 81.6 91.2 97.8 74.8 86.9 95.9 81.8 90.8 97.4

Table 1: Performance of FIRE and previous methods on the test sets of PERSONA-CHAT and CMU DoG datasets.
The meanings of “Original”, and “Revised” can be found in Section 5.1.

5.2 Evaluation Metrics

We used the same evaluation metrics as the ones
in previous work (Zhang et al., 2018a; Zhao et al.,
2019). Each model aimed to select k best-matched
response from available candidates for the given
context and knowledge. Then, the recall of true
positive replies, denoted as R@k, are calculated as
the measurement.

5.3 Training Details

For training FIRE on both PERSONA-CHAT and
CMU DoG datasets, some common configurations
were set as follows. The Adam method (Kingma
and Ba, 2015) was employed for optimization. The
learning rate was initialized as 0.00025 and was
exponentially decayed by 0.96 every 5000 steps.
Dropout (Srivastava et al., 2014) with a rate of
0.2 was applied to the word embeddings and all
hidden layers. The word representation was the
concatenation of a 300-dimensional GloVe embed-
ding (Pennington et al., 2014), a 100-dimensional
embedding estimated on the training set using
the Word2Vec algorithm (Mikolov et al., 2013),
and a 150-dimensional character-level embedding
estimated by a CNN network that consists of 50
filters and window sizes were set to {3, 4, 5}
respectively. The word embeddings were not
updated during training. All hidden states of
LSTMs had 200 dimensions. The MLP at the
prediction layer had 256 hidden units with ReLU
(Nair and Hinton, 2010) activation. ε used in label
smoothing was set to 0.05. The validation set was
used to select the best model for testing.

Some configurations were different according to
the characteristics of these two datasets. For the
PERSONA-CHAT dataset, the maximum number
of characters in a word, that of words in a context

utterance, of utterances in a context, of words in
a response, of words in a knowledge entry, and
of entries in a knowledge description were set
as 18, 20, 15, 20, 15, and 5 respectively. For
the CMU DoG dataset, these parameters were set
as 18, 40, 15, 40, 40 and 20 respectively. Zero-
padding was adopted if the number of utterances in
a context and the number of knowledge entries
in a knowledge description were less than the
maximum. Otherwise, we kept the last context
utterances or the last knowledge entries. Batch
size was set to 16 for PERSONA-CHAT and 4 for
CMU DoG. The hyper-parameter γ was set to 0.3
for original personas and 0.2 for revised personas
on the PERSONA-CHAT dataset, as well as 0.2 on
the CMU DoG dataset, which were tuned on the
validation sets as shown in Figure 4. The number
of iterations L was set to 3 for original and revised
personas on the PERSONA-CHAT dataset, as well
as 3 on the CMU DoG dataset, which were tuned
on the validation sets as shown in Figure 5.

All code was implemented in the TensorFlow
framework (Abadi et al., 2016) and is published to
help replicate our results.1

5.4 Experimental Results
Table 1 presents the evaluation results of FIRE
and previous methods on the PERSONA-CHAT
using original or revised personas and on the
CMU DoG dataset. Because the paper proposing
DIM (Gu et al., 2019b) only studied the PERSONA-
CHAT dataset, we ran its released code to get the
performance of DIM on the CMU DoG dataset.

From Table 1, we can see that FIRE achieved
higher top-1 accuracy R@1 than all previous
methods on both datasets, achieving a new state-

1https://github.com/JasonForJoy/FIRE



1419

Model
PERSONA-CHAT

CMU DoG
Original Revised

R@1 R@1 R@1

FIRE 82.3 75.2 83.4
- Ite. Ref. 81.3 73.8 81.6
- Filters 78.9 71.1 78.8

C-R 65.6 66.2 79.7
C-R→ Fusion 67.0 66.4 80.9
Filter→ C-R 78.8 70.2 81.4
K-R 51.6 34.3 57.8
K-R→ Fusion 54.2 39.4 63.1
Filter→ K-R 63.6 51.0 73.5

Table 2: The results of ablation tests on the validation
sets. Here, C-R denotes context-response matching
and K-R denotes knowledge-response matching. The
symbol→ indicates the order of operations.

of-the-art performance. On the PERSONA-CHAT
dataset, the margins were larger than 2.8% and
4.1% when original and revised personas were used
respectively. On the CMU DoG dataset, the margin
was larger than 3.1%.

5.5 Analysis

Ablation tests We conducted ablation tests as
follows. First, we removed iteratively referring by
setting the number of iterations L to one. Then,
we removed the two filters. The results on the
validation sets are shown in Table 2. We can see the
drop of R@1 after each step, which demonstrated
the effectiveness of both components in FIRE.

To further verify the effectiveness of the context
filter, we built three models as follows: (1) a
model that only performed the context-response
matching without using any knowledge, i.e., the
IMN model in Gu et al. (2019b) where readers
can refer to for more details; (2) a model that
performed the context-response matching first and
then fuse the knowledge, i.e., the IMNutr model
in Gu et al. (2019b); and (3) a model that filtered
the context first and then performed the context-
response matching, i.e., our FIRE model with only
the upper branch in Figure 2. The evaluation
results of these three models on the validation
set are shown in Table 2. Since these three
models adopted similar context-response matching
strategy, we can see that fusion after matching
and filtering before matching can both improve the
performance of response selection after introducing
knowledge. Furthermore, filtering before matching

Context Utterances

U1 hey , are you a student , i traveled a lot ,
i even studied abroad .

U2 no , i work full time at a nursing home .
i am a nurses aide .

U3 nice , i just got a advertising job myself .
do you like your job ?

U4 nice . yes i do . caring for people is the joy
of my life .

U5 nice my best friend is a nurse , i knew him
since kindergarten .

Knowledge Entries

E1 i have two dogs and one cat .
E2 i work as a nurses aide in a nursing home .
E3 i love to ride my bike .
E4 i love caring for people .

Table 3: Context utterances and knowledge entries of a
sample in the test set of the PERSONA-CHAT dataset.

outperformed fusion after matching by a large
margin, which demonstrated the effectiveness of
the context filter. On the other hand, we also built
similar models to further verify the effectiveness of
the knowledge filter. The same comparison results
were observed from the last three rows of Table 2,
which demonstrated its effectiveness.

Case Study A case study was conducted to
visualize the attention weights in both context and
knowledge filters of FIRE model. A sample was
used as shown in Table 3. The similarity scores
smn in Eq. (7) for each utterance-entry pair are
visualized in Figure 3 (a). The final scores sn in
Eq. (8) for each entry are visualized in Figure 3 (b).

We can see that U2 and U4 obtained large
attention weights with E2 and E4 respectively.
Meanwhile, some irrelevant entries E1 and E3 ob-
tained small similarity scores with the conversation,
which can be filtered out with appropriate threshold.
These experimental results verified the effective-
ness of the filtering process and the interpretability
of the knowledge grounding process.

Knowledge Selection Figure 4 illustrates the
validation set performance of FIRE with different
threshold γ in the knowledge filter. Here, the
number of iterations L was set to 1 for saving
computation. When γ = 0, no knowledge entries
were filtered out. From this figure, we can observe
a consistent trend that the model performance
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Figure 3: Visualizations of (a) smn in Eq. (7) and (b) sn
in Eq. (8) for a test sample of PERSONA-CHAT. The
darker units correspond to larger values.

was improved when increasing γ at the beginning,
which indicates that filtering out irrelevant entries
indeed helped response selection. Then, the
performance started to drop when γ was too large
since some indeed relevant entries may be filtered
out by mistake.

Iteratively Referring Figure 5 illustrates how
the validation set performance of FIRE changed
with respect to the number of iterations in iterative-
ly referring. From it, we can see three iterations
led to the best performance on both datasets.

Complexity We analysed the time complexity
difference between FIRE and DIM. We record-
ed their inference time over the validation set
of PERSONA-CHAT under the configuration of
original personas using a GeForce GTX 1080 Ti
GPU. It takes FIRE 109.5s and DIM 160.4s to
finish the inference, which shows that FIRE is more
time-efficient. The reason is that we design a lighter
aggregation method in FIRE by replacing recurrent
neural network in the aggregation part of DIM with
a single-layer non-linear transformation.

6 Conclusion

In this paper, we propose a method named Filtering
before Iteratively REferring (FIRE) for utilizing
the background knowledge of dialogue agents
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Figure 4: Validation set performance of FIRE with
different threshold γ in the knowledge filter.
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Figure 5: Validation set performance of FIRE with
different number of iterations in iteratively referring.

in retrieval-based chatbots. In this method, a
context filter and a knowledge filter are first
designed to make the representations of context
and knowledge aware of each other. Second,
an iteratively referring network is built to collect
deep and comprehensive matching information for
scoring response candidates. Experimental results
show that FIRE achieves a new state-of-the-art
performance on two datasets. In the future, we
will explore better ways of integrating pre-trained
language models into our proposed methods for
knowledge-grounded response selection.
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Pierre-Emmanuel Mazaré, Samuel Humeau, Martin
Raison, and Antoine Bordes. 2018. Training
millions of personalized dialogue agents. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels,
Belgium, October 31 - November 4, 2018, pages
2775–2779.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed
representations of words and phrases and their com-
positionality. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference
on Neural Information Processing Systems 2013.
Proceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States., pages 3111–
3119.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference
on Machine Learning (ICML-10), June 21-24, 2010,
Haifa, Israel, pages 807–814.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1532–1543.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way
to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15(1):1929–1958.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. 2016.
Rethinking the inception architecture for computer
vision. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las
Vegas, NV, USA, June 27-30, 2016, pages 2818–
2826. IEEE Computer Society.

Chongyang Tao, Wei Wu, Can Xu, Wenpeng Hu,
Dongyan Zhao, and Rui Yan. 2019. One time
of interaction may not be enough: Go deep with
an interaction-over-interaction network for response
selection in dialogues. In Proceedings of the 57th
Conference of the Association for Computational
Linguistics, ACL 2019, Florence, Italy, July 28-
August 2, 2019, Volume 1: Long Papers, pages 1–
11.

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.18653/v1/P17-1055
https://doi.org/10.18653/v1/P17-1055
https://doi.org/10.18653/v1/P17-1055
https://doi.org/10.1145/3340531.3412330
https://doi.org/10.1145/3340531.3412330
https://doi.org/10.1145/3357384.3358140
https://doi.org/10.1145/3357384.3358140
https://doi.org/10.1145/3357384.3358140
https://doi.org/10.1109/TASLP.2019.2955290
https://doi.org/10.1109/TASLP.2019.2955290
https://doi.org/10.1109/TASLP.2019.2955290
https://doi.org/10.18653/v1/D19-1193
https://doi.org/10.18653/v1/D19-1193
https://doi.org/10.18653/v1/D19-1193
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://aclweb.org/anthology/W/W15/W15-4640.pdf
http://aclweb.org/anthology/W/W15/W15-4640.pdf
http://aclweb.org/anthology/W/W15/W15-4640.pdf
https://aclanthology.info/papers/D18-1298/d18-1298
https://aclanthology.info/papers/D18-1298/d18-1298
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
http://aclweb.org/anthology/D/D14/D14-1162.pdf
http://aclweb.org/anthology/D/D14/D14-1162.pdf
http://dl.acm.org/citation.cfm?id=2670313
http://dl.acm.org/citation.cfm?id=2670313
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.18653/v1/p19-1001
https://doi.org/10.18653/v1/p19-1001
https://doi.org/10.18653/v1/p19-1001
https://doi.org/10.18653/v1/p19-1001


1422

Hao Wang, Zhengdong Lu, Hang Li, and Enhong
Chen. 2013. A dataset for research on short-
text conversations. In Proceedings of the 2013
Conference on Empirical Methods in Natural
Language Processing, EMNLP 2013, 18-21 October
2013, Grand Hyatt Seattle, Seattle, Washington,
USA, A meeting of SIGDAT, a Special Interest Group
of the ACL, pages 935–945.

Ledell Yu Wu, Adam Fisch, Sumit Chopra, Keith
Adams, Antoine Bordes, and Jason Weston. 2018.
Starspace: Embed all the things! In Proceedings
of the Thirty-Second AAAI Conference on Artifi-
cial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, pages 5569–
5577.

Yu Wu, Wei Wu, Chen Xing, Ming Zhou, and
Zhoujun Li. 2017. Sequential matching network:
A new architecture for multi-turn response selection
in retrieval-based chatbots. In Proceedings of
the 55th Annual Meeting of the Association for
Computational Linguistics, ACL 2017, Vancouver,
Canada, July 30 - August 4, Volume 1: Long Papers,
pages 496–505.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018a.
Personalizing dialogue agents: I have a dog, do you
have pets too? In Proceedings of the 56th Annual
Meeting of the Association for Computational
Linguistics, ACL 2018, Melbourne, Australia, July
15-20, 2018, Volume 1: Long Papers, pages 2204–
2213.

Zhuosheng Zhang, Jiangtong Li, Pengfei Zhu, Hai
Zhao, and Gongshen Liu. 2018b. Modeling multi-
turn conversation with deep utterance aggregation.
In Proceedings of the 27th International Conference
on Computational Linguistics, COLING 2018, Santa
Fe, New Mexico, USA, August 20-26, 2018,
pages 3740–3752. Association for Computational
Linguistics.

Xueliang Zhao, Chongyang Tao, Wei Wu, Can Xu,
Dongyan Zhao, and Rui Yan. 2019. A document-
grounded matching network for response selection
in retrieval-based chatbots. In Proceedings of the
Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019, Macao, China,
August 10-16, 2019, pages 5443–5449.

Kangyan Zhou, Shrimai Prabhumoye, and Alan W.
Black. 2018a. A dataset for document grounded
conversations. In Proceedings of the 2018
Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, October
31 - November 4, 2018, pages 708–713.

Xiangyang Zhou, Lu Li, Daxiang Dong, Yi Liu,
Ying Chen, Wayne Xin Zhao, Dianhai Yu, and
Hua Wu. 2018b. Multi-turn response selection

for chatbots with deep attention matching network.
In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics, ACL
2018, Melbourne, Australia, July 15-20, 2018,
Volume 1: Long Papers, pages 1118–1127.

http://aclweb.org/anthology/D/D13/D13-1096.pdf
http://aclweb.org/anthology/D/D13/D13-1096.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16998
https://doi.org/10.18653/v1/P17-1046
https://doi.org/10.18653/v1/P17-1046
https://doi.org/10.18653/v1/P17-1046
https://aclanthology.info/papers/P18-1205/p18-1205
https://aclanthology.info/papers/P18-1205/p18-1205
https://www.aclweb.org/anthology/C18-1317/
https://www.aclweb.org/anthology/C18-1317/
https://doi.org/10.24963/ijcai.2019/756
https://doi.org/10.24963/ijcai.2019/756
https://doi.org/10.24963/ijcai.2019/756
https://doi.org/10.18653/v1/d18-1076
https://doi.org/10.18653/v1/d18-1076
https://aclanthology.info/papers/P18-1103/p18-1103
https://aclanthology.info/papers/P18-1103/p18-1103

