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Abstract

How does language model pretraining help
transfer learning? We consider a simple ab-
lation technique for determining the impact
of each pretrained layer on transfer task per-
formance. This method, partial reinitializa-
tion, involves replacing different layers of a
pretrained model with random weights, then
finetuning the entire model on the transfer
task and observing the change in performance.
This technique reveals that in BERT, lay-
ers with high probing performance on down-
stream GLUE tasks are neither necessary nor
sufficient for high accuracy on those tasks. Fur-
thermore, the benefit of using pretrained pa-
rameters for a layer varies dramatically with
finetuning dataset size: parameters that pro-
vide tremendous performance improvement
when data is plentiful may provide negligible
benefits in data-scarce settings. These results
reveal the complexity of the transfer learning
process, highlighting the limitations of meth-
ods that operate on frozen models or single
data samples.

1 Introduction

Despite the striking success of transfer learning
in NLP, remarkably little is understood about how
these pretrained models improve downstream task
performance. Recent work on understanding deep
NLP models has centered on probing, a methodol-
ogy that involves training classifiers for different
tasks on model representations (Alain and Bengio,
2016; Conneau et al., 2018; Hupkes et al., 2018;
Liu et al., 2019; Tenney et al., 2019a,b; Goldberg,
2019; Hewitt and Manning, 2019). While prob-
ing aims to uncover what a network has already
learned, a major goal of machine learning is trans-
fer: systems that build upon what they have learned
to expand what they can learn. Given that most
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Figure 1: The three experiments we explore. Lighter
shades indicate randomly reinitialized layers, while
darker shades indicate layers with BERT parameters.
For layer permutations, all layers hold BERT param-
eters, what changes between trials is their order. In all
three experiments, the entire model is finetuned end-to-
end on the GLUE task.

recent models are updated end-to-end during fine-
tuning (e.g. Devlin et al., 2019; Howard and Ruder,
2018; Radford et al., 2019), it is unclear how, or
even whether, the knowledge uncovered by prob-
ing contributes to these models’ transfer learning
success.

In a sense, probing can be seen as quantifying
the transferability of representations from one task
to another, as it measures how well a simple model
(e.g., a softmax classifier) can perform the second
task using only features from a model trained on
the first. However, when pretrained models are
finetuned end-to-end on a downstream task, what
is transferred is not the features from each layer
of the pretrained model, but its parameters, which
define a sequence of functions for processing rep-
resentations. Critically, these functions and their
interactions may shift considerably during training,
potentially enabling higher performance despite
not initially extracting features correlated with this
task. We refer to this phenomenon of how layer
parameters from one task can help transfer learning
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Figure 2: The benefit of using BERT parameters in-
stead of random parameters at a particular layer
varies dramatically depending on the size of the fine-
tuning dataset. However, as finetuning dataset size
decreases, the curves align more closely with prob-
ing performance at each layer. Solid lines show fine-
tuning results after reinitializing all layers past layer k
in BERT-Base. 12 shows the full BERT model, while 0
shows a model with all layers reinitialized. Line dark-
ness indicates subsampled dataset size. The dashed
lines show probing performance at each layer. Error
bars are 95% CIs.

on another task as transferability of parameters.
In this work, we investigate a methodology for

measuring the transferability of different layer pa-
rameters in a pretrained language model to different
transfer tasks, using BERT (Devlin et al., 2019) as
our subject of analysis. Our methods, described
more fully in Section 2 and Figure 1, involve par-
tially reinitializing BERT: replacing different lay-
ers with random weights and then observing the
change in task performance after finetuning the
entire model end-to-end. Compared to possible
alternatives like freezing parts of the network or re-
moving layers, partial reinitialization enables fairer
comparisons by keeping the network’s architec-
ture and capacity constant between trials, changing
only the parameters at initialization. Through ex-
periments across different layers, tasks, and dataset
sizes, this approach enables us to shed light on mul-
tiple dimensions of the transfer learning process:
Are the early layers of the network more important
than later ones for transfer learning? Do individ-
ual layers become more or less critical depending
on the task or amount of finetuning data? Does
the position of a particular layer within the net-
work matter, or do its parameters aid optimization
regardless of where they are in the network?

We find that when finetuning on a new task:

1. Transferability of BERT layers varies dramat-
ically depending on the amount of finetuning
data available. Thus, claims that certain lay-
ers are universally responsible or important
for learning certain linguistic tasks should be
treated with caution. (Figure 2)

2. Transferability of BERT layers is not in gen-
eral predicted by the layer’s probing perfor-
mance for that task. However, as finetuning
dataset size decreases, the two quantities ex-
hibit a greater correspondence. (Figure 2,
dashed lines)

3. Even holding dataset size constant, the most
transferable BERT layers differ by task: for
some tasks, only the early layers are impor-
tant, while for others the benefits are more
distributed across layers. (Figure 3)

4. Reordering the pretrained BERT layers be-
fore finetuning decreases downstream accu-
racy significantly, confirming that pretraining
does not simply provide better-initialized indi-
vidual layers; instead, transferability through
learned interactions across layers is crucial to
the success of finetuning. (Figure 4)

2 How many pretrained layers are
necessary for finetuning?

Our first set of experiments aims to uncover how
many pretrained layers are sufficient for accu-
rate learning of a downstream task. To do this,
we perform a series of incremental reinitializa-
tion experiments, where we reinitialize all lay-
ers after the kth layer of BERT-Base, for values
k ∈ {0, 1, . . . 12}, replacing them with random
weights. We then finetune the entire model end-to-
end on the target task. Note that k = 0 corresponds
to a BERT model with all layers reinitialized, while
k = 12 is the original BERT model. We do not
reinitialize the BERT word embeddings. As BERT
uses residual connections (He et al., 2016) around
layers, the model can simply learn to ignore any of
the reinitialized layers if they are not helpful during
finetuning.

We use the BERT-Base uncased model, imple-
mented in PyTorch (Paszke et al., 2019) via the
Transformers library (Wolf et al., 2019). We fine-
tune the network using Adam (Kingma and Ba,
2015), with a batch size of 8, a learning rate of
2e-5, and default parameters otherwise. More de-
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tails about reinitialization, training, statistical sig-
nificance, and other methodological choices can
be found in the Appendix. We conduct our exper-
iments on three English language tasks from the
GLUE benchmark, spanning the domains of senti-
ment, reasoning, and syntax (Wang et al., 2018):

SST-2 Stanford Sentiment Treebank involves bi-
nary classification of a single sentence from a
movie review as positive or negative (Socher et al.,
2013).

QNLI Question Natural Language Inference is a
binary classification task derived from SQuAD (Ra-
jpurkar et al., 2016; Wang et al., 2018). The task re-
quires determining whether for a given (QUESTION,
ANSWER) pair the QUESTION is answered by the
ANSWER.

CoLA The Corpus of Linguistic Acceptability
is a binary classification task that requires deter-
mining whether a single sentence is linguistically
acceptable (Warstadt et al., 2019).

Because pretraining appears to be especially
helpful in the small-data regime (Peters et al.,
2018), it is crucial to isolate task-specific effects
from data quantity effects by controlling for fine-
tuning dataset size. To do this, we perform our
incremental reinitializations on randomly-sampled
subsets of the data: 500, 5k, and 50k examples (ex-
cluding 50k for CoLA, which contains only 8.5k
examples). The 5k subset size is then used as the
default for our other experiments. To ensure that an
unrepresentative sample is not chosen by chance,
we run multiple trials with different subsamples.
Confidence intervals produced through multiple tri-
als also demonstrate that trends hold regardless of
intrinsic task variability.

While similar reinitialization schemes have been
explored by Yosinski et al. (2014); Raghu et al.
(2019) in computer vision and briefly by Radford
et al. (2019) in an NLP context, none investigate
these data quantity- and task-specific effects.

Figure 2 shows the results of our incremental
reinitialization experiments. These results show
that the transferability of a BERT layer varies
dramatically based on the finetuning dataset size.
Across all but the 500 example trials of SST-2, a
more specific trend holds: earlier layers provide
more of an improvement on finetuning performance
when the finetuning dataset is large. This trend sug-
gests that larger finetuning datasets may enable the
network to learn a substitute for the parameters in

the middle and later layers. In contrast, smaller
datasets may leave the network reliant on exist-
ing feature processing in those layers. However,
across all tasks and dataset sizes, it is clear that
the pretrained parameters by themselves do not de-
termine the impact they will have on finetuning
performance: instead, a more complex interaction
occurs between the parameters, optimizer, and the
available data.

3 Does probing predict layer
transferability?

What is the relationship between transferability of
representations, measured by probing, and trans-
ferability of parameters, measured by partial reini-
tialization? To compare, we conduct probing ex-
periments for our finetuning tasks on each layer of
the pretrained BERT model. Our probing model
averages each layer’s hidden states, then passes the
pooled representation through a linear layer and
softmax to produce probabilities for each class.
These task-specific components are identical to
those in our reinitialization experiments; however,
we keep the BERT model’s parameters frozen when
training our probes.

Our results, presented in Figure 2 (dashed lines),
show a significant difference between the layers
with the highest probing performance and reinitial-
ization curves for the data-rich settings (darkest
solid lines). For example, the probing accuracy
on all tasks is near chance for the first six layers.
Despite this, these early layer parameters exhibit
significant transferability to the finetuning tasks:
preserving them while reinitializing all other layers
enables large gains in finetuning accuracy across
tasks. Interestingly, however, we observe that the
smallest-data regime’s curves are much more simi-
lar to the probing curves across all tasks than the
larger-data regimes. Smaller finetuning datasets
enable fewer updates to the network before over-
fitting occurs; thus, it may be that finetuning inter-
polates between the extremes of probing (no data)
and fully-supervised learning (enough data to com-
pletely overwrite the pretrained parameters). We
leave a more in-depth exploration of this connec-
tion to future work.

4 Which layers are most useful for
finetuning?

While the incremental reinitializations measure
each BERT layer’s incremental effect on transfer
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Figure 3: Early layers provide the most QNLI gains,
but middle ones yield an added boost for CoLA and
SST-2. Finetuning results for 1) reinitializing a con-
secutive three-layer block (“block reinitialized”) and
2) reinitializing all other layers (“block preserved”).
Dashed horizontal lines show the finetuning perfor-
mance of the full BERT model and the performance
of a model with only embedding parameters preserved.
Finetuning trials with 5k examples. Error bars are 95%
CIs.

learning, they do not assess each layer’s contribu-
tion in isolation, relative to either the full BERT
model or an entirely reinitialized model. Measur-
ing this requires eliminating the number of pre-
trained layers as a possible confounder. To do
so, we conduct a series of localized reinitializa-
tion experiments, where we take all blocks of three
consecutive layers and either 1) reinitialize those
layers or 2) preserve those layers while reinitial-
izing the others in the network.1 These localized
reinitializations help determine the extent to which
BERT’s different layers are either necessary (per-
formance decreases when they are removed) or
sufficient (performance is higher than random ini-
tialization when they are kept) for a specific level
of performance. Again, BERT’s residual connec-
tions permit the model to ignore reinitialized layers’
outputs if they harm finetuning performance.

These results, shown in Figure 3, demonstrate
that the earlier layers appear to be generally more
helpful for finetuning relative to the later layers,
even when controlling for the amount of finetun-
ing data. However, there are strong task-specific
effects: SST-2 appears to be particularly damaged
by removing middle layers, while the effects on
CoLA are distributed more uniformly. The effects

1See the Appendix for more discussion and experiments
where only one layer is reinitialized.

Figure 4: Changing the order of pretrained layers
harms finetuning performance significantly. Dashed
lines mark the performance of the original BERT model
and the randomly-initialized model (surrounded by
±2σ error bars). Circles denote finetuning perfor-
mance for different layer permutations, while the solid
line denotes the mean across runs (with 95% CIs). The
curved shaded region is a kernel density plot, which il-
lustrates the distribution of outcomes. Finetuning trials
with 5k examples.

on QNLI appear to be concentrated almost entirely
in the first four layers of BERT—suggesting op-
portunities for future work on whether sparsity of
this sort indicates the presence of easy-to-extract
features correlated with the task label. These re-
sults support the hypothesis that different kinds of
feature processing learned during BERT pretrain-
ing are helpful for different finetuning tasks, and
provide a new way to gauge similarity between
different tasks.

5 How vital is the ordering of pretrained
layers?

We also investigate whether the success of BERT
depends mostly on learned inter-layer phenomena,
such as learned feature processing pipelines (Ten-
ney et al., 2019a), or intra-layer phenomena, such
as a learned feature-agnostic initialization scheme
which aid optimization (e.g. Glorot and Bengio,
2010). To approach this question, we perform
several layer permutation experiments, where we
randomly shuffle the order of BERT’s layers before
finetuning. The degree that finetuning performance
is degraded in these runs indicates the extent to
which BERT’s finetuning success is dependent on
a learned composition of feature processors, as
opposed to providing better-initialized individual
layers which would help optimization anywhere in
the network.

These results, plotted in Figure 4, show that
scrambling BERT’s layers reduces their finetuning
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ability to not much above a randomly-initialized
network, on average. This decrease suggests that
BERT’s transfer abilities are highly dependent on
the intra-layer interactions learned during pretrain-
ing.

We also test for correlation of performance be-
tween tasks. We do this by comparing task-pairs for
each permutation, as we use the same permutation
for the nth run of each task. The high correlation
coefficients for most pairs shown in Table 1 suggest
that BERT finetuning relies on similar inter-layer
structures across tasks.

Tasks compared Spearman Pearson

SST-2, QNLI 0.72 (0.02) 0.46 (0.18)
SST-2, CoLA 0.74 (0.02) 0.77 (0.01)
QNLI, CoLA 0.83 (0.00) 0.68 (0.03)

Table 1: Specific permutations of layers have simi-
lar impacts on finetuning across tasks. Paired cor-
relation coefficients between task performances for the
same permutations. Two-sided p-value in parentheses
(N=10).

6 Conclusion

We present a set of experiments to better under-
stand how the different pretrained layers in BERT
influence its transfer learning ability. Our results
reveal the unique importance of transferability of
parameters to successful transfer learning, distinct
from the transferability of fixed representations as-
sessed by probing. We also disentangle important
factors affecting the role of layers in transfer learn-
ing: task vs. quantity of finetuning data, number
vs. location of pretrained layers, and presence vs.
order of layers.

While probing continues to advance our under-
standing of linguistic structures in pretrained mod-
els, these results indicate that new techniques are
needed to connect these findings to their potential
impacts on finetuning. The insights and methods
presented here are one contribution toward this
goal, and we hope they enable more work on un-
derstanding why and how these models work.
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A Code

Our code is available at https://github.com/

dgiova/bert-lm-transferability.

B Reinitialization

We reinitialize all parameters in each layer, ex-
cept those for layer normalization (Ba et al., 2016),
by sampling from a truncated normal distribu-
tion with µ = 0, σ = 0.02 and truncation range
(−0.04, 0.04). For the layer norm parameters, we
set β = 0, γ = 1. This matches how BERT was ini-
tialized (see the original BERT code on GitHub and
the corresponding TensorFlow documentation).

C Subsampling, number of trials, and
error bars

The particular datapoints subsampled can have a
large impact on downstream performance, espe-
cially when data is scarce. To capture the full range
of outcomes due to subsampling, we randomly sam-
ple a different dataset for each trial index. Due to
this larger variation when data is scarce, we per-
form 50 trials for the experiments with 500 exam-
ples, while we perform three trials for the other
incremental reinitialization experiments. A scatter-
plot of the 500-example trials is shown in Figure 5.
For the localized reinitialization experiments, we
perform ten trials each.

Error bars shown on all graphs in the main text
are 95% confidence intervals calculated with a t-
distribution.

Figure 5: Finetuning results after reinitializing all lay-
ers past layer k in BERT-Base. 12 shows the full BERT
model, while 0 shows a model with all layers reinitial-
ized. Scatterplot of 50 trials per layer shown for sub-
sampled dataset size 500. Dotted line shows the mean.

D Localized reinitializations of single
layers

We also experiment with performing our localized
reinitialization experiments at the level of a single
layer. To do so, we perform three trials of reinitial-
izing each layer k ∈ {1 . . . 12} and then finetuning
on each of the three GLUE tasks. Our results are
plotted in Figure 6. Interestingly, we observe little
effect on finetuning performance from reinitializing
each layer (except for reinitializing the first layer on
CoLA performance). This lack of effect suggests
either redundant information between layers or that
the “interface” exposed by the two neighboring lay-
ers somehow beneficially constrains optimization.

Figure 6: Performance on finetuning tasks after reini-
tializing an individual layer of BERT. Error bars are
±2 standard deviations.

E Number of finetuning epochs

He et al. (2019) found that much or all of the perfor-
mance gap between an ImageNet-pretrained model
and a model trained from random initialization
could be closed when the latter model was trained
for longer. To evaluate this, we track validation
losses up to ten epochs in our incremental experi-
ments, for k ∈ {0, 6, 12} across all tasks and for
500 and 5k examples. We find minimal effects
of training longer than three epochs for the sub-
samples of 5k, but find improvements of several
percentage points for training for five epochs for
the trials with 500 examples. Thus, for the trials
of 500 in Figure 2, we train for five epochs, while
training for three epochs for all other trials. We
train our probing experiments (8 trials per layer)
with early stopping for a maximum of 40 epochs
on the full dataset.

https://github.com/dgiova/bert-lm-transferability
https://github.com/dgiova/bert-lm-transferability
https://github.com/google-research/bert/blob/master/modeling.py#L377
https://www.tensorflow.org/api_docs/python/tf/random/truncated_normal
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F Higher learning rate for reinitialized
layers

In their reinitialization experiments on a convolu-
tional neural network for medical images, Raghu
et al. (2019) found that a 5x larger rate on the
reinitialized layers enabled their model to achieve
higher finetuning accuracy. To evaluate this possi-
bility in our setting, we increase the learning rate
by a factor of five for the reinitialized layers. The
results for our incremental reinitializations are plot-
ted in Figure 7. A higher learning rate appears
to increase the variance of the evaluation metrics
while not improving performance. Thus, we keep
the learning rate the same across layers.

Figure 7: Finetuning the reinitialized layers with a
larger learning rate does not improve finetuning perfor-
mance. Error bars are ±2 standard deviations.

G Layer norm

Because the residual connections around each sub-
layer in BERT are of the form LayerNorm(x +
Sublayer(x)), reinitializing a particular layer neu-
tralizes the effect of the last layer norm application
from the previous layer in a way that cannot be cir-
cumvented through the residual connections. How-
ever, for brevity we simply refer to “reinitializing a
layer” in this paper.

We also assessed whether preserving the layer
norm parameters in each layer might aid optimiza-
tion. To do so, we preserved these parameters in
our incremental trials with 5k examples. These
trials are plotted in Figure 8, and demonstrate that
preserving layer norm does not aid (and may even
harm) finetuning of reinitialized layers.

H Dataset descriptions and statistics

We display more information about the finetuning
datasets, including the full size of the datasets, in

Figure 8: Preserving the layer norm parameters when
reinitializing each layer does not improve finetuning
performance. Error bars are ±2 standard deviations.

Table 2.

I Additional experimental information

I.1 Link to data
Scripts to download the GLUE data can be found
at https://github.com/nyu-mll/jiant/blob/

master/scripts/download_glue_data.py.

I.2 Computing infrastructure
All experiments were run on single Titan XP GPUs.

I.3 Model
We use the BERT-Base uncased model (110 mil-
lion parameters) from https://huggingface.co/

transformers/pretrained_models.html.

I.4 Average runtime
Average runtime for each approach:

1. 500 incremental: 0.3 min / epoch * 5 epochs
/ trial * 50 trials / layer * 12 layers / task * 3
tasks ≈ 45 GPU-hrs

2. 5k incremental: 3 min / epoch * 3 epochs /
trial * 3 trials / layer * 12 layers / task * 3
tasks ≈ 16 GPU-hrs.

3. 50k incremental: 30 min / epoch * 3 epochs
/ trial * 3 trials / layer * 12 layers / task * 3
tasks ≈ 7 GPU-days.

4. 5k localized (block size 3): 3 min / epoch *
3 epochs / trial * 3 trials / layer * 10 layers /
task * 3 tasks ≈ 14 GPU-hrs

5. Probing: 2.8 min / epoch * 40 epochs / trial
* 8 trials / layer * 12 layers / task * 3 tasks

https://github.com/nyu-mll/jiant/blob/master/scripts/download_glue_data.py
https://github.com/nyu-mll/jiant/blob/master/scripts/download_glue_data.py
https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html
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Table 2: Task description and statistics. SST-2 and CoLA are single sentence classification tasks, while QNLI is
a sentence-pair classification task.

Task # Train # Val Input, labels Eval metric

SST-2 67k 872k sentence, {positive, negative} Accuracy
QNLI 105k 5.4k (question, paragraph), {answer, non-answer} Accuracy
CoLA 8.5k 1k sentence, {acceptable, not acceptable} MCC

≈ 22 GPU-days. Note: 2.8 min / epoch is
an average across layers and tasks. Earlier
layers take less time than later ones because
layers after the target layer do not need to be
computed.

I.5 Evaluation method
To evaluate the performance of our method, we
compute accuracy for SST-2 and QNLI and
Matthews Correlation Coefficient (Matthews, 1975)
for CoLA. We compute these metrics always on
the official validation sets, which are never seen by
the model during training.

Accuracy measures the ratio of correctly pre-
dicted labels over the size of the test set. Formally:
accuracy = TP+TN

TP+TN+FP+FN
Since CoLA presents class imbalances, MCC

is used, which is better suited for unbalanced bi-
nary classifiers (Warstadt et al., 2019). It mea-
sures the correlation of two Boolean distributions,
giving a value between -1 and 1. A value of
0 means that the two distributions are uncorre-
lated, regardless of any class imbalance. MCC =

(TP ·TN)−(FP ·FN))√
(TP+FP )(TP+FN)(FP+TN)(TN+FN)

I.6 Hyperparameters
We performed one experiment with a 5x learning
rate and implemented early stopping to choose the
number of epochs for the probing experiments.

For batch size and learning rate, we kept the
default parameters for all tasks:

• Learning rate: 2e-5

• Batch size: 8


