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Abstract

Temporal relation classification is a pair-wise
task for identifying the relation of a tempo-
ral link (TLINK) between two mentions, i.e.
event, time and document creation time (DCT).
It leads to two crucial limits: 1) Two TLINKSs
involving a common mention do not share in-
formation. 2) Existing models with indepen-
dent classifiers for each TLINK category (E2E,
E2T and E2D) ! hinder from using the whole
data. This paper presents an event centric
model that allows to manage dynamic event
representations across multiple TLINKs. Our
model deals with three TLINK categories with
multi-task learning to leverage the full size of
data. The experimental results show that our
proposal outperforms state-of-the-art models
and two transfer learning baselines on both the
English and Japanese data.

1 Introduction

Reasoning over temporal relations relevant to an
event mentioned in the document can help us un-
derstand when the event begins, how long it lasts,
how frequent it is, and etc. Starting with the Time-
Bank (Pustejovsky et al., 2003) corpus, a series of
temporal competitions (TempEval-1,2,3) (Verha-
gen et al., 2009, 2010; UzZaman et al., 2012) are
attracting growing research efforts.

Temporal relation classification (TRC) is the task
to predict a temporal relation (after, before, in-
cludes, etc.) of a TLINK from a source mention
to a target mention. Less effort has been paid to
explore the sharing information across ‘local’ pairs
and TLINK categories. In recent years, a variety
of dense annotation schemas are proposed to over-
come the ‘sparse’ annotation in the original Time-
bank. A typical one is the Timebank-Dense (TD)
corpus (Chambers et al., 2014), which performs

!Time-to-Time (T2T) is not included in this paper, as we
focus on event centric representations.

a compulsory dense annotation with the complete
graph of TLINKS for the mentions located in two
neighbouring sentences. Such dense annotation in-
creases the chance of pairs sharing common events
and demands of managing ‘global’ event represen-
tations across pairs among TLINK categories.

However, globally managing event representa-
tions of a whole document takes an extremely
heavy load for the dense corpora. Timebank-Dense
contains around 10,000 TLINKSs in only 36 docu-
ments and is 7 times denser than the original Time-
bank. Thus, we propose a simplified scenario called
Source Event Centric TLINK (SECT) chain. For
each event e; in a document, we group all TLINKSs
containing the common source event e; into the
e; centric TLINK chain and align them with the
chronological order of the target mentions appear-
ing in the document. We assume that our system is
capable of learning dynamic representations of the
centric event e; along the SECT chain via a ‘global’
recurrent neural network (RNN).

DCT: 1998-02-27

An intense manhunt (e1) conducted by
the FBI and the bureau of alcohol, to-
bacco and firearms continues (es) for
Rudolph in the wilderness of western
north Carolina. And this week (t1),
FBI director Louie Freeh assigned more
agents to the search (e3).

We demonstrate our proposal with the above
adjacent-sentence excerpt in Timebank-Dense.
‘(es,€¢)” denotes a directed TLINK from the
source eg; to target e; in this paper. Con-
sidering the ‘manhunt (e;)’ centric chain:
{(el,DCT), (61,62),(61,t1),(61,€3)}2, ‘man-
hunt’ holds a ‘includes’ relation to ‘continues’.

2As DCT is not explicitly mentioned in documents, we
always place (e;, DCT) on the top of a SECT chain
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We assume that dynamically updating the repre-
sentation of ‘manhunt’ in the early step ‘(e, e2)’
will benefit the prediction for the later step (e, e3)
to ‘search’. ‘manhunt’ is supposed to hold the
same ‘includes’ relation to ‘search’, as the search
should be included in the continuing manhunt.

Our model further exploits a multi-task learn-
ing framework to leverage all three categories of
TLINKSs in the SECT chain scope. A common
BERT (Devlin et al., 2019) encoder layer is applied
to retrieve token embeddings. The global RNN
layer manages the dynamic event and TLINK pre-
sentations in the chain. Finally, our system feeds
the TLINK representations into their corresponding
category-specific (E2D, E2T and E2E) classifiers
to calculate a combined loss.

The contribution of this work is listed as follows:
1) We present a novel source event centric model to
dynamically manage event representations across
TLINKSs. 2) Our model exploits a multi-task learn-
ing framework with two common layers trained
by a combined category-specific loss to overcome
the data isolation among TLINK categories. The
experimental results suggest the effectiveness of
our proposal on two datasets. All the codes of our
model and two baselines is released. 3

2 Related Work

2.1 Temporal Relation Classification

Most existing temporal relation classification ap-
proaches focus on extracting various features from
the textual sentence in the local pair-wise setting.
Inspired by the success of neural networks in var-
ious NLP tasks, Cheng and Miyao (2017); Meng
et al. (2017); Vashishtha et al. (2019); Han et al.
(2019b,a) propose a series of neural networks to
achieve accuracy with less feature engineering.
However, these neural models still drop in the pair-
wise setting.

Meng and Rumshisky (2018) propose a global
context layer (GCL) to store/read the solved
TLINK history upon a pre-trained pair-wise clas-
sifier. However, they find slow converge when
training the GCL and pair-wise classifier simul-
taneously. Minor improvement is observed com-
pared to their pair-wise classifier. Our model is
distinguished from their work in three focuses: 1)
We constrains the model in a reasonable scope, i.e.

*https://github.com/racerandom/
NeuralTime
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An intense e,: manhunt conducted by the FBI and the bureau of alcohol, tobacco
and firearms e,: continues for Rudolph in the wilderness of western north Carolina.
And t,: this week, FBI director Louie Freeh assigned more agents to the e;: search.

Figure 1: The overview of the proposed model.

SECT chain. 2) We manages dynamic event rep-
resentations, while their model stores/reads pair
history 3) Our model integrates category-specific
classifiers by multi-task learning, while they use the
categories as the features in one single classifier.

2.2 Multi-task Transfer Learning

For the past three years, several successful transfer
learning models (ELMO, GPT and BERT) (Peters
et al., 2018; Radford et al.; Devlin et al., 2019)
have been proposed, which significantly improved
the state-of-the-art on a wide range of NLP tasks.
(Liu et al., 2019) propose a single-task batch multi-
task learning approach over a common BERT to
leverage a large mount of cross-task data in the
fine-tuning stage.

In this work, our model deals with various cate-
gories of TLINKSs (E2E, E2T and E2D) in a batch
of SECT chains to calculate the combined loss with
the category-specific classifiers.

2.3 Non-English Temporal Corpora

Less attention has been paid for non-English tem-
poral corpora. Until 2014, Asahara et al. starts
the first corpus-based study BCCWIJ-Timebank
(BT) on Japanese temporal information annotation.
We explore the feasibility of our model on this
Japanese dataset.

3 Overview of Proposed Model

Figure 1 demonstrates the overview of
our Source Event Centric (SEC) model
with the previous e; centric chain example

{(61, DCT), (61, 62), (el,tl), (61, 63)} in § 1.

1353


https://github.com/racerandom/NeuralTime
https://github.com/racerandom/NeuralTime

T T T
—a no freeze
D freeze

60 |-| —=— freeze after k epochs -

Dev F1

30 L I I I

I I I I I
2 4 6 8 10 12 14 16 18 20
training epochs (Timebank-Dense)

T T T
—e— no freeze
|| —=— freeze

—=— freeze after k epochs

Dev F1

40 L I I I

I I I I I
2 4 6 8 10 12 14 16 18 20
training epochs (BCCWIJ-Timebank)

Figure 2: Dev performance (micro-F1) of three training strategies on two datasets.

3.1 BERT Sentence Encoder

We apply a pre-trained BERT for retrieving token
embeddings of input sentences. For a multiple-
token mention, we treat the element-wise sum of
token embeddings as the mention embedding.

3.2 Source Event Centric RNN

After the BERT layer processing, the system col-
lects all the mention embeddings appearing in the
chain: {Re,, Rpot, Rey, Ry, Reg }.

Our model assigns a ‘global’ two-layer gated
recurrent unit (GRU) model with the left-to-right
direction to simulate the chronological order of the
SETC chain for updating the centric e; embeddings.
The original e; embedding ., is sent into the
GRU as the initial hidden. At i-th TLINK step,
the system inputs the target mention embedding to
update the i-th e; embedding Ril for generating
the {i + 1}-th step TLINK embedding T°*1. As
shown in Figure 1, the 3-rd TLINK embedding
T(g’e L) is the concatenation of the 2-nd step Rgl
and target embedding R;, as the follows:

R? =maz(Re,,GRU(Re,, h1)) (1)

T3, 1y =[R2 Ry)] @)

e1?

The element-wise max is desiged to set the ini-
tial R, as an anchor to avoid the quality dropping
of new hiddens after long sequential updating.

3.3 Multi-category Learning

After obtaining all the TLINK embeddings
(T4, per)y T en) Tion i) Lier cq) } in the SECT
chain via the previous two common layers, the sys-
tem feeds them into the corresponding category-
specific classifiers. Each classifier is built with one
linear full-connected layer and Softmax layer. The
system calculates the combined loss as the follows
to perform multi-category learning.

L = Lgog + Lgar + LE2p 3)

*As DCT is not explicitly mentioned in documents, we set
Rpcr as a trainable embedding.

Corpus | E2D E2T E2E MAT | SECT

English 1,494 2,001 6,088 - 5.5

Japanese | 2,873 1,469 1,862 776 2.4
Table 1: Number of TLINKSs in the English and

Japanese corpora. ‘SECT* denotes the average TLINK
number per SECT chain. ‘MAT’ is defined in § 4.3

4 Experiments and Results

We conduct the experiments of applying the SEC
model on both the English TD and Japanese BT
corpora. Juman++ (Tolmachev et al., 2018)° is
adopted to do morphological analysis for Japanese
text. TD annotation adopts a 6-relation set (af-
ter, before, simultaneous, includes, is_included and
vague). We follow the ‘train/dev/test* data split®
of the previous work. For BT, we follow a merged
6-relation set as (Yoshikawa et al., 2014). We per-
form the document-level 5-fold cross-validation.
In each split, we randomly select 15% documents
as the dev set from the training set. The TLINKSs
statistics of the two corpora are listed in Table 1.

We adopt the English and Japanese pre-trained
‘base’ BERT’ and empirically set RNN hidden size
equal to BERT hidden, 4 SECT chains per batch,
20 epochs, and AdamW (Ir=5e-5). The other hyper-
parameters are selected based on the dev micro-F1.
All the results are 5-run average.

For the lack of comparable transfer learning ap-
proaches, we build two BERT baselines as follows
(fine-tuning 5 epochs, batch size is 16):

e Local-BERT: The concatenation of two men-
tions as TLINK embeddings are fed into the
independent category-specific classifier.

o Multi-BERT: The multi-category setting as
(Liu et al., 2019) of Local-BERT. Each time
the system pops out a single-category batch,

Shttps://github.com/ku-nlp/jumanpp
Swww.usna.edu/Users/cs/nchamber/caevo
"github.com/huggingface/transformers
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encodes it via the common BERT, and feed it
to the category-specific classifier.

‘Local-BERT’ and ‘Multi-BERT’ serve as the
baselines in the ablation test for the proposed ‘SEC’
model. ‘Local-BERT’ is the ‘SEC’ model remov-
ing both global RNN and multi-category learning.
‘Multi-BERT’ is viewed as the ‘SEC’ model remov-
ing global RNN.

4.1 Asynchronous Training Strategy

Fine-tuning BERT is difficultly performed with
training SEC RNN simultaneously. The standard
fine-tuning only requires 3 to 5 epochs, which indi-
cates the pre-trained model tends to quickly overfit.
However, the SEC RNN is randomly initialized and
requires more training epochs.

e no freeze of BERT sentence encoder
e freeze of BERT sentence encoder
o freeze after k epochs

Figure 2 shows the validation micro F1 of all
TLINKSs against the training epochs of the above
asynchronous training strategies. no freeze shows
the evidence of our concern that the curve undulate
after the initial 3 epochs. freeze performs a stable
learning phase with the lowest initialization. freeze
after k epochs achieves the balance of the stability
and high F1. Therefore, we perform the third strat-
egy for all the following experiments. The number
k is selected from {3, 4, 5} based on the validation
scores.

4.2 Main Timebank-Dense Results

Table 2 shows the experimental results on the En-
glish TD corpus. ‘CATENA’ (Mirza and Tonelli,
2016) is the feature-based model combined with
dense word embeddings. ‘SDP-RNN’ (Cheng and
Miyao, 2017) is the dependency tree enhanced
RNN model.‘GCL’ (Meng and Rumshisky, 2018)
is the global context layer model introduced in § 2.1.
‘Fine-grained TRC’ Vashishtha et al. (2019) is the
ELMO based fine-grained TRC model with only
the E2E results reported.

It’s not surprising that the proposed model
substantially outperforms state-of-the-art systems,
as the existing SOTA didn’t exploit BERT yet.
Therefore, we offer the ablation test with ‘Local-
BERT’(w/o multi-categories learning and global
SEC RNN) and ‘Multi-BERT’ (w/o global SEC
RNN) to investigate the benefits of our two con-
tributions. The ‘SEC’ model obtains +3.2, +6.8,
+5.2 F1 improvements compared to ‘Local-BERT”,

Models E2D E2T E2E
Majority Vote 323 40.6 47.7
local Models

CATENA (2016) 534 46.8 519
SDP-RNN (2017) 546 47.1 529
Fine-grained TRC (2019) - - 566
Local-BERT 62.7 494 59.8
local + multi-category Models

Multi-BERT 652 548 614
global + multi-category Models

GCL (2018) 489 487 57.0
SEC (proposed) 659 558 65.0

Table 2: Temporal relation classification results (micro
F1) on the English Timebank-Dense.

Models E2D E2T E2E MAT
Majority Vote 68.3 504 432 393
local Models

Yoshikawa (2014) 75.6 5577 599 50.0
Local-BERT 80.7 589 612 54.1
local + multi-category Models

Multi-BERT 814 61.0 633 61.6
global + multi-category Models

SEC (proposed) 81.6 60.7 64.5 64.6

Table 3: Temporal relation classification results (micro
F1) on the Japanese BCCWJ-Timebank.

which suggests the effectiveness of two main pro-
posal. The ‘SEC’ model further outperforms
‘Multi-BERT’ by 3.6 gain of the majority category
E2E, 1.0 gain of E2T and 0.7 gain of E2D, which
indicates the impact of the global SEC RNN.

A main finding is that E2E obtains higher gains
from ‘global’ contexts, compare to E2T and E2D. It
matches the intuition that events are more globally
contextualized and time expressions are usually
more self-represented (e.g. normalized time val-
ues). E2D mainly requires contextual information
from the single sentences by the BERT encoder.
E2T takes less advantage of BERT, while multi-
category training with E2E, E2D can significantly
improves its performance.

4.3 Results on Non-English Data

Table 3 shows the results in the Japanese corpus.
Different from the TD annotation schema, BT spec-
ifies two E2E categories for fitting the Japanese lan-
guage: 1) E2E: between two consecutive events, 2)
MAT: between two consecutive matrix verb events.

The state-of-the-art system on BT is the feature-

1355



based approach (Yoshikawa et al., 2014). The com-
parisons are similar to the English data. Our ‘SEC*
obtains the substantial improvements compared to
their work and two BERT baselines. An interest-
ing observation is that MAT TLINKSs are usually
inter-sentence located at the end of SECT chains,
as Japanese is a ‘SOV’ language. The results in-
dicate that long distance MAT suffers from the
low-quality representations in the ‘local’ setting
and benefits from ‘global’ representation more.

5 Conclusion

This paper presents a novel transfer learning based
model to boost the performance of temporal infor-
mation extraction task especially for densely anno-
tated dataset. Our model can dynamically update
event representations across multiple TLINKS in
a Source Event Centric chain scope. Our model
exploits a multi-category learning framework to
leverage the total data of three TLINK categories.
The empirical results show that our proposal outper-
forms the state-of-the-art systems and the ablation
tests suggest the effectiveness of two main pro-
posals. The Non-English experiments support the
feasibility of our system on the Japanese data.
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