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Abstract

An unsolved challenge in distributed or feder-
ated learning is to effectively mitigate privacy
risks without slowing down training or reduc-
ing accuracy. In this paper, we propose Tex-
tHide aiming at addressing this challenge for
natural language understanding tasks. It re-
quires all participants to add a simple encryp-
tion step to prevent an eavesdropping attacker
from recovering private text data. Such an en-
cryption step is efficient and only affects the
task performance slightly. In addition, Tex-
tHide fits well with the popular framework of
fine-tuning pre-trained language models (e.g.,
BERT) for any sentence or sentence-pair task.
We evaluate TextHide on the GLUE bench-
mark, and our experiments show that TextHide
can effectively defend attacks on shared gradi-
ents or representations and the averaged accu-
racy reduction is only 1.9%. We also present
an analysis of the security of TextHide using a
conjecture about the computational intractabil-
ity of a mathematical problem.1

1 Introduction

Data privacy for deep learning has become a chal-
lenging problem for many application domains in-
cluding Natural Language Processing. For ex-
ample, healthcare institutions train diagnosis sys-
tems on private patients’ data (Pham et al., 2017;
Xiao et al., 2018). Google trains a deep learn-
ing model for next-word prediction to improve
its virtual keyboard using users’ mobile device
data (Hard et al., 2018). Such data are decen-
tralized but moving them to a centralized location
for training a model may violate regulations such
as Health Insurance Portability and Accountabil-
ity Act (HIPAA) (Act, 1996) and California Con-
sumer Privacy Act (CCPA) (Legislature, 2018).

1Our code is available at https://github.com/
Hazelsuko07/TextHide.

Federated learning (McMahan et al., year;
Kairouz et al., 2019) allows multiple parties train-
ing a global neural network model collaboratively
in a distributed environment without moving data
to a centralized storage. It lets each partici-
pant compute a model update (i.e., gradients) on
its local data using the latest copy of the global
model, and then send the update to the coordinat-
ing server. The server then aggregates these up-
dates (typically by averaging) to construct an im-
proved global model.

Privacy has many interpretations depending on
the assumed threat models (Kairouz et al., 2019).
This paper assumes an eavesdropping attacker
with access to all information communicated by
all parties, which includes the parameters of the
model being trained. With such a threat model,
a recent work (Zhu et al., 2019) suggests that an
attacker can reverse-engineer the private input.

Multi-party computation (Yao, 1982) or homo-
morphic encryption (Gentry, 2009) can ensure full
privacy but they slow down computations by sev-
eral orders of magnitude. Differential privacy
(DP) approach (Dwork et al., 2006; Dwork, 2009)
is another general framework to ensure certain
amount of privacy by adding controlled noise to
the training pipeline. However, it trades off data
utility for privacy preservation. A recent work that
applies DP to deep learning was able to reduce ac-
curacy losses (Abadi et al., 2016) but they still re-
main relatively high.

The key challenge for distributed or federated
learning is to ensure privacy preservation with-
out slowing down training or reducing accuracy.
In this paper, we propose TextHide to address
this challenge for natural language understanding
tasks. The goal is to protect training data privacy
at a minimal cost. In other words, we want to en-
sure that an adversary eavesdropping on the com-
municated bits will not be able to reverse-engineer

https://github.com/Hazelsuko07/TextHide
https://github.com/Hazelsuko07/TextHide
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training data from any participant.
TextHide requires each participant in a dis-

tributed or federated learning setting to add a sim-
ple encryption step with one-time secret keys to
hide the hidden representations of its text data.
The key idea was inspired by InstaHide (Huang
et al., 2020) for computer vision tasks, which
encrypts each training datapoint using a random
pixel-wise mask and the MixUp technique (Zhang
et al., 2018a) of data augmentation. However, ap-
plication of InstaHide to text data is unclear be-
cause of the well-known dissimilarities between
image and language: pixel values are real numbers
whereas text is sequences of discrete symbols.

TextHide is designed to plug into the popu-
lar framework which transforms textual input into
output vectors through pre-trained language mod-
els (e.g., BERT (Devlin et al., 2019)) and use
those output representations to train a new shallow
model (e.g., logistic regression) for any supervised
single-sentence or sentence-pair task. The pre-
trained encoder is fine-tuned as well while train-
ing the shallow model. We evaluate TextHide on
the GLUE benchmark (Wang et al., 2019). Our re-
sults show that TextHide can effectively defend at-
tacks on shared gradients or representations while
the averaged accuracy reduction is only 1.9%.

Lastly, TextHide and InstaHide have completely
different security arguments due to the new de-
signs. To understand the security of the proposed
approach, we also invent a new security argu-
ment using a conjecture about the computational
intractability of a mathematical problem.

2 InstaHide and Its Challenges for NLP
InstaHide (Huang et al., 2020) has achieved
good performance in computer vision for privacy-
preserving distributed learning, by providing a
cryptographic2 security while incurring much
smaller utility loss and computation overhead
than the best approach based on differential pri-
vacy (Abadi et al., 2016).

InstaHide is inspired by the observation that a
classic computation problem, k-VECTOR SUBSET

SUM3, also appears in the MixUp (Zhang et al.,
2018a) method for data augmentation, which is
used to improve accuracy on image data.

2Cryptosystem design since the 1970s seeks to ensure any
attack must solves a computationally expensive task.

3k-VECTOR SUBSET SUM is known to be hard: in the
worst case, finding the secret indices requires ≥ Nk/2 time
(Abboud and Lewi, 2013) under the conjecture Exponential
Time Hypothesis (Impagliazzo et al., 1998). See Appendix A.

To encrypt an image x ∈ Rd from a private
dataset, InstaHide first picks k − 1 other images
s2, s3, . . . , sk from that private dataset, or a large
public dataset of N images, and random nonneg-
ative coefficients λi for i = 1, .., k that sum to 1,
and creates a composite image λ1x +

∑k
i=2 λisi

(k is typically small, e.g., 4). A composite label
is also created using the same set of coefficients.4

Then it adds another layer of security: pick a ran-
dom mask σ ∈ {−1, 1}d and output the encryption
x̃ = σ◦(λ1x+

∑k
i=2 λisi), where ◦ is coordinate-

wise multiplication of vectors. The neural network
is then trained on encrypted images, which look
like random pixel vectors to the human eye and
yet lead to good classification accuracy. Note that
the “one-time secret key” σ, s2, · · · , sk used to en-
crypt x will not be reused to encrypt other images.

Challenges of applying InstaHide to NLP.
There are two challenges to apply InstaHide to text
data for language understanding tasks. The first
is the discrete nature of text, while the encryption
in InstaHide operates at continuous inputs. The
second is that most NLP tasks today are solved
by fine-tuning pretrained language models such as
BERT on downstream tasks. It remains an open
question how to add encryption into such a frame-
work and what type of security argument it will
provide. The following section presents our ap-
proach that overcomes these two challenges.

3 TextHide: Formal Description

There are two key ideas in TextHide. The first one
is using the “one-time secret key” coming from In-
staHide for encryption, and the second is a method
to incorporate such encryption into the popular
framework of fine-tuning a pre-trained language
model e.g., BERT (Devlin et al., 2019).

In the following, we will describe how to in-
tegrate TextHide in the federated learning set-
ting (Section 3.1), and then present two TextHide
schemes (Section 3.2 and 3.3). We analyze the se-
curity of TextHide in Section 3.4.

3.1 Fine-tuning BERT with TextHide

In a federated learning setting, multiple partici-
pants holding private text data may wish to solve
NLP tasks by using a BERT-style fine-tuning

4Only the labels of the examples from the private dataset
will get combined. See (Huang et al., 2020) or Section 3 for
more details.
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Figure 1: An illustration of TextHide encryption with k = 2, where k is the number of inputs (sentence or sentence-pair)
got mixed in each TextHide representation. TextHide first encodes each text input using a transformer encoder, then linearly
combines their output representations (i.e., [CLS] tokens), as well as their labels. Finally, an entry-wise mask is chosen from a
randomly pre-generated pool and applied on the mixed representation. The entry-wise mask, together with the other datapoints
to mix constitute the “one-time secret key” of the TextHide scheme. Note that training directly takes place on encrypted data
and no decryption is needed.

pipeline, where TextHide, a simple InstaHide-
inspired encryption step can be applied at its in-
termediate level to ensure privacy (see Figure 1).

The BERT fine-tuning framework assumes (in-
put, label) pairs (x, y)’s, where x takes the form
of [CLS]s1 [SEP]for single-sentence tasks,
or [CLS]s1 [SEP]s2 [SEP]for sentence-pair
tasks. y is a one-hot vector for classification tasks,
or a real-valued number for regression tasks.5 For
a standard fine-tuning process, federated learning
participants use a BERT-style model fθ1 to com-
pute hidden representations fθ1(x)’s for their in-
puts x’s and then train a shallow classifier hθ2 on
fθ1(x), while also fine-tuning θ1. The parameter
vectors θ1, θ2 will be updated at the central server
via pooled gradients. All participants hold current
copies of the two models.

To ensure privacy of their individual inputs x’s,
federated learning participants can apply TextHide
encryption at the output fθ1(x)’s. The model hθ2
will be trained on these encrypted representations.
Each participant will compute gradients by back-
propagating through their private encryption, and
this is going to be the source of the secrecy: the
attacker can see the communicated gradients but
not the secret encryptions, which limits leakage of
information about the input.

We then formally describe two TextHide
schemes for fine-tuning BERT in the federated
learning setting: TextHideintra which encrypts an
input using other examples from the same dataset,
and TextHideinter which utilizes a large public
dataset to perform encryption. Due to a large

5We will mainly use classification tasks as examples
throughout the paper for brevity.

public dataset, TextHideinter is more secure than
TextHideintra, but the latter is quite secure in prac-
tice when the training set is large.

3.2 Basic TextHide: Intra-Dataset TextHide

In TextHide, we have a pre-trained text encoder
fθ1 , which takes x, a sentence or a sentence pair,
and maps it to a representation e = fθ1(x) ∈ Rd
(e.g., d = 768 for BERTbase). We use [b] to denote
the set {1, 2, · · · , b}. Given a datasetD, we denote
the set {xi, yi}i∈[b] an “input batch” by B, where
x1, · · · , xb are b inputs randomly drawn from D,
and y1, · · · , yb are their labels. For each xi in the
batch B, i ∈ [b], we can encode xi using fθ1 , and
obtain a new set of {ei = fθ1(xi), yi}i∈[b]. We re-
fer to this set as an “encoding batch”, and denote
it by E . Later in this section, we use ẽi to denote
the TextHide encryption of ei for i ∈ [b], and name
the set Ẽ = {ẽi, yi}i∈[b] as a “hidden batch” of E .

We use σ ∈ {−1,+1}d to denote an entry-wise
sign-flipping mask. For a TextHide scheme,M =
{σ1, · · · , σm} denotes its randomly pre-generated
mask pool of size m, and k denotes the number of
sentences combined in a TextHide representation.
We name such a parametrized scheme as (m, k)-
TextHide.

(m, k)-TextHide. Algorithm 1 describes how
(m, k)-TextHide encrypts an encoding batch E =
{ei, yi}i∈[b] into a hidden batch Ẽ , where b is the
batch size. For each ei in E , TextHide linearly
combines it with k − 1 other representations, as
well as their labels. Then, TextHide randomly se-
lects a mask σi from M, the mask pool, and ap-
plies it on the combination using coordinate-wise
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Algorithm 1 (m, k)-TextHide

1: procedure TEXTHIDE(E ,M, k)
2: . E : the training batch, b: |E| = b
3: .M: the mask pool, m: |M| = m
4: . k: number of training examples to be mixed
5: . Let [b] denote the set {1, 2, · · · , b}
6: Ẽ ← ∅
7: Generate π1 such that π1(i) = i, ∀i ∈ [b]
8: Generate k − 1 random permutations π2, · · · , πk :

[b]→ [b]
9: Sample λ1, · · · , λb ∼ |N (0, Ik)| ∈ Rk uniformly at

random, normalize s.t.
∑k
j=1(λi)j = 1, ∀i ∈ [b].

10: for (ei, yi) ∈ E do
11: σi ∼M
12: ẽi ← σi ◦

∑k
j=1(λi)j · eπj(i)

13: ỹi ←
∑k
j=1(λi)j · yπj(i)

14: Ẽ ← Ẽ ∪ {(x̃i, ỹi)}
15: end for
16: return Ẽ
17: end procedure

multiplication. This gives ẽi, the encryption of ei
(lines 12, 13 in Algorithm 1). Note that different
ei’s in the batch get assigned to a fresh random
σi’s from the pool.

Plug into federated BERT fine-tuning. Algo-
rithm 2 shows how to incorporate (m, k)-TextHide
in federated learning, to allow a centralized server
and C distributed clients collaboratively fine-tune
a language model (e.g., BERT) for any down-
stream tasks, without sharing raw data. Each client
(indexed by c) holds its own private data Dc and a
private mask poolMc, and

∑C
c=1 |Mc| = m.

The procedure takes a pre-trained BERT fθ1
and an initialized task-specific classifier hθ2 , and
runs T steps of global updates of both θ1 and θ2.
In each global update, the server aggregates lo-
cal updates of C clients. For a local update at
client c, the client receives the latest copy of fθ1
and hθ2 from the server, samples a random input
batch {xi, yi}i∈[b] from its private dataset Dc, and
encodes it into an encoding batch E = {ei =
fθ1(xi), yi}i∈[b] (line 21 in Algorithm 2).

To protect privacy, each client will run (m, k)-
TextHide with its own mask pool Mc to encrypt
the encoding batch E into a hidden batch Ẽ (line
22 in Algorithm 2). The client then uses the hidden
batch Ẽ to calculate the model updates (i.e., gradi-
ents) of both the BERT encoder fθ1 and the shal-
low classifier hθ2 , and returns them to the server
(line 23 in Algorithm 2). The server averages all
updates from C clients, and runs a global update
for fθ1 and hθ2 (lines 12, 13 in Algorithm 2).

Algorithm 2 Federated fine-tuning BERT using (m, k)-
TextHide with C clients (indexed by c)

1: m: size of each client’s mask pool
2: k: number of training samples to be mixed
3: d: hidden size (e.g., 768 in BERT)
4: procedure SERVEREXECUTION(fθ1 , hθ2 )
5: . fθ1 : the pre-trained BERT; hθ2 : a shallow classifer
6: . T : number of model updates, η: learning rate
7: fθ11

← fθ1 , hθ12 ← hθ2
8: for t = 1→ T do
9: for each client c in parallel do

10: ∇θt1,c,∇θt2,c ← CLIUPDATE(c, fθt1 , hθt2)

11: end for
12: θt+1

1 ← θt1 − η
C

∑C
c=1∇θt1,c

13: θt+1
2 ← θt2 − η

C

∑C
c=1∇θt2,c

14: end for
15: return fT+1

θ1
, hT+1
θ2

16: end procedure
17: procedure CLIUPDATE(c, fθ1 , hθ2 ) . Run on Client c
18: . b: batch size; Dc: private train set of client c
19: .Mc: the mask pool of size m owned by client c,

masks are sampled i.i.d. from {−1,+1}d
20: Sample a random batch {xi, yi}i∈[b] from Dc
21: E = {fθ1(xi), yi}i∈[b]
22: Ẽ ← TextHide(E ,Mc, k)

23: return∇θ1L(fθ1 , hθ2 ; Ẽ),∇θ2L(fθ1 , hθ2 ; Ẽ)
24: end procedure

3.3 Inter-dataset TextHide

Inter-dataset TextHide encrypts private inputs with
text data from a second dataset, which can be a
large public corpus (e.g., Wikipedia). The large
public corpus plays a role reminiscent of the ran-
dom oracle in cryptographic schemes (Canetti
et al., 2004).

Assume we have a private dataset Dprivate and
a large public dataset Dpublic, TextHideinter ran-
domly chooses dk/2e sentences from Dprivate and
the other bk/2c from Dpublic, mixes their repre-
sentations, and applies on it a random mask from
the pool. A main difference between TextHideinter
and TextHideintra is, TextHideintra mixes all la-
bels of inputs used in the combination, while in
TextHideinter, only the labels from Dprivate will be
mixed (there is usually no label from the public
dataset). Specifically, for an original datapoint
{xi, yi} ∈ E , let S ⊂ [b] denote the set of data
points’ indices that its TextHide encryption com-
bines, and |S| = k. Then its TextHideinter label is
given by∑k

j=1(λi)j · yπj(i) · 1[πj(i) ∈ Dprivate ∩ S]∑k
j=1(λi)j · 1[πj(i) ∈ Dprivate ∩ S]

,

where 1[f ] is a variable that 1[f ] = 1 if f holds,
and = 0 otherwise. For each j ∈ [k], πj : [b]→ [b]
is a permutation.
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3.4 On Security of TextHide

The encrypted representations produced by Tex-
tHide themselves are secure — i.e., do not al-
low any efficient way to recover the text x —
from the security framework of InstaHide (see Ap-
pendix A for k-VECTOR SUBSET SUM). How-
ever, an additional source of information leakage
is the shared gradients during federated learning,
as shown by (Zhu et al., 2019). We mitigate this by
ensuring that the secret mask σ used to encrypt the
representation of input x is changed each epoch.
The pool of masks is usually much larger than the
number of epochs, which means that each mask
gets used only once for an input (with negligible
failure probability). The gradient-matching attack
of (Zhu et al., 2019) cannot work in this scenario.
In the following section, we will show that it does
not even work with a fixed mask.

4 Experiments

We evaluate the utility and privacy of TextHide in
our experiments. We aim to answer the following
questions in our experiments:

• What is the accuracy when using TextHide for
sentence-level natural language understand-
ing tasks (Section 4.2)?

• How effective is TextHide in terms of hiding
the gradients (Section 4.3) and the represen-
tations of the original input (Section 4.4)?

4.1 Experimental Setup
Dataset. We evaluate TextHide on the Gen-
eral Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2019), a collection of 9
sentence-level language understanding tasks:
• Two sentence-level classification tasks in-

cluding Corpus of Linguistic Acceptability
(CoLA) (Warstadt et al., 2019), and Stanford
Sentiment Treebank (SST-2) (Socher et al.,
2013).
• Three sentence-pair similarity tasks includ-

ing Microsoft Research Paraphrase Corpus
(MRPC) (Dolan and Brockett, 2005), Se-
mantic Textual Similarity Benchmark (STS-
B) (Cer et al., 2017), and Quora Question
Pairs (QQP)6.

• Four natural language inference (NLI) tasks
including Multi NLI (MNLI) (Williams et al.,

6https://www.quora.com/q/quoradata/First-Quora-
Dataset-Release-Question-Pairs

2018), Question NLI (QNLI) (Rajpurkar
et al., 2016), Recognizing Textual Entailment
(RTE) (Dagan et al., 2005; Bar Haim et al.,
2006; Giampiccolo et al., 2007), and Wino-
grad NLI (WNLI) (Levesque et al., 2011).

Following previous work (Devlin et al., 2019;
Joshi et al., 2020), we exclude WNLI in the eval-
uation. Table 1 summarizes the data size, tasks
and evaluation metrics of all the datasets. All tasks
are single-sentence or sentence-pair classification
tasks except that STS-B is a regression task.

Implementation. We fine-tune the pre-trained
cased BERTbase model released by (Devlin et al.,
2019) on each dataset. We notice that generaliz-
ing to different masks requires a more expressive
classifier, thus instead of adding a linear classi-
fier on top of the [CLS] token, we use a mul-
tilayer perceptron of hidden-layer size (768, 768,
768) to get better performance under TextHide. We
use AdamW (Kingma and Ba, 2015) as the opti-
mizer, and a linear scheduler with a warmup ratio
of 0.1. More details of hyperparameter selection
are given in Appendix B.3. To show TextHide’s
compatibility with the state-of-the-art model, we
also test with the RoBERTabase model released
by (Liu et al., 2019) and report the results in Ap-
pendix B.2.

4.2 Accuracy Results of TextHide
To answer the first question, we compare the ac-
curacy of TextHide to the BERT baseline without
any encryption.

We the vary TextHide scheme as follows:
• Evaluate different (m, k) combinations,

where m (the size of mask pool) is chosen
from {0, 1, 16, 64, 256, 512, 1024, 4096,∞},
and k (the number of inputs to combine) is
chosen from {1, 2, 3, 4, 8}. (m, k) = (0, 1)
is equivalent to the baseline.
• Test both TextHideintra and TextHideinter. We

use MNLI train set (around 393k examples
and all the labels are removed) as the “public
dataset” in the inter-dataset setting and run
BERT fine-tuning with TextHideinter on the
other 7 datasets. Here we use MNLI simply
for convenience as it is the largest dataset in
GLUE and one can use any public corpora
(e.g., Wikipedia) in principle.

Results with different (m, k) pairs. Figure 2
shows the performance of TextHideintra parame-
terized with different (m, k)’s. When m is fixed,

https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
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Dataset |D| Task Metric Baseline TextHideintra TextHideinter
RTE 2.5k NLI Acc. 72.0(0.86) 65.2(1.71) 54.4(1.82)
MRPC 3.7k Paraphrase F1 / Acc. 90.2(0.80) / 86.2(1.40) 89.7(0.56) / 85.6(0.96) 88.1(0.52) / 82.6(0.75)
STS-B 7k Similarity P / S corr. 90.1(0.12) / 89.7(0.17) 87.0(0.25) / 87.0(0.27) 86.0(0.27) / 86.2(0.19)
CoLA 8.5k Acceptability MCC 58.9(1.00) 56.3(0.86) 52.3(0.80)
SST-2 67k Sentiment Acc. 92.4(0.76) 91.7(0.51) 91.3(0.41)
QNLI 108k NLI Acc. 91.7(0.70) 91.0(0.31) 89.8(0.56)
QQP 364k Paraphrase F1 / Acc. 87.9(0.39) / 91.0(0.30) 87.3(0.41) / 90.5(0.33) 86.5(0.28) / 89.8(0.14)
MNLI 393k NLI m/mm 86.1(0.36) / 85.6(0.23) 84.0(0.15) / 84.1(0.23) -

Table 1: Performance on the GLUE tasks for both baseline (standard finetuning) and TextHide with BERTbase,
measured on the development sets. We report the mean results across 5 runs, with (m, k) = (16, 4) for RTE
and (m, k) = (256, 4) for all the other datasets (see text for more details). Standard deviations are reported in
parentheses. |D| denotes the number of training examples. TextHide only suffers minor utility loss: < 3% in
most cases for both TextHideintraand TextHideinter. ‘P / S corr.’ is Pearson/Spearman correlation and ‘MCC’ is
Matthew’s correlation.
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Figure 2: Performance of TextHideintra on the GLUE tasks of different (m, k) pairs, measured on the development
sets. (m, k) = (0, 1) is equivalent to the baseline. Metrics are marked on the y-axis. |D| denotes the number of
training examples. TextHide with m = 256 achieves good utility on all datasets (except RTE). Larger dataset can
work with larger m.

the network performs consistently with different
k’s, suggesting that MixUp (Zhang et al., 2018a)
also works for language understanding tasks.

Increasing m makes learning harder since the
network needs to generalize to different masking
patterns. However, for most datasets (except for
RTE), TextHide with m = 256 only reduces ac-
curacy slightly comparable to the baseline. Our
explanation for the poor performance on RTE is
that we find training on this small dataset (even
without encryption) to be quite unstable. This has
been observed in (Dodge et al., 2020) before. In
general, TextHide can work with larger m (better
security) when the training corpus is larger (e.g.,
m = 512 for data size > 100k).

TextHideintra vs. TextHideinter. TextHideintra
mixes the representations from the same private
dataset, whereas TextHideinter combines represen-
tations of private inputs with representations of
random inputs from a large public corpus (MNLI
in our case).

Table 1 shows the results of the baseline and
TextHide (both TextHideintra and TextHideinter) on
the GLUE benchmark, with (m, k) = (256, 4) ex-
cept for RTE with (m, k) = (16, 4). The averaged
accuracy reduction of TextHideintra is 1.9%, when
compared to the baseline model. With the same
(m, k), TextHideinter incurs an additional 2.5%
accuracy loss on average, but as previously sug-
gested, the large public corpus gives a stronger no-
tion of security.
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4.3 Security of Gradients in TextHide

We test TextHide against the gradients matching
attack in federated learning (Zhu et al., 2019),
which has been shown effective in recovering pri-
vate inputs from public gradients.

Gradients matching attack. Given a public
model and the gradients generated by private data
from a client, the attacker aims to recover the pri-
vate data: he starts with some randomly initialized
dummy data and dummy labels (i.e., a dummy
batch). In each iteration of attack, he calculates
the `2-distance between gradients generated by the
dummy batch and the real gradients, and back-
propagates that loss to update the dummy batch
(see Algorithm 3 in Appendix C for details).

The original attack is infeasible in the TextHide
setting, because the attacker can’t backpropagate
the loss of the dummy batch through the secret
mask of each client. Thus, we enhance the at-
tack by allowing the attacker to learn the mask:
at the beginning of the attack, he also generates
some dummy masks and back-propagates the loss
of gradient to update them.

Setup and metric. We use the code7 of the orig-
inal paper (Zhu et al., 2019) for evaluation. Due to
the unavailability of their code for attacks in text
data, we adapted their setting for computer vision
(see Appendix C for more details). We use the
success rate as the metric: an attack is said to be
successful if the mean squared error between the
original input and the samples recovered from gra-
dients is≤ 0.001. We vary two key variables in the
evaluation: k and d, where d is the dimensionality
of the representation (768 for BERTbase).

Test the leakage upper bound. We run the at-
tack in a much easier setting for the attacker to test
the upper bound of privacy leakage:

• The TextHide scheme uses a single mask
throughout training (i.e., m = 1).

• The batch size is 1.8

• The attacker knows the true label for each pri-
vate input.9

7https://github.com/mit-han-lab/dlg
8The original paper (Zhu et al., 2019) pointed out that at-

tacking a larger batch is more difficult.
9As suggested by Zhao et al. (2020), guessing the correct

label is crucial for success in the attack.

Baseline
k
d

4 16 64 256 1024

1 0.76 0.56 0.30 0.22 0.08
0.82 2 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00

Table 2: Success rate of 50 independent gradients
matching attacks. Baseline is the vanilla architecture
without TextHide. d: the dimensionality of the repre-
sentation. Increasing k and d makes attack harder.
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(b) Failure

Figure 3: Loss over iterations of a succeeded (a) and a
failed (b) attacks. When the mean square error (MSE)
between real and dummy masks gets smaller, both the
gradients’ distance and the MSE between leaked image
and the original image gets smaller.

TextHide makes gradients matching harder.
As shown in Table 2, increasing d, greatly in-
creases the difficulty of attack — for no mixing
(k = 1), a representation with d = 1024 reduces
the success rate of 82% (baseline) to only 8%. The
defense becomes much stronger when combined
with mixing: a small mask of 4 entries combined
with k = 2 makes the attack infeasible in the
tested setting. Figure 3 suggests that the success
of this attack largely depends on whether the mask
is successfully matched, which is aligned with the
security argument of TextHide in Section 3.4.

4.4 Effectiveness of Hiding Representations
We also design an attack-based evaluation to
test whether TextHide representations effectively
“hide” its original representations, i.e., how ‘dif-
ferent’ the TextHide representation is from its orig-
inal representation. In Appendix C, we present an-
other attack, which suggests that a deep architec-
ture can not be trained to reconstruct the original
representations from the TextHide representation.

Representation-based Similarity Search (RSS).
Given a corpus of size n, and

1) a search index: {xi, ei}ni=1, where xi is the
i-th example in the training corpus, ei is xi’s

https://github.com/mit-han-lab/dlg
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Baseline Mix-only TextHide Rand

Identity 0.993 0.111 0.000 0.000
JCdist 0.999 0.184 0.023 0.024
TF-IDFsim 1.000 0.194 0.015 0.015
Label 0.998 0.759 0.494 0.542
SBERTsim 0.991 0.280 0.102 0.101

(a) CoLA

Baseline Mix-only TextHide Rand

Identity 0.992 0.064 0.000 0.000
JCdist 0.999 0.168 0.100 0.096
TF-IDFsim 1.000 0.080 0.007 0.008
Label 1.000 0.714 0.503 0.501
SBERTsim 1.000 0.275 0.202 0.209

(b) SST-2

Table 3: Averaged similarity score of five metrics over
1,000 independent RSS attacks on CoLA (a) and SST-
2 (b). For each score, the scheme with the worst sim-
ilarity (best hiding) is marked in bold. Rand: random
baseline. As shown, attacker against TextHide gives
similar performance to random guessing.

encoded representation fθ1(xi);

2) a query ẽ: TextHide representation of any in-
put x in the corpus,

RSS returns xv from the index such that v =
argmini∈[n] cos(ei, ẽ). If xv is dramatically dif-
ferent from x, then ẽ hides e (the original repre-
sentation of x ) effectively. To build the search
index, we dump all (xi, ei) pairs of a corpus by
extracting each sentence’s [CLS] token from the
baseline BERT model. We use Facebook’s FAISS
library (Johnson et al., 2017) for efficient similar-
ity search to implement RSS.

Metrics. The evaluation requires measuring the
similarity of a sentence pair, (x, x∗), where x is a
sample in corpus, and x∗ is RSS’s answer given
x’s encoding ẽ as query. Our evaluation uses three
explicit leakage metrics:

• Identity: 1 if x∗ is identical to x, else 0.
• JCdist: Jaccard distance |words in x ∩
words in x∗|/|words in x ∪ words in x∗|
• TF-IDFsim: cosine similarity between x’s

and x∗’s TF-IDF representation in the corpus

and two implicit (semantic) leakage metrics:

• Label: 1 if x∗, x have the same label, else 0.
• SBERTsim: cosine similarity between x’s and
x∗’s SBERT representations pretrained on

Query1 (CoLA): Some people consider the noisy
dogs dangerous. (X)

Baseline: Some people consider the noisy dogs dan-
gerous. (X)
Mix-only: Some people consider the noisy dogs dan-
gerous. (X)
TextHide: I know a man who hates myself. (×)

Query2 (SST-2): otherwise excellent ( )

Baseline: otherwise excellent ( )
Mix-only: worthy ( )
TextHide: passive-aggressive ( )

Table 4: Example queries and answers of RSS with dif-
ferent representation schemes. We mark words with
similar meanings in the same color. We annotate the ac-
ceptability for CoLA (‘X’: yes, ‘×’: no) and sentiment
for SST-2 (‘ ’: positive, ‘ ’: negative). Querying
with a Mix-only representation still retrieve the original
sentence (Query1), or sentence with similar meanings
(Query2).

NLI-STS10 (Reimers and Gurevych, 2019).

For all five metrics above, a larger value indi-
cates a higher similarity between x and x∗, i.e.,
worse ‘hiding’.

Test Setup. For an easier demonstration, we run
RSS on two single-sentence datasets CoLA and
SST-2 with TextHideintra. The results presumably
can generalize to larger datasets and TextHideinter,
since attacking a small corpus with a weaker se-
curity is often easier than attacking a larger one
with a stronger security. For each task, we test
three (m, k) variants: baseline (m = 0, k = 1),
mix-only (m = 0, k = 4), and TextHide (m =
256, k = 4). We report a random baseline for ref-
erence — for each query, the attacker returns an
input randomly selected from the index.

Baseline. The result with original representation
as query can be viewed as an upper bound of pri-
vacy leakage where no defense has been taken. As
shown in Table 3 and Table 4, RSS almost returns
the correct answer all the time (i.e., Identity close
to 1), which is a severe explicit leakage.

Mix-only. Mix-only representation greatly re-
duces both explicit leakage (i.e., gives much lower
similarity on all first 3 metrics) compared to
the undefended baseline. However, RSS still
can query back the original sentence with Mix-
only representations (see Query1 in Table 4).

10We use SBERT as an off-the-shelf similarity scorer since
it has been demonstrated great performance in semantic tex-
tual similarity tasks.
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Also, semantic leakage, measured by Label and
SBERTsim, is higher than the random baseline.

TextHide TextHide works well in protecting
both explicit and semantic information: sample at-
tacks on TextHide (see Table 4) return sentences
seemingly irrelevant to the original sentence hid-
den in the query representation. Note that the so-
phisticated attacker (RSS) against TextHide gives
similar performance to a naive random guessing
attacker.

5 Related Work
Differential privacy. Differential privacy
(Dwork et al., 2006; Dwork and Roth, 2014) adds
noise drawn from certain distributions to provide
guarantees of privacy. Applying differential
privacy techniques in distributed deep learning is
interesting but non-trivial. Shokri and Shmatikov
(2015) proposed a distributed learning scheme
by directly adding noise to the shared gradients.
Abadi et al. (2016) proposed to dynamically keep
track of privacy spending based on the compo-
sition theorem (Dwork, 2009), and McMahan
et al. (2018) adapted this approach to train large
recurrent language models. However, the amount
of privacy guaranteed drops with the number of
training epochs and the size of shared parameters
(Papernot et al., 2020), and it remains unclear how
much privacy can still be guaranteed in practical
settings.
Cryptographic methods. Homomorphic en-
cryption (Gentry, 2009; Graepel et al., 2012; Li
et al., 2017) or secure multi-party computation
(MPC) (Yao, 1982; Beimel, 2011; Mohassel and
Zhang, 2017; Dolev et al., 2019) allow multiple
data cites (clients) to jointly train a model over
their private inputs in distributed learning setting.
Recent work proposed to use cryptographic meth-
ods to secure federated learning by designing a
secure gradients aggregation protocol (Bonawitz
et al., 2017) or encrypting gradients (Aono et al.,
2017). However, these approaches shared the
same key drawback: slowing down the computa-
tion by several orders of magnitude, thus currently
impractical for deep learning.

InstaHide. See Section 2.

Privacy in NLP. Training with user-generated
language data raises privacy concerns: sensitive
information can take the form of key phrases ex-
plicitly contained in the text (Harman et al., 2012;

Hard et al., 2018); it can also be implicit (Coavoux
et al., 2018; Pan et al., 2020), e.g., text data con-
tains latent information about the author and situ-
ation (Hovy and Spruit, 2016; Elazar and Gold-
berg, 2018). Recently, Song and Raghunathan
(2020) suggests that text embeddings from lan-
guage models such as BERT can be inverted to
partially recover some of the input data.

To deal with explicit privacy leakage in NLP,
Zhang et al. (2018b) added DP noise to TF-
IDF (Salton and McGill, 1986) textual vectors,
and Hu et al. (2020) obfuscated the text by substi-
tuting each word with a new word of similar syn-
tactic role. However, both approaches suffer large
utility loss when trying to ensure practical privacy.

Adversarial learning (Li et al., 2018; Hu et al.,
2020) has been used to address implicit leak-
age to learn representations that are invariant to
private-sensitive attributes. Similarly, Mosal-
lanezhad et al. (2019) used reinforcement learning
to automatically learn a strategy to reduce private-
attribute leakage by playing against an attribute-
inference attacker. However, these approaches
does not defend explicit leakage.

6 Conclusion
We have presented TextHide, a practical approach
for privacy-preserving NLP training with a pre-
train and fine-tuning framework in a federated
learning setting. It requires all participants to add
a simple encryption step with an one-time secret
key. It imposes a slight burden in terms of com-
putation cost and accuracy. Attackers who wish
to break such encryption and recover user inputs
have to pay a large computational cost.

We see this as a first step in using cryptographic
ideas to address privacy issues in language tasks.
We hope our work motivates further research, in-
cluding applications to other NLP tasks. An im-
portant step could be to successfully train lan-
guage models directly on encrypted texts, as is
done for image classifiers.

Acknowledgements

This project is supported in part by the Graduate
Fellowship at Princeton University, Ma Huateng
Foundation, Schmidt Foundation, Simons Foun-
dation, NSF, DARPA/SRC, Google and Amazon
AWS. Arora and Song were at the Institute for Ad-
vanced Study during this research.



1377

References
Martin Abadi, Andy Chu, Ian Goodfellow, H Bren-

dan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. 2016. Deep learning with differential pri-
vacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Se-
curity (CCS), pages 308–318.

Amir Abboud and Kevin Lewi. 2013. Exact weight
subgraphs and the k-sum conjecture. In Interna-
tional Colloquium on Automata, Languages, and
Programming (ICALP), pages 1–12.

Amir Abboud, Kevin Lewi, and Ryan Williams. 2014.
Losing weight by gaining edges. In European Sym-
posium on Algorithms (ESA), pages 1–12.

Accountability Act. 1996. Health insurance portability
and accountability act of 1996. Public law, 104:191.

Yoshinori Aono, Takuya Hayashi, Lihua Wang, and
Shiho Moriai. 2017. Privacy-preserving deep learn-
ing via additively homomorphic encryption. IEEE
Transactions on Information Forensics and Security,
13(5):1333–1345.

Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro,
Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. 2006. The second PASCAL recognising
textual entailment challenge. In Manuscript.

Amos Beimel. 2011. Secret-sharing schemes: a survey.
In International conference on coding and cryptol-
ogy (IWCC), pages 11–46.

Arnab Bhattacharyya, Piotr Indyk, David P Woodruff,
and Ning Xie. 2011. The complexity of linear de-
pendence problems in vector spaces. In Innovations
in Computer Science (ICS), pages 496–508.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Anto-
nio Marcedone, H Brendan McMahan, Sarvar Patel,
Daniel Ramage, Aaron Segal, and Karn Seth. 2017.
Practical secure aggregation for privacy-preserving
machine learning. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communica-
tions Security (CCS), pages 1175–1191.

Ran Canetti, Oded Goldreich, and Shai Halevi. 2004.
The random oracle methodology, revisited. Journal
of the ACM (JACM), 51(4):557–594.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval@ACL), pages 1–14.

Maximin Coavoux, Shashi Narayan, and Shay B Co-
hen. 2018. Privacy-preserving neural representa-
tions of text. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1–10.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The PASCAL recognising textual entailment
challenge. In Machine learning challenges. evalu-
ating predictive uncertainty, visual object classifi-
cation, and recognising tectual entailment (MLCW),
pages 177–190.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In North American Chapter of the Associ-
ation for Computational Linguistics (NAACL).

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith.
2020. Fine-tuning pretrained language models:
Weight initializations, data orders, and early stop-
ping. arXiv preprint arXiv:2002.06305.

William B Dolan and Chris Brockett. 2005. Auto-
matically constructing a corpus of sentential para-
phrases. In Proceedings of the International Work-
shop on Paraphrasing.

Shlomi Dolev, Peeyush Gupta, Yin Li, Sharad Mehro-
tra, and Shantanu Sharma. 2019. Privacy-preserving
secret shared computations using mapreduce. IEEE
Transactions on Dependable and Secure Comput-
ing.

Cynthia Dwork. 2009. The differential privacy fron-
tier. In Theory of Cryptography Conference (TCC),
pages 496–502.

Cynthia Dwork, Krishnaram Kenthapadi, Frank Mc-
Sherry, Ilya Mironov, and Moni Naor. 2006. Our
data, ourselves: Privacy via distributed noise gen-
eration. In Annual International Conference on
the Theory and Applications of Cryptographic Tech-
niques, pages 486–503.

Cynthia Dwork and Aaron Roth. 2014. The algorith-
mic foundations of differential privacy. Foundations
and Trends in Theoretical Computer Science, 9(3–
4):211–407.

Yanai Elazar and Yoav Goldberg. 2018. Adversarial
removal of demographic attributes from text data. In
Empirical Methods in Natural Language Processing
(EMNLP), pages 11–21.

Craig Gentry. 2009. Fully homomorphic encryption
using ideal lattices. In Proceedings of the forty-
first annual ACM symposium on Theory of comput-
ing (STOC), pages 169–178.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and Bill Dolan. 2007. The third PASCAL recog-
nizing textual entailment challenge. In Proceedings
of the ACL-PASCAL workshop on textual entailment
and paraphrasing (IWP), pages 1–9.

Thore Graepel, Kristin Lauter, and Michael Naehrig.
2012. Ml confidential: Machine learning on en-
crypted data. In International Conference on Infor-
mation Security and Cryptology (ICISC), pages 1–
21.



1378

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop
Ramaswamy, Françoise Beaufays, Sean Augenstein,
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A k-VECTOR SUBSET SUM

Cryptosystem design since the 1970s seeks to en-
sure that attackers can violate privacy only by
solving a computationally expensive task. A sim-
ple example is the VECTOR SUBSET SUM problem
(Bhattacharyya et al., 2011; Abboud et al., 2014).
Here a set of N vectors v1, v2, . . . , vk ∈ Rd are
publicly released. The defender picks secret in-
dices i1, i2, . . . , ik ∈ [N ]

def
= {1, · · · , N} and

publicly releases the vector
∑

j vij . Given this re-
leased vector the attacker has to find secret indices
i1, i2, . . . , ik. In worst cases even when the answer
happens to be unique, finding the secret indices re-
quires≥ Nk/2 time (Abboud and Lewi, 2013) un-
der the famous conjecture, Exponential Time Hy-
pothesis (ETH) (Impagliazzo et al., 1998). Note
that ETH is a stronger notion than NP 6= P, and
ETH is widely accepted computational complex-
ity community.

B Experiment details

B.1 Implementation
The implementation uses the PyTorch framework
(Paszke et al., 2019) based on HuggingFace’s
codebase (Wolf et al., 2019). We ran all experi-
ments on 24 NVIDIA RTX 2080 Ti GPUs.

B.2 More Evaluations
Compatibility with the state-of-the-art model.
To test if TextHide is also compatible with state-
of-the-art models, we repeat our accuracy evalua-
tion in Section 4.2 but replace the BERTbase model
with the RoBERTabase model (Liu et al., 2019).

As shown in Table 5, TextHide behaves consis-
tently for BERTbase and RoBERTabase: when in-
corporated with RoBERTabase, the averaged ac-
curacy reduction of TextHideintra is 1.1% when
compared with the baseline model (was 1.9% for
BERTbase). TextHideinter incurs an additional
2.6% accuracy loss on average (was 2.5% for
BERTbase).

TextHideinter with different public corpora: A
case study of SST-2. We investigate whether
using different public corpora affects the per-
formance of TextHideinter. We fix SST-2 as
the private dataset, set (m, k) = (256, 4),
and choose the public corpora from unlabeled
{QNLI, QQP, MNLI}. We intentionally make the
public corpora larger than the private dataset (SST-
2 in this test), since TextHideinter was designed to

Algorithm 3 Gradients matching attack (Zhu
et al., 2019) in TextHide
1: Require :
2: The function F (x;W ) can be thought of as a neural net-

work
3: For each l ∈ [L], we define Wl ∈ Rml×ml−1 to be the

weight matrix in l-th layer, and m0 = di and ml = do
4: Let W = {W1,W2, · · · ,WL} denote the weights over

all layers
5: Let L : Rdo×do → R denote loss function
6: Let g(x, y) = ∇L(F (x;W ), y) denote the gradients of

loss function
7: Let ĝ = g(σ, x, y)|σ=σ0,x=x0,y=y0 denote the gradients

computed on x0 with label y0, and secret mask σ0

8: procedure INPUTRECOVERYFROMGRADIENTS

9: x(1) ← N (0, 1), y(1) ← N (0, 1), σ(1) ← N (0, 1)
. Random initialization of the input, label and mask

10: for t = 1→ T do
11: Let Dg(σ, x, y) = ‖g(σ, x, y)− ĝ‖22
12: x(t+1) ← x(t) − η · ∇xDg(σ, x, y)|x=x(t)
13: y(t+1) ← y(t) − η · ∇yDg(σ, x, y)|y=y(t)
14: σ(t+1) ← σ(t) − η · ∇yDg(σ, x, y)|σ=σ(t)

15: end for
16: return x(T+1), y(T+1), σ(T+1)

17: end procedure

use a large public corpus as the source of random-
ness to provide useful security.

Table 6 suggests that for our case study of
SST-2, the choice of the public corpus does not
have a major impact on the final accuracy of
TextHideinter. However, this may not be true for
every dataset.

B.3 Fine-tuning Hyperparameters

For results in Table 1 and 5 (including our base-
line), we chose the best parameters with learning
rate = {5e−6, 1e−5, 2e−5, 3e−5, 5e−5}, epochs
= {5, 10, 15, 20, 25, 30}, batch size = {16, 32},
dropout rate = {0.1, 0.2, 0.3, 0.4, 0.5} based on
the validation performance (10% from the training
set). We used more epochs for fine-tuning since
training with random masking takes longer to con-
verge.

C Details of attacks

C.1 Gradients matching attack

Algorithm 3 describes the gradients matching at-
tack (Zhu et al., 2019) in TextHide setting. This
attack aims to recover the original image from
model gradients computed on it. As discussed in
Section 2, masks are kept private in TextHide set-
ting, thus the attacker also need to start from a
dummy mask (line 9) and iteratively update it to
compromise the real mask (line 14). In our ex-
periment, we made this attack much easier for the
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Datasets |D| Task Metric Baseline TextHideintra TextHideinter
RTE 2.5k NLI Acc. 78.8(0.69) 77.9(0.99) 70.8(0.78)
MRPC 3.7k Paraphrase F1 / Acc. 92.3(0.56) / 89.3(0.66) 91.1(0.68) / 87.6(0.34) 90.5(0.68) / 87.1(0.89)
STS-B 7k Similarity P / S corr. 91.3(0.13) / 91.0(0.19) 90.4(0.19) / 90.3(0.16) 82.6(0.65) / 84.2(0.52)
CoLA 8.5k Acceptability MCC 63.0(1.24) 59.1(1.01) 57.2(0.90)
SST-2 67k Sentiment Acc. 94.1(0.52) 93.5(0.21) 92.8(0.47)
QNLI 108k NLI Acc. 92.7(0.21) 92.3(0.29) 91.7(0.48)
QQP 364k Paraphrase F1 / Acc. 88.8(0.21) / 91.6(0.15) 88.1(0.24) / 91.0(0.31) 87.7(0.36) / 90.7(0.22)
MNLI 393k NLI m/mm 87.2(0.39) / 86.8(0.21) 86.4(0.21) / 86.0(0.15) -

Table 5: Performance on the GLUE tasks for both baseline (standard finetuning) and TextHide with RoBERTabase
model (Liu et al., 2019), measured on the development sets. We report the mean results across 5 runs, with
(m, k) = (16, 4) for RTE and (m, k) = (256, 4) for all the other datasets. Standard deviations are reported in
parentheses. |D| denotes the number of training samples. TextHide only suffers minor utility loss (∼ 3%). ‘P / S
corr.’ is Pearson/Spearman correlation. ‘MCC’ is Matthew’s correlation.

Private dataset: SST-2 (|D|: 67k)

Public Corpora |D| Task Acc.

QNLI 108k NLI 91.2(0.68)
QQP 364k Paraphrase 91.0(0.45)

MNLI 393k NLI 91.3(0.41)

Table 6: Dev set performance of SST-2 for
TextHideinter with different public corpora, (m, k) =
(256, 4). |D| denotes the number of samples. Standard
deviations are annotated as subscripts. The choice of
the public corpus does not have a major impact on the
final accuracy of SST-2.

Q1(CoLA): The magazines were sent to herself by
Mary. (×)

Baseline: The magazines were sent to herself by
Mary. (×)
Mix-only: The company sent China its senior mining
engineers to help plan the new mines. (×)
TextHide: Hierarchy of Projections: (X)

Q2(SST-2): an exquisitely crafted and acted tale. ( )

Baseline: an exquisitely crafted and acted tale. ( )
Mix-only: to make their way through this tragedy ( )
TextHide: fails to live up to – or offer any new insight
into – its chosen topic ( )

Table 7: Example queries and answer of RepRecon
with different representation schemes. Words with sim-
ilar meanings are marked in the same color. For CoLA
examples, we annotate the acceptability (‘X’ for yes,
‘×’ for no); for SST-2 examples, we annotate sentiment
(‘ ’ for positive, ‘ ’ for negative).

attacker, by revealing to him the real ground truth
label (y0 in line 7), which means he simply sets
y(t) = y0 throughout the attack.

Dataset and architecture. We used CIFAR-
10 (Krizhevsky, 2009) as the dataset and LeNet-

Baseline Mix-only TextHide Rand
ID 0.982 0.002 0.000 0.000
JCdist 0.992 0.033 0.029 0.028
TF-IDFsim 0.993 0.018 0.014 0.018
Label 0.998 0.818 0.638 0.620
SBERTsim 0.994 0.111 0.051 0.104

(a) RepRecon, CoLA

Baseline Mix-only TextHide Rand
ID 0.948 0.000 0.000 0.000
JCdist 0.953 0.065 0.064 0.080
TF-IDFsim 0.949 0.019 0.013 0.014
Label 0.968 0.464 0.472 0.452
SBERTsim 0.959 0.268 0.266 0.211

(b) RepRecon, SST-2

Table 8: Similarity score of five metrics for RepRe-
con on CoLA (a) and SST-2 (b) datasets. We report
the average score over 500 independent queries. Test
queries come from only the dev set. For each score,
the scheme with the worst similarity (best hiding) is
marked in bold. As shown, attacker against TextHide
gives similar performance to random guessing.

5 (LeCun et al., 1998) as the architecture to mimic
TextHide.

Given the original LeNet-5, we firstly removed
the last linear layer with output size do, which
gives us a new network. We use dc to denote
the size of output in the new network. Then,
we appended an MLP with hidden-layer size dm
and output size do to the new architecture. As in
an (m, k)-TextHide scheme, for each private in-
put, we first gets its TextHide representations by
extracting the output from the hidden-layer, and
mixes it with representations of other datapoints.
We then apply a mask on this combination. Note:
in this mimic setting, the mask’s dimension is dm.
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Hyper-parameters and running-time. Follow-
ing (Zhu et al., 2019), we use L-BFGS (Liu
and Nocedal, 1989) optimizer (learning-rate 1,
history-size 100 and max-iterations 20) and opti-
mize for 1,200 iterations. Each run takes 97 sec-
onds (single V100 GPU, averaged across 20 runs).

C.2 Representation-based Similarity Search
(RSS)

Running-time. For CoLA, building the search
index takes 267 seconds; each search takes < 0.1
seconds. For SST-2, building the index takes
1, 576 seconds; each search takes < 0.1 seconds.

C.3 Representation Reconstruction
(RepRecon)

RepRecon tests whether a deep architecture can
learn to disrupt our ‘hiding’ scheme. For an repre-
sentation e ∈ Rd, and its TextHide version ẽ ∈ Rd,
RepRecon tries to reconstruct e from ẽ by training
a network f : Rd → Rd such that ‖e − f(ẽ)‖2 is
minimized.

We use a multi-layer perception of hidden-layer
size (1024, 1024) as the reconstruction architec-
ture. We train the network on the train set of a
benchmark for 20 epochs, and run evaluation us-
ing the dev set. We then run RSS to map the re-
covered representation to its closet sentence in the
index, and measure the privacy leakage.

Quantitative and qualitative results of RepRe-
con are shown in Table 8 and Table 7.


