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Abstract

We show that state-of-the-art self-supervised
language models can be readily used to ex-
tract relations from a corpus without the need
to train a fine-tuned extractive head. We in-
troduce RE-Flex, a simple framework that per-
forms constrained cloze completion over pre-
trained language models to perform unsuper-
vised relation extraction. RE-Flex uses contex-
tual matching to ensure that language model
predictions matches supporting evidence from
the input corpus that is relevant to a target re-
lation. We perform an extensive experimental
study over multiple relation extraction bench-
marks and demonstrate that RE-Flex outper-
forms competing unsupervised relation extrac-
tion methods based on pretrained language
models by up to 27.8 F1 points compared to
the next-best method. Our results show that
constrained inference queries against a lan-
guage model can enable accurate unsupervised
relation extraction.

1 Introduction

Relation extraction is a fundamental problem in
constructing knowledge bases from unstructured
text. The goal of relational extraction is to identify
mentions of relational facts (i.e., binary relations
between entities) in a text corpus. Traditionally,
relation extraction systems leverage supervised ma-
chine learning approaches to train specialized ex-
traction models for different relations (Dong et al.,
2014; Shin et al., 2015). However, advances in
natural language understanding models, such as
BERT (Devlin et al., 2018) and RoBERTa (Liu
et al., 2019), have shifted the focus towards gen-
eral relation extraction where a single natural lan-
guage model is used for extraction across different
relations (Levy et al., 2017).

A key idea behind general relation extraction
is to leverage question answering (QA) models
and use the reading comprehension capabilities
of modern natural language models to identify

relation mentions in text. For example, the re-
lation drafted by can be completed for the
subject Stephen Curry by answering the question
Who drafted Stephen Curry? State-of-
the-art results leverage fine-tuned QA models over
self-supervised contextual representations (Devlin
et al., 2018; Radford et al., 2018). Initial ap-
proaches (Levy et al., 2017) learn extractive QA
models by exploiting annotated question-answer
pairs and following a supervised setting.

While effective in domains related to the an-
notated question-answer data, supervised extrac-
tive QA approaches can fail to generalize to new
domains for which annotations are not available
(Dhingra et al., 2018). For this reason, more recent
approaches (Lewis et al., 2019) propose to use auto-
matically generated question-answer pairs for train-
ing and adopt a weakly-supervised setting (Lewis
et al., 2019). However, noisy or inaccurate training
data leads to a significant drop in performance.

In this work, we revisit the problem of general
relation extraction and show that one can perform
unsupervised relation extraction by directly using
the generative ability of self-supervised contex-
tual language models and without training a fine-
tuned QA model. We build upon the recent obser-
vation that modern language models encode the
semantic information captured in text and are ca-
pable of generating answers to relational queries
by answering cloze queries that represent a rela-
tion (Petroni et al., 2019). For instance, the previ-
ous extraction example can be transformed to the
cloze query Stephen Curry was drafted
by [MASK] and the language model can be used
to predict the most probable value for the masked
token. Further, recent works (Radford et al., 2019;
Petroni et al., 2020) show that prefixing cloze
queries with relevant information, i.e., relevant
context, can improve extraction accuracy by uti-
lizing the models’ reading comprehension ability
(Radford et al., 2019; Petroni et al., 2020). While
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promising, we show that an out-of-box application
of these methods to general relation extraction falls
short of extractive QA models. The core limitation
is that of factual generation: language models do
not memorize general factual information (Petroni
et al., 2019), and are liable to predict off-topic or
non-factual tokens (See et al., 2017).

We propose a novel two-pronged approach that
ensures factual predictions from a contextual lan-
guage model. First, given an extractive relational
cloze query and an associated context, we propose
a method to restrict the model’s answer to the query
to be factual information in the associated context.
We introduce a context-constrained inference pro-
cedure over language models and does not require
altering the pre-training algorithm. This procedure
relies on redistributing the probability mass of the
language model’s initial prediction to tokens only
present in the context. By restricting the model’s
inference to be present in the context, we ensure a
factual response to a relational cloze query. This
strategy is similar to methods used in unsupervised
neural summarization (Zhou and Rush, 2019) to
ensure factual summary generation. Second, we
introduce an unsupervised solution to determining
whether the context associated with the query con-
tains an answer to a relational query. We propose
an information theoretic scoring function to mea-
sure how well a relation is represented in a given
context, then cluster contexts into “accept” and
“reject” categories, denoting whether the contexts
express the relation or not.

We present an extensive experimental evalua-
tion of RE-Flex against state of the art general re-
lation extraction methods across several settings.
We demonstrate that RE-Flex outperforms methods
that rely on weakly supervised QA models (Dhin-
gra et al., 2018; Lewis et al., 2019) by up to 27.8 F1

points compared to the next-best method, and can
even outperform methods that rely on supervised
QA models (Levy et al., 2017) by up to 12.4 F1

points in certain settings. Our results demonstrate
that by constraining language generation, RE-Flex
yields accurate unsupervised relation extractions.

2 Related Work

Typical relation extraction relies on rule-based
methods (Soderland et al., 1995) and supervised
machine learning models that target specific re-
lation types (Hoffmann et al., 2011; Dong et al.,
2014; Shin et al., 2015). These approaches are lim-

ited to predefined relations and do not extend to
relations that are not specified during training. To
alleviate this problem, open information extraction
(OpenIE) (Banko et al., 2007) proposes to repre-
sent relations as unstructured text. However, in
OpenIE different phrasings of the same relation
can be treated as different relations, leading to re-
dundant extractions. To address this issue, Uni-
versal Schema (Riedel et al., 2013) uses matrix
factorization to link OpenIE relations to an existing
knowledge base to distill extracted relations. Our
problem is aligned with the thrust of OpenIE: en-
abling general relations to be extracted from text
corpora without relation specific supervision.

More recently, question answering has become
a popular method to extract relations from text.
Levy et al. (2017) showed that casting relation ex-
traction as a QA problem can enable new, unseen
relations to be extracted without additional train-
ing. Advances in large self-supervised language
models (Radford et al., 2018) have enabled QA
models to achieve human level performance on
some datasets (Rajpurkar et al., 2016). Because
these models are trained on a slot-filling objective,
there has been a branch between methods that use a
QA head to extract spans from input, and methods
that use token generation capability of language
models to perform information extraction. Both
are relevant to our work.

Many QA-based methods have been proposed to
identify spans from text. Das et al. (2018) present
a reading comprehension model based on the archi-
tecture of Chen et al. (2017) to track the dynamic
state of a knowledge graph as the model reads the
text. Li et al. (2019) proposes a multi-turn QA sys-
tem to extract relational fact triplets. Xiong et al.
(2019) map evidence from a knowledge base to nat-
ural language questions to improve performance in
the general QA setting. Most relevant QA systems
to our work are the works of Lewis et al. (2019)
and Dhingra et al. (2018), which propose weak su-
pervision algorithms to generate QA pairs over new
corpora for training. We compare to these models
in our experiments.

There are also many generative methods that
rely only on a language model to generate the an-
swer to queries. Radford et al. (2019) show that
self-supervised language models can generate an-
swers to questions. Petroni et al. (2019) show that
given natural language cloze templates that repre-
sent relations, masked language models (Devlin
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Figure 1: The RE-Flex Framework Overview

et al., 2018) can answer relational queries directly.
Petroni et al. (2020) extends on this work to show
that retrieving factual evidence to associate with
relation queries can further benefit answer gener-
ation. Logan et al. (2019) present a knowledge
graph language model that can choose between
outputting tokens from a base vocabulary, or enti-
ties from a linked knowledge base. Bosselut et al.
(2019) show that language models can generate
commonsense knowledge bases if pretrained on
another corpus and fine-tuned on a commonsense
knowledge base. We build on this work, but choose
to focus on formulating an improved inference pro-
cedure for generative query answering, instead of
focusing on learning better representations or using
out of the box inference.

3 Problem Statement

We consider a slot filling form of relation extrac-
tion: given incomplete relations, we must complete
the relations using evidence from an underlying
text source. We assume a set of input relations
R. For each relation r ∈ R, we assume access
to a collection of entity-context candidate pairs.
Let ECr denote this collection for relation r. We
consider each pair (e, c) ∈ ECr to be candidate
evidence that some span in c completes relation
r for the given entity mention e. If we consider
the context to be composed of a sequence of to-
kens c = (c1, c2, . . . , cn), we must return some
subsequence a = (ci, ..., ci+m) such that the rela-
tion r(e, a) holds, or ∅ if c does not express the
relation for the given entity.

Furthermore, we represent each relation with a
cloze template: a natural language representation of
what the relation is attempting to capture. A cloze
template for relation r is a sequence of tokens t =
(t1, . . . , tsub, . . . , tobj , . . . , tk), where tsub and tobj

are special tokens denoting the expected locations
of the subject and object entities of the relation. For
each (e, c), we substitute the special token tsub with
e. Let t(e) = (t1, . . . , e, . . . , tobj , . . . , tk) denote
this substitution. We form our final cloze query by
concatenating the context c to the cloze task t(e)
and denote the close query q(e, c) = [c, t(e)].

Given a cloze query q(e, c), we express relation
extraction as the following inference task: predict
if there is a subsequence of the context c that
correctly substitutes the special token tobj in
the cloze task t(e), otherwise return ∅. As an
example, consider the relation drafted by. An
example candidate entity-context pair in the pair
set for of relation is (Stephen Curry, The
Warriors drafted Steph Curry.). Us-
ing the relational template tsub was drafted
by tobj , we form our full cloze query for the pair:
The Warriors drafted Steph Curry.
Stephen Curry was drafted by tobj .

4 The RE-Flex Framework

An overview of RE-Flex is shown in Figure 1.
Given a target relation, RE-Flex assumes as input
a set of entities, a set of candidate contexts, and
a cloze template expressing the relation. The out-
put of RE-Flex is a table containing subject-object
instances of this relation for the input entities. RE-
Flex is built around two key parts: 1) context rejec-
tion and 2) anchor token identification and token
expansion. In the first part, RE-Flex determines if
the cloze query for a candidate entity-context pair
does not contain a valid mention of the target rela-
tion, and hence, we must return ∅. In the second
part, given valid entity-context pairs for the target
relation, RE-Flex identifies the subsequence in the
corresponding context that completes the relation
for the given entity. We describe each part next.
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4.1 Context Rejection

For each relation r, we must determine which of
the candidate pairs (e, c) ∈ ECr express relation r
for entity e, and return ∅ for those that do not. The
problem can be naturally considered as a clustering
problem, where we group elements of ECr into
an accept cluster Ic or a reject cluster I−c. Given
this regime, we must develop a general method
to determine how well a given entity-context pair
(e, c) expresses a target relation. Using the natural
language representation of the relation, we formu-
late a scoring function to measure how much each
context expresses the relation. We then determine
a threshold on these scores to partition the pairs.

We propose the following mechanism: First, we
leverage the fact that the cloze template t for a
target relation r is the natural language representa-
tion of the relation and assume that it captures the
intention of the relation. We formulate a scoring
function f(c, t(e)) which takes as input a context
c and t(e)—the cloze template where we have sub-
stituted tsub = e—and returns a measurement of
how well each token in the template is captured in
a given context. Second, for some threshold ε, if
f(c, t(e)) > ε, we assign the corresponding pair
(e, c) to Ic, and to I−c otherwise.

We design f with the following intuition: if each
word in the template co-occurs many times with
any word in the context, the relation is likely to be
expressed. We define f as follows:

f(c, t(e)) =
1

|t(e)|

|t(e)|∑
i=0

max
j∈[1,|c|]

PMI(t(e)[i], c[j])

where PMI is the Pointwise Mutual Information
(Church and Hanks, 1990), |t(e)| and |c| are the
total number of tokens in the cloze task t(e) and the
context c respectively, t(e)[i] denotes the token in
position i of the cloze task t(e), and c[j] denotes the
token in position j of context c. For two words x
and y, PMI is defined as PMI(x, y) = log

pq(x,y)
p(x)p(y) ,

where pq(x, y) is the probability that x and y co-
occur in a q-gram in the corpus and p(x) is the
marginal probability of x occurring in the corpus;
we set q = 5.

We estimate PMI using the cosine similarity be-
tween the word embeddings produced by optimiz-
ing the skip-gram objective over a target corpus
(Mikolov et al., 2013). This approach does not suf-
fer from missing values in the PMI matrix, as an

empirical estimate of the PMI matrix might (Levy
and Goldberg, 2014). As proven in Arora et al.
(2016), for two words x and y and their word em-
beddings vx ∈ Rd and vy ∈ Rd we have that:

PMI(x, y) ≈ 〈vx, vy〉
||vx||||vy||

We use a simple inlier detection method to de-
termine the threshold ε. We assume that entity-
candidate contexts for each relation r are relatively
well-aligned, i.e., the majority of elements in ECr

contain a true mention of relation r for the entity
associated with each element. Let Qr denote the
set of all possible correct entity-context pairs for r.
We assume that for any valid pair (e, c) the score
f(c, t(e)) follows a normal distributionN (µr, σ

2
r ),

and hence, we expect that for most entity-context
pairs the similarity scores to the cloze task associ-
ated with the relation will be centered around the
mean µr. Given the above modeling assumptions,
we estimate µr and σ2r as follows:

µr =
1

|ECr|
∑

(e,c)∈ECr

f(c, t(e))

σ2r =
1

|ECr|
∑

(e,c)∈ECr

(f(c, t(e))− µt)2

We then let ε is ε = µr − λσr where λ is a
hyperparameter. We assign all (er, cr) pairs to Ic
if f(cr, tr) > ε, and assign the rest to I−c. For all
pairs in I−c, we return ∅.

4.2 Relation Extraction

We discuss how RE-Flex performs relation extrac-
tion given a valid entity-pair context. For this
part, we assume access to a pre-trained contextual
language model—in RE-Flex we use RoBERTa
(Liu et al., 2019). For a valid entity-context pair
(e, c) for relation r, we construct the cloze query
q(e, c) = [c, t(e)] by replacing the subject mask
token tsub in the cloze template t with e, and given
the sequence q(e, c) we identify the token span α
in c that should replace the object mask token tobj
in t(e) to complete relation r for entity e.

At a high-level, we follow the next process to
identify span α: first, we consider the raw predic-
tions of the pre-trained model for tobj , and smooth
the scores of these predictions by restricting valid
predictions to correspond only to tokens present
in the context c; we pick the context token with
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the highest final score, which we refer to as the
anchor token. Second, given the anchor token in
c, we return an expanded span from c that contains
descriptors of the anchor token. We describe each
of these two steps next.

Anchor token identification We focus on the
first step described above. Given an entity-context
pair (e, c) that contains a true mention of relation
r, the desired answer to the cloze query q(e, c)
corresponds to a span of tokens α in c. The task of
anchor token identification is to identify any token
in span α. To identify such a token, we constraint
the inferences of the pre-trained model to tokens in
the context c.

Given the cloze query q(e, c) = [c, t(e)], also
denoted hereafter q for simplicity, we first use the
pre-trained model, denoted hereafter by M , to ob-
tain a prediction for the masked token tobj (see Sec-
tion 3). Let V denote the vocabulary of all tokens
present in the domain of consideration. For each
token v ∈ V , we can use M to obtain a probability
that v should be used to complete the masked token
tobj . Let pq,M (v) = p(tobj = v; q,M) denote this
probability for token v.

To obtain a factual prediction, we reassign the
above probability mass to only to the tokens found
in context c. We leverage the contextual model M
for this step. For the token at each position in the
context sequence c, we find all tokens in V that are
semantically compatible with it, given the cloze
query q(e, c), and reassign the probability mass of
these tokens proportionally. Consider the i-th posi-
tion in the context c. We define the new probability
mass for token c[i], denoted by zq,M (c[i]), as:

zq,M (c[i]) =
∑
v∈V

pq,M (v) ·D(c[i], v)

where D(c[i], v) is a non-negative normalized
score indicating the semantic compatibility be-
tween tokens c[i] and v. We have:

D(c[i], v) =
exp(d(c[i], v))∑|c|
j=1 exp(d(c[j], v))

where the unnormalized scores d(c[i], v) are ob-
tained using the similarity between contextual em-
beddings obtained by model M .

We define this contextual similarity more for-
mally. Let qe,c(v) be the sequence corresponding to

the cloze query q(e, c) after we replace the masked
object token tobj in the cloze template of the target
relation with some token v ∈ V . That is for context
c = {c1, c2, . . . , cn}, entity e, and the cloze tem-
plate t = {t1, . . . , tsub, . . . , tobj , . . . , tm}, we have
qe,c(v) = {c1, . . . , cn, t1, . . . , e, . . . , v, . . . , tm}.
Given model M and sequence qe,c(v), let
M(qe,c(v))[k] ∈ Rd be the contextual embedding
returned by M for the token at the k-th position
of sequence qe,c(v). We define the unnormalized
score d(c[i], v) as:

d(c[i], v) = cos(M(qe,c(v))[i],M(qe,c(v))[obj])

where cos(A,B) denotes the cosine similarity
between two vectors, and obj denotes the position
of object token set to v in sequence qe,c(v).

An exact computation of zq,M (c[i]) would re-
quire |V | forward passes. Instead, we propose to
approximate zq,M (c[i]). In practice, the language
model’s output distribution over the vocabulary has
low entropy. Thus, we expect pq,M (v) to be zero
for most v ∈ V . Therefore, we can approximate
zq,M (c[i]) by only summing over the top-k tokens
for the probability mass pq,M . We define a set of
proposal tokens Ṽ to be these top-k tokens. Empir-
ically, we find that filtering out punctuation from Ṽ
also increases performance. We take the position
of the anchor token in c, denoted by aout to be:

aout = argmax
i∈{1,...,|c|}

∑
v∈Ṽ

pq,M (v) ·D(c[i], v)

This approximation only requires k + 1 forward
passes (one additional forward pass is needed to
obtain the initial pq,M distribution) to compute the
final prediction. We examine the effect of setting
different k in Appendix E.

Anchor token expansion We use a simple mech-
anism to expand the single-token anchor to a multi-
token span. Given an off-the-shelf named entity
recognition (NER) model, we do the following: if
the anchor word is within a named entity, return
the entire entity. Otherwise, return just the anchor
word. While this approach allows us to support
multi-token answers, its quality is highly corre-
lated to that of the NER model. In practice, we do
not find this to be a limiting factor because most
entities tend to span few tokens. We experimen-
tally evaluate the effect of using NER to obtain
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multi-token spans in Appendix E. We choose this
approach as our focus is on studying if language
models can be used directly for relation extraction.

5 Experimental Evaluation

We compare RE-Flex against several competing
relation extraction methods on four relation extrac-
tion benchmarks. The main points we seek to val-
idate are: (1) how accurately can RE-Flex extract
relations by utilizing contextual evidence, (2) how
does RE-Flex compare to different categories of
extractive models.

5.1 Experimental Setup
We describe the benchmarks, metrics, and methods
we use in our evaluation. We discuss implementa-
tion details in Appendix D.

5.1.1 Datasets and Benchmarks
We consider four relation extraction benchmarks.
The first two, T-REx (Elsahar et al., 2018) and
Google-RE1, are datasets previously used to evalu-
ate unsupervised QA methods (Petroni et al., 2020),
and are part of the LAMA probe (Petroni et al.,
2019). We also consider the Zero-Shot Relation
Extraction (ZSRE) benchmark (Levy et al., 2017),
which is a dataset originally used to show that
reading comprehension models can be extended
to extractions of unseen relations. Finally, we
adapt the TAC Relation Extraction Dataset (TA-
CRED) (Zhang et al., 2017a) to the slot filling set-
ting utilizing a protocol similar to that used in Levy
et al. (2017). We present the adaptation procedure,
as well as a full table of benchmark characteris-
tics in Appendix C. For the T-REx and Google-
RE datasets all inputs correspond to entity-context
pairs that contain a valid relation mention. On the
other hand, ZSRE and TACRED contain invalid in-
puts for which the extraction models should return
∅. We refer to the first two datasets as the LAMA
benchmarks, while the latter two are general rela-
tion extraction benchmarks.

5.1.2 Metrics
We follow standard metrics from Squad 1.0 (Ra-
jpurkar et al., 2016) and evaluate the quality of
each extraction using two metrics: Exact Match
(EM) and F1-score. Exact match assigns a score
of 1.0 when the extracted span matches exactly
the ground truth span, or 0.0 otherwise. F1 treats

1https://code.google.com/archive/p/
relation-extraction-corpus/

the extracted span as a set and calculates the token
level precision and recall. For each relation, we
compute the average EM and F1 scores and then
average these scores across relations.

5.1.3 Defining cloze templates
We manually define cloze templates for each rela-
tion. As in previous work that explore language
generation to complete knowledge queries (Petroni
et al., 2019), we note that these templates may not
produce the optimal extractions. Moreover, we
point out that subtle variations in cloze templates
can cause variation in performance. As we report
results that are averaged across many relations, er-
ror due to cloze definition is part of the end-to-end
performance for the relevant methods.

5.1.4 Competing Methods
We consider three classes of competing methods:
1) models that rely on the generative ability of lan-
guage models, 2) weakly-supervised QA models
trained on an aligned set of question-answer pairs,
and 3) supervised QA models trained on annotated
question-answer pairs. Implementation details are
found in Appendix D.

Generative Methods We compare to the naive
cloze completion (NC) method of Petroni et al.
(2019), which queries a masked language model to
complete a cloze template representing a relation,
without an associated context. We also consider
the method of Petroni et al. (2020) (GD), which
concatenates the context to the cloze template, and
greedily decodes an answer to the relational query.
This method is the same as that used in Radford
et al. (2019) to show language models are unsuper-
vised task learners. We use the RoBERTa language
model (Liu et al., 2019) for both these baselines.

Weakly-supervised QA Methods We compare
against two proposed weakly-supervised QA meth-
ods. The first method (Lewis et al., 2019) (UE-
QA) uses a machine translation model to create
questions from text using an off-the-shelf NER
model, then trains a question answering head on
the generated data to extract spans from text. The
second method (Dhingra et al., 2018) (SE-QA) is
a semi-supervised approach to QA. It also uses
an NER model to generate cloze-style question-
answer pairs and then trains a QA model on these
pairs. Authors provide generated data for both
methods, which we use to train a BERT-Large QA
model (Devlin et al., 2018).

 https://code.google.com/archive/p/ relation- extraction- corpus/
 https://code.google.com/archive/p/ relation- extraction- corpus/
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Supervised QA Methods Finally, we compare
against three supervised QA models trained on an-
notated question-answer pairs. We train BiDAF
(Seo et al., 2016), extended to be able to predict no
answer (Levy et al., 2017) on Squad 2.0 (Rajpurkar
et al., 2018). Additionally, we train BERT-Large on
Squad 2.0 (B-Squad) and the training set of ZSRE
(B-ZSRE). For Google-RE and T-REx, we do not
allow these models to return ∅. These baselines
require the existence of a significant number of
human annotations in the case of Squad2.0, or the
existence of a large reference knowledge base in
the case of ZSRE.

5.2 End-to-end Comparisons
We evaluate the performance of RE-Flex against
all competing methods for different benchmarks.
The results are shown in Table 1.

5.2.1 LAMA Benchmarks
We focus on the LAMA benchmarks, which con-
sist of the Google-RE and T-REx datasets. For
these benchmarks, the context always contains the
answer to the relational query, and the answer is
a single token. We analyze the performance of
RE-Flex against each group of baselines.

Comparison to Generative Methods We first
compare the performance of RE-Flex to that of
the generative methods NC and GD. We see that
RE-Flex outperforms NC by 33.1 F1 on T-REx
and 81.6 F1 on Google-RE. We see that GD also
outperforms NC. This observation suggests that
retrieving relevant contexts and associating them
with relational queries significantly increases the
performance of generative relation extraction meth-
ods, as opposed to relying on the model’s memory.

Compared to GD, RE-Flex shows an improve-
ment of 12.3 F1 on T-REx and 11.5 F1 on Google-
RE. We attribute this gain on RE-Flex’s ability to
constrain the language model’s generation to to-
kens only present in the context.
Takeaway: Restricting language model inference
ensures more factual predictions, and is key to accu-
rate relation extraction when using the contextual
language model directly.

Comparison to Weakly-supervised Methods
We compare RE-Flex to UE-QA and SE-QA, which
both construct a weakly-aligned noisy training
dataset and fine-tune an extractive QA head on
the produced examples. RE-Flex outperforms both
approaches, yielding improvements of 27.8 F1 on

T-REx and 22.2 F1 on Google-RE compared to the
best performing method for each dataset.

Additionally, we see that, on these benchmarks,
GD (despite yielding worse results than RE-Flex)
also outperforms UE-QA and SE-QA. This result
suggests that training on noisy training data can
severely hamper downstream performance.
Takeaway: Using weak-alignment to train a QA
head often leads to poor results, and it is better
to use the model’s generative ability instead. Be-
low, we show that this behavior extends to general
relation extraction benchmarks.

Comparison to Supervised Methods We find
the surprising result that RE-Flex is better than all
supervised methods. We believe the results can be
attributed to the fact that the language model is able
to capture the subset of relations in these datasets
quite well. This finding is also supported by the
fact that GD also yields comparable accuracy to
the supervised methods.

As we examine below, this behavior is not as
pronounced when considering the general relation
extraction setting. Still, we are able to assert that
for specific relation subsets, our inference proce-
dure is able to outperform standard QA models.
Takeaway: Our findings strongly support that con-
textual models capture certain semantic relations
(Petroni et al., 2019, 2020), but to outperform the
performance of supervised models we still need
RE-Flex’s fine-tuned inference procedure.

5.2.2 General Relation Benchmarks
We now focus on ZSRE and TACRED, which are
more reflective of our problem statement. Here,
we must assert whether a candidate context con-
tains a true expression of the relation, and produce
multiple token spans as answers.

Comparison to Generative and Weakly-
supervised Methods We see that RE-Flex
significantly outperforms all generative and
weakly-supervised methods on these benchmarks.
We outperform the next best method by 22.0 F1

on ZSRE and by 28.1 F1 on TACRED. In this
realistic context, using the contextual language
model without fine-tuning the corresponding
inferences falls short, while a noisily trained
QA head also exhibits poor performance. To
understand if these results are to be attributed to
RE-Flex’s ability to reject contexts, we ablate the
performance of RE-Flex with and without enabling
context rejection (Section 4.1). The results are
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Category Dataset Metric RE-Flex Generative Weakly-supervised Supervised
NC GD UE-QA SE-QA BiDAF B-Squad B-ZSRE

LAMA
T-REx EM 56.0 22.9 43.2 14.2 21.2 35.5 42.2 46.2

F1 56.0 22.9 43.7 19.3 28.2 46.6 52.0 52.7

Google-RE EM 87.2 5.6 75.6 51.9 19.7 53.9 52.9 70.5
F1 87.2 5.6 75.7 65.0 25.3 74.8 76.5 75.8

GR
ZSRE EM 43.7 14.1 27.7 16.7 17.3 40.2 66.5 82.0

F1 46.9 14.9 30.7 23.7 24.9 49.0 74.1 84.8

TACRED EM 49.4 9.0 25.6 17.5 13.9 49.3 56.9 54.4
F1 50.1 9.0 26.3 22.0 18.6 53.7 61.1 55.3

Table 1: Performance for all methods on the four benchmarks. Datasets are divided into two categories, LAMA
and General Relation (GR) denoting whether the dataset requires that ∅ be returned for any examples. Bold values
highlight the best method.

Method ZSRE TACRED
EM F1 EM F1

Without rejection 40.0 43.4 39.1 39.5
With rejection 43.7 46.9 49.4 50.1

Table 2: Context rejection ablation on general relation
benchmarks.

shown in Figure 2. We see that context rejection
leads to increased performance. For example, in
TACRED it boosts RE-Flex’s F1 score by more
than 10 points. We also see that even without
the context rejection, RE-Flex outperforms these
classes of methods by up to 13.2 F1 compared
to the next best method. This finding suggests
that the combination of fine-tuned inference and
context rejection leads to good performance.
Takeaway: In addition to restricted inference, in-
corporating context rejection is necessary for the
general relation extraction setting. This finding is
consistent with that for the LAMA benchmarks.

Comparison to Supervised Methods We com-
pare to supervised QA baselines on the general
relation extraction benchmarks. Here, all compet-
ing approaches are trained on human annotated QA
pairs. We find that RE-Flex performs comparably
to BiDAF but falls short of the fine-tuned BERT-
based QA models. Recall that BiDAF relies on
a simpler attention-flow model, and does not use
self-supervised language representations, as BERT
does. The best performing BERT baselines see
an average improvement of 37.9 F1 on ZSRE and
10 F1 on TACRED compared to RE-Flex. How-
ever, as we show next, there is a significant number
of relations for which RE-Flex outperforms the
BERT-based baselines for even up to 40 F1 points
in TACRED and up to 60 F1 points in ZSRE.

To better understand RE-Flex’s behavior beyond
the averaged F1, we record the difference in F1

scores between RE-Flex and each BERT baseline

on a per relation basis. Histograms of these results
can be found in Figure 2. On TACRED, RE-Flex
outperforms the best method for 20% of relations
and comes within 20.0 F1 for 26% of relations.
For ZSRE, RE-Flex outperforms the best method
for 6% of relations, and comes within 20.0 F1 for
another 12% of relations. These results show that
for certain relations, RE-Flex can perform compet-
itively or even better with supervised methods.

We note that the relations for which RE-Flex
performs better than the baselines tend to be simple
many-to-one relations which are likely to be clearly
stated in succinct ways. For example, RE-Flex
outperforms baselines on the cause of death
and religious affiliation relations. RE-
Flex tends to fail on domain specific relations, such
as located on astronomical body. Here,
questions can incorporate specific output require-
ments (e.g., “where” questions should return a lo-
cation), and supervised models can learn these sig-
nals, whereas incorporating intention into language
generation is an open research problem (Keskar
et al., 2019).

Finally, we note the performance drop of B-
ZSRE when applied to the TACRED dataset. Both
QA models perform similarly on TACRED, which
does not have a QA training set associated with
it. This shows that supervised QA models exhibit
some bias towards the underlying corpus they are
trained on, which supports claims in previous work
(Dhingra et al., 2018). We further expand on this
result in Appendix F.
Takeaway: We find evidence that, for simple
many-to-one relations, fine-tuned inference over
self-supervised models can exhibit comparable
or better performance than fine-tuned supervised
learning. Our findings are in accordance with re-
cent results utilizing generative language models
for out-of-the-box extractive tasks.
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20% of relations

6% of relations

Figure 2: Histogram breakdown of differences between
F1 performances between RE-Flex and the best per-
forming supervised methods for each of the ZSRE and
TACRED benchmarks. We see that for many cases
the unsupervised approach of RE-Flex outperforms the
fully-supervised BERT-based baselines.

6 Conclusion

We introduced RE-Flex, a simple framework that
constrains the inference of self-supervised lan-
guage models after they have been trained. We
perform an extensive experimental study over mul-
tiple relation extraction benchmarks and demon-
strate that RE-Flex outperforms competing relation
extraction methods by up to 27.8 F1 points com-
pared to the next-best unsupervised method.
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A Implementation Details

We set RE-Flex’s top-k parameter (see Section 4.2)
to 16. We tune the λ parameter, when applicable,
on the provided development sets of the datasets
using the F1 metric. Additionally, we tune whether
to use the NER expansion, again using the develop-
ment sets of the datasets. These hyperparameters
are tuned using a standard grid search. We use
Fairseq’s implementation of RoBERTa-large2 as
our self-supervised language model. For the em-
beddings of the context rejection mechanism, we
use the FastText library (Bojanowski et al., 2017).
For the token embeddings of the anchor identifi-
cation model, we first collect an embedding for
each subword (RoBERTa uses byte-pair subword
encodings (Sennrich et al., 2015)) by flattening the
output representation of all of the RoBERTa-large
decoder layers for each subword into a single vec-
tor. Because we operate on the token and not the
subword level, we obtain a token representation
by averaging all subword vector embeddings that
compose a token. Examining the effect of our em-
bedding choices is out of the scope of this work,
and we leave it as a future analysis.

As stated in our construction of B̃ (Section 4.2),
we filter any punctuation predicted. For named
entity recognition and noun phrase chunking (used
for identifying multi-token extractions in RE-Flex),
we use the en web core lg model of the spaCy
library3. We train and run all models on a single
NVIDIA V100 32GB memory GPU.

B Qualitative Results

We provide few qualitative examples of extractions
from ZSRE obtained by the different methods. The
examples are shown in Figure 3. The first two
examples highlight two accurate extractions from
RE-Flex, while the third example an incorrect ex-
traction. These examples also highlight the weak-
ness of the UE-QA and SE-QA methods: many
times they extract an incorrect large sequence from
the input context.

C Dataset Details

TACRED adaptation to slot filling Relation Ex-
traction Dataset (Zhang et al., 2017b) is a relation
classification dataset. The original task is to predict
the relation of a subject and object pair given a

2https://github.com/pytorch/fairseq
3https://spacy.io/

R: production company(Lawless Range, ?)
T: Lawless Range was produced by [Y]
Q: Which production company is involved with lawless range
C: Lawless Range is a 1935 Western film released by Republic Pictures, 
directed by Robert N. Bradbury and starring John Wayne.
RE-Flex: Republic Pictures
UE-QA: Republic Pictures, directed by Robert N. Bradbury
SE-QA:1935 Western film released by Republic Pictures, directed by Robert N. 
Bradbury and starring John Wayne. 
B-Squad: Republic Pictures,
B-ZSRE: Republic Pictures,

R: military branch(David Semple, ?)
T: David Semple served in the [Y]
Q: Who did David Semple serve for?
C: Lieutenant-Colonel Sir David Semple MD (1856 -- 1937) was a British 
Army officer who founded the Pasteur Institute at Kasauli in the Indian state 
of Himachal Pradesh.
RE-Flex: British Army
UE-QA: the Pasteur Institute at Kasauli in the Indian state of Himachal Pradesh.
SE-QA: Himachal Pradesh.
B-Squad: British Army
B-ZSRE: Pasteur

R: publisher(FIFA Soccer 95, ?)
T:  FIFA Soccer 95 is published by  [Y]
Q: What company published FIFA Soccer 95?
C: FIFA Soccer 95 is a 1994 sports video game developed by EA Canada's 
Extended Play Productions team and published by Electronic Arts.
RE-Flex: EA Canada's
UE-QA: Extended Play Productions
SE-QA: Electronic Arts.
B-Squad: Electronic Arts.
B-ZSRE: Electronic Arts.

Figure 3: Example extractions from ZSRE for the dif-
ferent methods. Here, R indicates the target relation, T
the cloze template used, Q the corresponding question
required by the QA-based models, and C the provided
context for the extraction task.

supporting context. There are 41 possible relations,
with an additional relation labelled “no relation”
to denote an example whose sentence does not ex-
press the relation between the subject and object.
We convert the dataset to our slot filling setting
by considering the subject and relation known for
each example, and setting the task to predict the
object. Following the established process of Levy
et al. (2017) for adding realistic negative examples,
we distribute all examples labelled no relation
to relations sharing the same head entity, and set
the target object for each to be ∅.

Dataset characteristics A table of dataset char-
acteristics can be found in Table 3.

D Competing Methods Implementation
Details

All generative baselines are implemented using
Fairseq (Ott et al., 2019). Following the imple-
mentation of (Lewis et al., 2019), we train a BERT-
Large model on the provided training datasets of
(Lewis et al., 2019) and (Dhingra et al., 2018) for

https://github.com/pytorch/fairseq
https://spacy.io/
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Benchmark Relation in Context Extraction Type Underlying Corpus # of Relations Total Samples

T-REx Implicit Relation
Mention Single-Token Wikipedia 41 34,039

Google-RE Exact Relation
Mention Single-Token Wikipedia 3 5,528

ZSRE Possibly Irrelevant
Context Multi-Token Wikipedia 120 42,635

TACRED Possibly Irrelevant
Context Multi-Token TAC-KBP 41 6,357

Table 3: We consider four benchmarks that vary with respect to the type of target extractions, the quality of context
to relation alignment, and the underlying corpus.

Method ZSRE TACRED
EM F1 EM F1

No expansion 42.4 46.1 49.6 50.3
NER expansion 36.4 39.2 42.9 43.3
Tuned expansion 43.7 46.9 49.4 50.1

Table 4: Effect of token expansion on ZSRE dataset.

the UE-QA and SE-QA baselines. These training
datasets are collected over a snapshot of Wikipedia,
which is the underlying corpus of three of our four
benchmarks. We use the HuggingFace Transform-
ers library (Wolf et al., 2019) for our implemen-
tation of all QA models except BiDAF, for which
we use a slightly altered version of the original
author’s code (Levy et al., 2017).

E Microbenchmarks

We evaluate the effect of different components of
RE-Flex on its end-to-end performance.

Context rejection analysis We first examine the
effect of RE-Flex’s context rejection mechanism.
In Table 2, we measure the performance with and
without context rejection on the datasets which re-
quire context rejection. We find that on the ZSRE
dataset, the rejection increases F1 by 3.5. On TA-
CRED, F1 increases by 10.6 F1 with context re-
jection. In both cases, context rejection positively
impacts performance.

Anchor expansion analysis We examine the ef-
fect of expanding the anchor token in RE-Flex. To
examine this behavior in more details, we evaluate
RE-Flex by considering single-token only extrac-
tions, multi-token extractions using NER expan-
sion, and a tuned expansion that chooses either
to expand or not to expand based on performance
on the development set for each dataset. The re-
sults are shown in Table 4. We see that with tuned
expansion, F1 increases by 0.8 F1 on ZSRE, and
decreases by 0.2 F1 on TACRED. In fact, utilizing
NER expansion for all relations leads to a decrease
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Figure 4: Effect of parameter k on F1 for Google-RE.

of 6.9 F1 on ZSRE and 7.0 F1 on TACRED. We
conclude that what additional information to in-
clude in a prediction is determined by the informa-
tion need of each relation, and meeting this need
for general relations is left for future work.

Approximation analysis We examine the trade-
offs between performance, runtime, and the approx-
imation parameter k described in Section 4.2. We
set the batch size to 1 to for this analysis. Results
for the three Google-RE relations are shown in Fig-
ure 4. Our measurements show that our choice of
k = 16 leads to high-quality results while having
an acceptable runtime.

F Biases of QA Models

Given that RE-Flex outperforms all supervised
methods for T-Rex and Google-RE, we perform
a detailed analysis to understand the reason behind
this limitation of QA models. We suspect these re-
sults can be partially attributed to the construction
of these settings, where the expected response is a
single token; however QA models are more likely
to predict multi-token spans because their training
data is biased towards longer spans.

We have the following finding from our results:
B-ZSRE, which is trained on entity length answer
spans, performs better than the B-Squad baseline
by 17.6 EM. As both models are the exact same
architecture, but trained on different QA datasets,
we can attribute this difference to biases in span
length. We further verify this span length bias by
conducting an error breakdown on these datasets.
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Figure 5: Error categorization of QA-based methods.
For RE-Flex all errors belong to the No overlap group.

For each QA model, we consider each example
which returns an EM of 0, and classify the exam-
ple based on whether the predict has no overlap
with the ground truth, or by how much longer the
prediction is.

We present the results in Figure 5. We see that
on Google-RE, the majority of the errors commit-
ted by BiDAF and B-Squad, both trained on Squad
2.0, are because the predictions are longer than the
expected answer by one or two tokens. B-ZSRE
does not exhibit these error ratios, instead primarily
missing the answer entirely. On T-REx, all mod-
els primarily miss the ground truth entirely. We
attribute this finding to the fact that evidence in
T-REx is weaker and does not have explicit lexi-
cal clues to select answer spans. Training these
models using contexts with weaker evidence might
improve relation extraction performance.
Takeaway: Supervised QA models are biased to-
wards the span lengths in their training set, and
struggle when given weaker evidence contexts.


