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Abstract

Automated radiology report generation has the
potential to reduce the time clinicians spend
manually reviewing radiographs and stream-
line clinical care. However, past work has
shown that typical abstractive methods tend to
produce fluent, but clinically incorrect radiol-
ogy reports. In this work, we develop a radiol-
ogy report generation model utilizing the trans-
former architecture that produces superior re-
ports as measured by both standard language
generation and clinical coherence metrics com-
pared to competitive baselines. We then de-
velop a method to differentiably extract clini-
cal information from generated reports and uti-
lize this differentiability to fine-tune our model
to produce more clinically coherent reports.!

1 Introduction

Medical imaging (e.g. chest x-ray) is widely used
in medicine for diagnostic purposes. However, cur-
rent clinical practice requires a radiologist with
specialized training to manually evaluate x-rays
and note their findings in a radiology report. This
manual evaluation is time-consuming and provid-
ing an automated solution for this task would help
streamline the clinical workflow and improve the
quality of care.

Image captioning has gained a large amount
of attention following the curation of the COCO
dataset (Lin et al., 2014) and the initial image cap-
tioning work conducted on it (Vinyals et al., 2014;
Xu et al., 2015; Lu et al., 2016a). Although im-
age captioning is a widely studied task, radiology
report generation offers unique challenges that pre-
cludes the direct adaptation of many image cap-
tioning models for the task. For example, much
of the recent image captioning research has fol-
lowed the work of Anderson et al. (2018) and uti-
lized pre-trained objection detection models (Ren
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et al., 2015) to extract image features (Yu et al.,
2019; Huang et al., 2019; Yang et al., 2018; Yao
et al., 2018). While this works well for general-
domain datasets, analagous pre-trained models are
not available in the clinical domain.

Radiology reports are also typically longer and
more complex than the captions available in stan-
dard image captioning datasets such as COCO.
Evaluation of medical report generation is also dif-
ficult because the language generation metrics typ-
ically used to evaluate image captioning systems
can not directly evaluate the descriptive accuracy
of generated reports which is of critical importance
in the medical domain.

There is already a body of past work that has
focused on medical report generation, the most re-
lated being that of Boag et al. (2019) and Liu et al.
(2019) who both developed fully abstractive tech-
niques for report generation. Boag et al. (2019)
benchmarked a number of simple baselines on the
MIMIC-CXR dataset (Johnson et al., 2019), the
largest publicly available dataset of paired chest x-
rays and radiology reports. They observed that typ-
ical abstractive methods often produce fluent, but
clinically incoherent reports that fail to correctly
convey essential information (e.g. the presence of
a medical condition).

Liu et al. (2019) attempted to directly addressed
this problem by using Self-Critical Sequence Train-
ing (SCST) (Rennie et al., 2016) to optimize the
clinical accuracy of their generated reports. Al-
though their use of SCST did increase the precision
of their model, it also greatly decreased recall and
ultimately reduced the F1 score of their model?.
We also focus on improving the clinical coherence
of generated reports in this work.

Liu et al. (2019) also utilized recurrent architec-
ture for report generation despite the recent suc-
cess of the transformer architecture (Vaswani et al.,

Liu et al. (2019) did not report F1 in their work but it can
be calculated from their reported precision and recall.
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Figure 1: Overview of our proposed framework

2017) with image- and video-captioning tasks out-
side of the medical domain (Yu et al., 2019; Zhou
et al., 2018; Herdade et al., 2019). We also ex-
plore whether the transformer architecture is more
effective than representative recurrent models for
radiology report generation.

Our primary contributions can be summarized
as follows: (1) We apply the transformer model to
radiology report generation and demonstrate that it
is superior to competitive baselines as measured by
both language generation metrics and the clinical
coherence of the generated reports. (2) We develop
a procedure to differentiably extract clinical infor-
mation from our generated reports and leverage
this differentiability to train our report generation
model to produce more clinically coherent reports.

2 Dataset

The MIMIC-CXR dataset contains 227,835 imag-
ing reports with 377,110 total images conducted at
the Beth Israel Deaconess Medical Center Emer-
gency Department for 65,379 patients (Johnson
et al., 2019). The imaging studies are accompanied
with free-text radiology reports that record the ob-
servations of a practicing radiologist during routine
clinical care.

Radiology reports are semi-structured docu-
ments composed of a number of possible sections
such as patient history, findings, and impressions.
We follow the precedent set by previous work and
focus on generating the findings section because
it represents the most direct transcription of the
imaging study (Boag et al., 2019; Liu et al., 2019).

We thus constrain our dataset to radiology re-
ports that contain the findings sections and then
divide the remaining data into training, validation,

and testing sets following a 70%/10%/20% split.
We divide the data on the patient ID rather than
on specific radiology reports to avoid leaking data
from subjects with multiple radiology exams con-
ducted.

3 Methods

We develop an end-to-end report generation frame-
work that consists of two stages. The first stage
consists of a report generation model that is trained
using a standard language generation objective. For
the second stage, we differentiably sample a report
from our model and extract the clinical observa-
tions from that report. This allows us to introduce
an additional learning objective based on the agree-
ment between the observations from the generated
and ground truth reports. We utilize this additional
objective to fine-tune our model to produce more
clinically coherent reports. An overview of this
framework is provided in Figure 1. We refer the
reader to the supplemental materials for further
implementation details.

3.1 Model Architecture

For our report generation architecture we adopt
the transformer model introduced by Vaswani et al.
(2017) for neural machine translation (NMT). The
transformer is an encoder-decoder model where the
encoder and decoder both consist of stacked layers
of self-attention and position-wise feed-forward
neural networks. We refer the reader to Vaswani
et al. (2017) for a detailed description of the model.

The primary difference between our setting and
that of Vaswani et al. (2017) is that instead of trans-
lating a source language to a target language, we
must translate an image into a corresponding tex-
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tual annotation. Therefore instead of operating on
word embeddings, our encoder operates directly on
image features.

To extract these features, we apply a pretrained
DenseNet-121 model (Huang et al., 2017) to the
chest radiographs and extract the final feature ma-
trix before the average pooling layer. We project
this feature matrix to the dimensionality d of our
model, which provides us with a matrix of spatial
features v € R™ ¢ with n spatial positions. We
add a learned positional encoding P, € R™*¢ to
the image features to encode spatial information
which provides us with the input to our encoder
Xe =V + Pe.

The decoder is used similarly to its original
NMT setting. We pretrain word embeddings for all
words that occur at lease 5 times in our training cor-
pus using the continuous-bag-of-words Word2 Vec
(Mikolov et al., 2013) method. If we let m be
the length of a textual report, then the input to
our decoder is a sequence of word embeddings
e € R™*4 encoded with learned positional embed-
dings Pq € R™*% as x4 = e + Pyg.

We use the standard learned linear transforma-
tion followed by the softmax function to convert the
feature vectors produced by our decoder to prob-
ability distributions for the subsequent word and
optimize our model for language generation using
the cross-entropy loss function.

3.2 Differentiable CheXpert

To directly train our model to produce clinically
accurate reports, we must be able to differentiably
extract clinical observations from the generated
radiology reports. However, disease labels are typi-
cally extracted from radiology reports using a non-
differentiable rule-based labeler, CheXpert (Irvin
et al., 2019). We develop a differentiable approx-
imation of the CheXpert labeler by training a dif-
ferentiable model to predict the CheXpert-assigned
labels from the reports in our training set.
CheXpert extracts labels for 12 chest x-ray re-
lated conditions as well as mentions of support de-
vices. It also has an additional label to represent no
finding. For each of these 14 label types, it marks
the type as either positive, negative, uncertain, or
absent. Because positive instances of the condi-
tions are rare, we make the reasonable assumption
that an absent label indicates the condition is not
present and thus collapse the negative and absent
labels to a single label type. Thus we must predict

a positive, negative, or uncertain outcome for each
of the 14 label types.

We experiment with two model architectures for
our differentiable CheXpert, a convolutional neural
network (CNN) model and a long short-term mem-
ory network (LSTM) model. For our CNN model
we apply multiple convolutional filters of varying
lengths to the report and utilize a scaled dot-product
attention mechanism (Vaswani et al., 2017) to ag-
gregate the feature representations across all spatial
positions and convolutional filters. We apply 14
independent attention mechanism for each of the
14 label types extracted by the CheXpert labeler to
allow the model to attend to different portions of
the narrative for different conditions.

For the LSTM model, we apply a bidirectional
LSTM to the report and apply 14 additive attention
mechanisms (Bahdanau et al., 2015) to aggregate
the output of the LSTM at every position for the 14
label types. For both models, we apply a learned
linear transformation and the softmax function to
produce a probability distribution over the three
possible outcomes for each label type. We train
both models using the cross-entropy loss function.

3.3 Differentiable Language Generation

Decoding our model requires sampling discrete
tokens from continuous probability distributions
which is a non-differentiable operation. To over-
come this, we utilize the Gumbel-Softmax trick
introduced by Jang et al. (2017); Maddison et al.
(2017) to enable differentiable sampling.

This trick utilizes the softmax function as a con-
tinuous, differentiable approximation of the argmax
operation. If we have k tokens in our vocabulary,
then at any given position our model produces prob-
abilities {7;}%_; over the entire vocabulary. We
then sample {g;}*_; as independently and identi-
cally distributed samples drawn from Gumbel(0,1)?

and compute the sampled vector y € R with
yi = exp((log(m;)+39i)/7)

C 32 exp((log(m;)+B9;)/7)
magnitude of the noise and 7 controls how closely

the function approximates the argmax operation .

where (3 controls the

3.4 Fine-Tuning Procedure

We first train a report generation model using the
standard natural language generation (NLG) ob-
jective Ly and then further fine-tune the model
3The Gumbel distribution can be sampled by drawing u ~
Uniform(0,1) and computing g = —log(—log(u)).

“The function becomes equivalent to the argmax operation
as T — 0.
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Table 1: Model Performance (Language Generation)

Model CIDER METEOR ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4
1-NN 12.5 13.9 22.8 36.7 21.5 13.8 9.5
SA&T 27.8 14.1 31.0 37.0 24.0 17.0 12.8
AdpAtt 29.9 14.8 314 38.4 25.1 17.8 13.4
Transformer 31.8 15.7 31.8 40.9 26.8 19.1 14.4
Transformer w/ Fine-Tuning 31.6 15.9 31.8 41.5 27.2 19.3 14.6
Table 2: Model Performance (Clinical Coherence)
Model Micro-Avg Macro-Avg
F1 Prec Rec F1 Prec  Rec
1-NN 335 346 324 206 21.3 20.0
SA&T 28.2 364 23.0 10.1 247 119
AdpAtt 347 417 298 163 341 16.6
Transformer 39.8 46.1 350 214 327 204
Transformer w/ Fine-Tuning 41.1 47.5 36.1 22.8 333 21.7

to be more clinically coherent by introducing an
additional clinical coherence objective. We do so
by applying the Gumbel-Softmax trick to differen-
tiably sample tokens from our decoder and then
apply our differentiable CheXpert to the sampled
report. This allows us to introduce a second train-
ing objective measuring the agreement between
the ground truth CheXpert labels and the labels
obtained by applying our differentiable CheXpert
to the sampled report. This is implemented using
the cross-entropy loss function and we denote this
clinical coherence loss Lo¢. We define the final
training objective during this fine-tuning stage as
L = Moo + Lnrg where ) is a hyperparameter
that determines the balance between the NLG and
clinical coherence objectives.

4 Results

We report the CIDER (Vedantam et al., 2014), ME-
TEOR (Banerjee and Lavie, 2005), ROUGE-L (Lin,
2004), and BLEU (Papineni et al., 2002) of our re-
port generation models. While these metrics all
measure the language similarity between the the
generated and ground truth reports, they can not
directly evaluate how effectively the models are
producing clinically correct reports. To address
this shortcoming, we also report clinical coherence
metrics that compare the CheXpert extracted labels
for the generated and ground truth reports. For this,
we report the macro- and micro-averaged precision,
recall, and F1 score for positive annotations. We
refer the reader to the supplementary materials to
view the results for the individual observations. All
models in this work are decoded using beam search
with a beam size of 4.

4.1 Baselines

Boag et al. (2019) benchmarked a number of report
generation techniques on the MIMIC-CXR dataset
and found a simple 1-Nearest Neighbor baseline to
be surprisingly effective, particularly with respect
to its clinical coherence. As such, we compare
against a 1-NN baseline where we retrieve the re-
port from our training set whose DesneNet-induced
image features have the highest cosine similarity
with the test query image. We also compare against
two competitive recurrent image captioning mod-
els: Show, Attend, and Tell developed by Xu et al.
(2015) and Adaptive Attention developed by Lu
et al. (2016b).

4.2 Effect of Model Architecture

We first conduct an experiment to evaluate the ef-
fect of using our proposed transformer model by
training it using only the standard language gen-
eration objective. We report language generation
metrics for this experiment in Table 1. We ob-
serve that the transformer model offers significant
improvements across all metrics compared to the
baselines.

We report the metrics for the clinical coherence
of our models in Table 2. We observe that our
proposed transformer model improves upon the
micro-averaged and macro-averaged F1 of our best
baselines by 5.1 and 0.8 points respectively.

Table 3: Differentiable CheXpert Performance

Model Micro-Avg Macro-Avg

F1 Prec  Rec F1 Prec  Rec
CNN 936 928 945 900 894 908
LSTM 981 982 98.0 971 974 96.7
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4.3 Differentiable CheXpert

We report the effectiveness of our CNN and LSTM
CheXpert models in Table 3. We observe that the
LSTM model significantly outperforms the CNN
model across all metrics. This is unsurprising be-
cause recognizing things like negations can involve
identifying long-term relationships in the report
that would be difficult for an n-gram model like the
CNN to recognize. Because of this finding, we use
the LSTM model as our differentiable approxima-
tion of CheXpert during the fine-tuning stage.

4.4 Clinical Coherence Fine-Tuning

We fine-tune our transformer model to improve its
clinical coherence and report results for this com-
parison in Tables 1 and 2. We observe that the
model still has comparable NLG performance and
improves the micro-averaged and macro-averaged
F1 of our model by 1.3 and 1.4 points respectively.
We conduct McNemar’s test (McNemar, 1947; Ed-
wards, 1948) and find that the improvement is sta-
tistically significant (p < 1 x 10719).

5 Limitations and Future Work

Past work on radiology report generation has lever-
aged the semi-standardized nature of radiology re-
ports to develop extractive or template-based meth-
ods (Zhang et al., 2018; Han et al., 2018; Gale
et al., 2019). Other work has combined template-
based methods with abstractive methods to utilize
the advantages of both methods (Li et al., 2018;
Biswal et al., 2020). In this work we focused on
developing abstractive techniques as was done by
past work on the MIMIC-CXR dataset (Liu et al.,
2019; Boag et al., 2019). However, in the future we
intend to combine the abstractive methods devel-
oped in this work with retrieval methods to further
improve upon our framework.

Wang et al. (2018) developed a model that jointly
extracted conditions from chest x-rays and gener-
ated radiology reports. In this work we only focus
on report generation, but augmenting our frame-
work with an explicit image classification objective
is a potential direction for future work.

While the methods developed in this work lead
to significantly improved performance compared to
competitive baselines, the clinical coherence of our
model is still insufficient for clinical practice. More
work must be conducted in the future to continue
improving the clinical coherence of automated re-
port generation to enable adoption of such methods.

6 Conclusion

In this work we develop a radiology report gener-
ation model utilizing the transformer architecture
and demonstrate that it is both more fluent and
clinically coherent than competitive baselines. We
also develop a procedure to differentiably extract
clinical information from generated reports and uti-
lize this differentiability to further fine-tune our
model for clinical coherence. Our proposed ar-
chitecture and fine-tuning procedure improve the
micro-averaged and macro-averaged F1 of our best
baselines by 6.4 and 2.2 points respectively while
achieving superior fluency as measured by all of
our computed NLG metrics.
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A Preprocessing

We extract the findings section from the radiol-
ogy reports and then utilize spaCy for tokenization.
We learn 256 dimension word embeddings using
the continuous-bag-of-words Word2Vec method
(Rehtifek and Sojka, 2010; Mikolov et al., 2013)
for all words that appear at least 5 times in our
training set. This leaves us with a vocabulart of
3,913 words. We replace out of vocabulary tokens
with a special <unk> token that we initialze from
a standard Gaussian (p = 0,02 = 1)

We rescale the chest radiographs to a 256 x 256
image before feeding it to the pretrained DenseNet-
121 model. This produces an 8 x 8 x 1024 feature
matrix which is the final radiograph representation
used as the input to our models.

B Dataset Statistics

After constraining our dataset to reports with a
findings section, we are left with 265,259 chest
radiographs and 149,459 radiology reports. We
report full dataset statistics in Table 4.

C Implementation Details

C.1 Report Generation

We train all of the models used in this work for
64 epochs and anneal the learning rate by a factor
of 0.5 every 16 epochs. We train our models us-
ing the Adam (Kingma and Ba, 2014) optimizer
with a batch size of 32 and tune the initial learn-
ing rate independently for each model based on
validation performance. We regularize our model
using dropout and use gradient clipping to prevent
exploding gradients. We evaluate the model with
the best BLEU-4 score on the validation set upon
the test set. Because conducting beam search upon
the validation set after every epoch would greatly
increase training time, we generate reports using
greedy decoding with teacher forcing and find this
to be an effective stopping criterion.

For the fine-tuning procedure, we load the model
with the best validation performance and train it
for 8 additional epochs with the modified learn-
ing objective described in section 3.4. We set
7=1,8 =1, = 0.9 for this training stage where
T, 3 are the sampling hyperparameters introduced
in section 3.3 and A is the loss hyperparameter
introduced in section 3.4. We utilize the perfor-
mance of the differentiable CheXpert model upon
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Table 4: Dataset Statistics

Category Total Training Validation Testing

Total Chest X-Rays 265,259 187,071 26,005 52,183
Atelectasis 54,289/199,486/ 11,484  38,201/140,744 /8,126 5,368 /19,556 /1,081  10,720/39,186 /2,277
Cardiomegaly 64,188 /195,525/5,546 45,440/ 137,687 /3,944 6,132/19,362 /511 12,616 /38,476 /1,091
Consolidation 8,113 /249,071 /8,075 5,765/ 175,743 1 5,563 804 /24,369 /832 1,544 /48,959 /1,680
Edema 19,374 /232,188 /13,697  13,813/163,585/9,673  1,917/22,7776/ 1,312 3,644 /45,827 /2,712

Enlarged Cardiomediastinum

21,851/210,373 / 33,035

Fracture 10,645 /254,011 / 603
Lung Lesion 9,815/254,127 /1,317
Lung Opacity 79,037 /182,324 / 3,898

No Finding 69,159/196,100/0
Pleural Effusion 47,449 /208,363 / 9,447
Pleural Other 4,925/258,891 /1,443
Pneumonia 10,116/ 234,864 / 20,279
Pneumothorax 8,188 /254,206 /2,865

Support Devices

68,858 /196,071 / 330

15,416 /148,244 /23,411
7,418/179,222 /431
6,784 /179,342 / 945

55,861 /128,420 /2,790
48,640/138,431/0

33,963 /146,487 / 6,621

3,360/ 182,656 /1,055
7,098 /165,578 / 14,395
5,905/179,185/1,981
48,610/ 138,224 / 237

2,110/20,578 /3,317
1,011/24,936 /58
937/24,943 /125

7,569 /18,085 /351
6,983/19,022/0
4,574 /120,479 /952
521/25,357/127

1,018 /23,010/ 1,977
752 /24,960 /293
6,646 /19,325 /34

4,325 /41,551/6,307
2,216/49,853/114
2,094 /49,842 / 247
15,607 / 35,819 /757

13,536/ 38,647/0
8,912/41,397/1,874
1,044 /50,878 / 261

2,000/ 46,276 / 3,907
1,531/50,061 /591
13,602 /38,522 / 59

We report pos/neg/unc labels for each CheXpert category.

the greedily decoded validation reports to define
our stopping criterion for the fine-tuning stage.

Our transformer model has 8 attention heads, 1
encoder layer, and 6 decoder layers. The model di-
mension is d = 256, the dimensionality of the word
embeddings, and the feed forward layers have an
intermediate dimension of 4096. For our baselines
we adapt publicly available implementations for
the Show, Attend, and Tell and Adaptive Attention
models and utilize the same training schedule as
our transformer model. We compute our language
generation metrics using the publicly available nlg-
eval (Sharma et al., 2017).

C.2 Differentiable CheXpert

For our differentiable CheXpert models, we train
the models for a maximum of 64 epochs with a
learning rate of 5 x 10~* using the Adam opti-
mizer and a batch size of 128. We utilize the micro-
averaged F1 score for early stopping and terminate
training if the validation performance has not im-
proved for 10 epochs. We then evaluate the model
with the best validation performance upon the test
set.

For our CNN model, we used 4 convolutional
filters of lengths 3, 5, 7, and 9. The output dimen-
sionality of the convolutional filters was set to 64.
For our LSTM model, we utilize a bidirectional
LSTM with a hidden dimension of 128. For each
model, we apply 14 independent attention mecha-
nisms corresponding to the 14 label types to allow
the model to attend to different sections of the nar-
rative for different conditions. We then project the
aggregations induced by the attention mechanism
to 3, the number of label types, and then apply the
softmax function to produce the final prediction.

The hyperparameters for all of the models used
in this work were manually tuned based on valida-
tion performance. All training was done using a
single NVIDIA GeForce GTX 1080 Ti.

D Supplemental Results

We report detailed results across all CheXpert cat-
egories for positive mentions in Table 5 and for
uncertain mentions in Table 6°.

SThe CheXpert labeler does not produce uncertain men-
tions for the ’No Findings’ category so we report results for
the 13 valid categories.
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Table 5:

Detailed Clinical Coherence of Report Generation Models (Positive Mentions)

Category I-NN SA&T AdpAtt Transformer Transformer w Fine-Tuning
F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec
Atelectasis 29.1 300 282 32 40.6 1.7 13.6 432 8.1 292 432 220 322 430 25.8
Cardiomegaly 354 369 340 280 409 213 364 404 331 409 441 380 433 469 40.2
Consolidation 42 45 39 0.0 0.0 0.0 0.6 9.4 0.3 8.1 15.8 5.4 7.3 15.7 4.8
Edema 180 190 17.1 2.6 44.0 1.3 179 326 124 252 407 182 298 376 24.6
Enlarged Cardiomediastinum 9.5 10.1 8.9 0.0 6.3 0.0 2.0 8.7 1.2 3.7 10.5 23 59 123 39
Fracture 4.8 53 44 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Lung Lesion 3.8 44 34 0.0 0.0 0.0 0.1 0.0 0.0 1.7 28.6 0.9 1.4 23.8 0.7
Lung Opacity 354 373 337 0.5 44.0 0.3 4.4 56.0 23 16.7  61.0 9.7 17.1  64.0 9.9
No Finding 463 427 507 457 30.1 948  49.1 337 905 522 368 898 541 390 88.2
Pleural Effusion 379 399 36.1 5.3 60.9 2.8 32.1 694 208 484 695 372 480 712 36.2
Pleural Other 2.3 2.7 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 6.7 0.1 0.9 16.1 0.5
Pneumonia 4.0 4.1 39 0.0 0.0 0.0 23 5.0 1.5 5.1 6.7 4.2 39 7.0 2.7
Pneumothorax 8.3 9.0 7.6 6.1 7.1 5.4 5.8 5.7 5.9 3.6 16.0 2.0 9.8 12.9 7.8
Support Devices 489 529 455 506 713 392 637 731 565 649 781 556 66.0 77.0 57.8
Macro-Average 206 213 200 10.1 24.7 11.9 163 341 16.6 214 327 204 228 333 21.7
Micro-Average 335 346 324 282 364 230 347 417 298 39.8 46.1 350 411 475 36.1

Table 6: Detailed Clinical Coherence of Report Generation Models (Uncertain Mentions)

Category I-NN SA&T AdpAtt Transformer Transformer w Fine-Tuning
F1 Prec  Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec
Atelectasis 0.0 0.0 0.0 0.8 12.2 0.4 6.1 6.3 6.0 2.3 10.7 1.3 1.9 14.5 1.0
Cardiomegaly 0.0 0.0 0.0 1.2 4.1 0.7 3.0 32 2.8 1.8 39 1.2 2.1 6.4 1.3
Consolidation 0.2 6.9 0.1 2.3 6.9 1.4 3.7 4.1 33 6.3 8.3 5.1 6.8 9.0 54
Edema 3.6 13.0 2.1 42 10.5 2.6 9.5 10.0 9.1 13.3 162 113 11.5 16.7 8.8
Enlarged Cardiomediastinum 10.5 18.8 7.3 14.1 20.5 10.7 14.8 15.4 14.2 17.4 20.5 15.2 21.1 21.0 21.1
Fracture 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Lung Lesion 0.0 0.0 0.0 0.0 0.0 0.0 04 0.5 0.4 0.0 0.0 0.0 0.0 0.0 0.0
Lung Opacity 0.0 0.0 0.0 1.2 2.4 0.8 1.7 1.7 1.7 1.6 2.6 1.2 24 2.5 24
Pleural Effusion 0.6 214 0.3 1.3 8.4 0.7 4.4 4.6 4.1 6.8 12.6 4.6 5.6 9.7 39
Pleural Other 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.8 0.6 1.7 0.4 2.0 1.6 2.7
Pneumonia 0.4 6.1 0.2 1.1 15.8 0.6 8.7 9.0 8.5 7.1 19.7 43 8.3 20.7 52
Pneumothorax 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.8 0.7 0.0 0.0 0.0 0.0 0.0 0.0
Support Devices 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Macro-Average 4.1 43 4.0 1.2 5.1 0.8 2.0 6.2 1.4 44 7.4 34 4.8 7.9 4.0
Micro-Average 8.5 8.9 8.2 4.3 17.3 24 6.1 15.9 3.8 10.3 16.3 7.6 11.8 16.6 9.1
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