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Abstract

In a multi-turn knowledge-grounded dialog,
the difference between the knowledge selected
at different turns usually provides potential
clues to knowledge selection, which has been
largely neglected in previous research. In this
paper, we propose a difference-aware knowl-
edge selection method. It first computes the
difference between the candidate knowledge
sentences provided at the current turn and
those chosen in the previous turns. Then,
the differential information is fused with or
disentangled from the contextual information
to facilitate final knowledge selection. Au-
tomatic, human observational, and interactive
evaluation shows that our method is able to
select knowledge more accurately and gener-
ate more informative responses, significantly
outperforming the state-of-the-art baselines.
The codes are available at https://github.
com/chujiezheng/DiffKS.

1 Introduction

Knowledge-grounded conversation generation
aims at generating informative responses based
on both discourse context and external knowledge
(Ghazvininejad et al., 2018; Zhou et al., 2018a),
where selecting appropriate knowledge is critical
to the success of the task. Existing knowledge se-
lection models generally fall into two types. One
type is solely based on the context (Lian et al.,
2019; Zhang et al., 2019; Meng et al., 2020; Ren
et al., 2020), which we call non-sequential selec-
tion because knowledge selection at different turns
is independent. The other type sequentially selects
knowledge additionally conditioned on previously
selected knowledge (Kim et al., 2020), which we
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R [ Do you like to read? ]

Reading is a complex "cognitive process" of decoding
symbols in order to construct or derive meaning.
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symbols in order to construct or derive meaning.
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Figure 1: An example of difference-aware knowledge
selection. The blue A denotes that the corresponding
knowledge has little difference from or is identical to
the previously selected one, and selecting it may lead
to repetitive responses. The red X denotes that the dif-
ference is too large, and selecting it could make the
response incoherent with the context.

Yes, | do like to read. It is the process of
decoding symbols in order to derive meaning.

That's right. | was thinking of picking up the
second Mistborn book and finishing the series.

2. Mistborn is a series of epic fantasy novels written by
American author Brandon Sanderson.

3. List decoding is an alternative to unique decoding of
error-correcting codes for large error rates.

| haven't read Mistborn myself but heard they
are fantasy novels written by Brandon Sanderson.

call sequential selection. As shown in Kim et al.
(2020), such a sequential way can better simulate a
multi-turn dialog and facilitate knowledge selection
in later turns.

However, the difference between selected
knowledge at different turns has been largely ne-
glected in prior studies, while it usually provides
potential clues to knowledge selection. Figure 1
illustrates an example, where the dialog system se-
lects one from candidate knowledge sentences (all
relevant to the context) at the 2" turn. Selecting the
knowledge that has little difference from or even
is identical to the previously selected one (like the
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1% knowledge) may lead to generating repetitive
responses, while too large difference (like the 3™
knowledge) would make the response incoherent
with the context. As a result, the dialog system
should avoid the knowledge which differs from
the previously selected ones either too little or too
largely, and instead select an appropriate knowl-
edge sentence (the 2" one) which can make the
conversation flow smoothly and naturally.

We thus propose DiffKS, a novel Difference-
aware Knowledge Selection method for knowledge-
grounded conversation generation. It first computes
the difference between the candidate knowledge
sentences provided at the current turn and the pre-
viously selected knowledge. Then, in the two mod-
els we devise, the differential information is fused
with or disentangled from the contextual informa-
tion to facilitate final knowledge selection. Auto-
matic and human evaluation on two widely-used
benchmarks shows that our method is significantly
superior over the state-of-the-art baselines and it
can select knowledge more accurately and generate
more informative responses.

Our contributions are summarized as follows:

* We propose to explicitly model and utilize
the differential information between selected
knowledge in multi-turn knowledge-grounded
conversation for knowledge selection. We fur-
ther devise two variants where the differential
information is fused with or disentangled from
the context information during knowledge se-
lection.

¢ Automatic, human observational, and human
interactive evaluations show that our method
significantly outperforms strong baselines in
terms of knowledge selection and can generate
more informative responses.

2 Related Work

2.1 Knowledge-grounded Dialog Generation

Recently, a variety of neural models have been
proposed to facilitate knowledge-grounded conver-
sation generation (Zhu et al., 2017; Young et al.,
2018; Zhou et al., 2018a; Liu et al., 2018). The
research topic is also greatly advanced by many
corpora (Zhou et al., 2018b; Moghe et al., 2018; Di-
nan et al., 2019; Gopalakrishnan et al., 2019; Moon
etal.,2019; Tuan et al., 2019; Wu et al., 2019; Zhou
et al., 2020). As surveyed in Huang et al. (2020),

existing studies have been mainly devoted to ad-
dressing two research problems: (1) knowledge
selection: selecting appropriate knowledge given
the dialog context and previously selected knowl-
edge (Lian et al., 2019; Zhang et al., 2019; Meng
et al., 2020; Ren et al., 2020; Kim et al., 2020); and
(2) knowledge-aware generation: injecting the re-
quired knowledge to generate meaningful and in-
formative responses (Ghazvininejad et al., 2018;
Zhou et al., 2018a; Li et al., 2019; Qin et al., 2019;
Yavuz et al., 2019; Zhao et al., 2020). Since select-
ing the appropriate knowledge is a precursor to the
success of knowledge grounded dialog systems, we
focus on the knowledge selection problem in this

paper.
2.2 Non-sequential Knowledge Selection

The non-sequential selection models capture the
relationship between the current context and back-
ground knowledge (Lian et al., 2019; Zhang et al.,
2019; Meng et al., 2020; Ren et al., 2020). For
instance, PostKS (Lian et al., 2019) estimates a
posterior distribution over candidate knowledge
sentences, which is based on both the context and
the golden response, and only uses the context to
estimate a prior distribution as an approximation of
the posterior during inference.

Besides, Zhang et al. (2019); Meng et al. (2020);
Ren et al. (2020) also belong to non-sequential se-
lection models. Different from our work and Lian
et al. (2019); Kim et al. (2020) that select knowl-
edge from candidate knowledge sentences, their
methods are devised for selecting important text
spans or fragments from the background knowledge
document that will be used in generation. There-
fore these works have a different task setting from
ours.

2.3 Sequential Knowledge Selection

The sequential selection models additionally make
use of previously selected knowledge to facilitate
knowledge selection (Kim et al., 2020). For in-
stance, Kim et al. (2020) propose a Sequential La-
tent Knowledge Selection (SLKS) model. It keeps
track of the hidden states of dialog history and pre-
viously selected knowledge sentences. Our method
is parallel to SLKS because we also utilize the
previously selected knowledge. However, we ex-
plicitly compute the difference between knowledge
selected at different turns, while SLKS only en-
codes the already selected knowledge in an implicit
way.
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In addition, recently there emerge a number of
works that propose RL-based models to select a
path in structured knowledge graph (KG) (Xu et al.,
2020a,b), which also select knowledge in a sequen-
tial way. While our method is designed to ground
the conversation to unstructured knowledge text,
we will leave as future work the application of our
method to such KG-grounded dialog generation
tasks (Wu et al., 2019; Moon et al., 2019; Zhou
et al., 2020).

3 Methodology

3.1 Task Formulation

In a multi-turn dialogue, given a post and a se-
quence of knowledge sentences at each turn, our
goal is to select appropriate knowledge and gener-
ate a proper response to the current context.
Formally, the post at the 7-th turn is a sequence

.
" Xxr|

of tokens x” = (x{, o ) and the response

to be generated is y” = <y{, e ’leyT\)' The back-
(k{, . ,k‘TkT‘) contains
a sequence of knowledge sentences provided at the

7-th turn. For each ¢, k] = <k;1, . ’k;|kr‘) is a

ground knowledge k™

sequence of tokens in the ¢-th sentence.

Note that under the setting of multi-turn dia-
logue, we use ¢” £ [x7 1 y7~ 1 x7] as the given
context at the 7-th turn, where [-; -] denotes con-
catenation. In Section 3.2 and 3.4, we will omit the
superscript 7 for simplicity.

3.2 Encoders

The context is encoded with a bidirectional GRU
(Cho et al., 2014):

(hc,l, c. 7h'c,|c|) = BiGRUC (C) y (1)

%
where h.; = [h T ZC,} . We use h, =
[h elel; 071} as the context representation. Sim-

ilarly, the knowledge sentences are encoded with
another BiGRU:

(Prjias - hk,i,\k”) = BiGRU (k;). (2)

_)
We use hy, ; = [h i ki %;”1} as the representa-
tion of k;. Specifically, we add an empty sentence
ko that indicates no knowledge being used.
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3.3 Difference-aware Knowledge Selection

In order to select proper knowledge, our model
gets aware of the difference between the current
candidate knowledge sentences and the previously
selected knowledge.

To make full use of the contextual dependency
and relevance between the knowledge sentences',
our model first compares candidate knowledge sen-
tences to explore their correlations, where the com-
parison is conducted using BiGRU:

(rg, . 7"'\7i<7|> :BiGRU<hZ,07 "o 7h71;,|k7|>’
(3)

Then, the model computes the difference of each
knowledge sentence r;] from the knowledge se-

. . —m M
lected in the previous M turns {h "™} = :

T
1

M
o] = > ImDiff (R ™ 7]), &
m=1

M

D Am=1, ¥m,Ap >0 (5)
m=1

Inspired by Wang et al. (2018), we define the dif-
ference as follow:

Diff(z,y) 2 F([x—y;z0y]), (6)

where F is a fully connected layer activated with
tanh. Note that at the first turn, we set oi1 to a zero
vector because there is no differential information
to be obtained.

For that intuitively the knowledge selected in
the previous turn has the largest impact and most
clues for the current selection, we studied the
simplest case where M 1, saying o]

"For example, the knowledge sentences may be extracted
from a document in order, or about the same topic like in
Wizard of Wikipedia (Dinan et al., 2019).



Diff (h; ', r7
simplicity.

Next, we introduce two variants where the dif-
ferential information {o] } ‘Zk:TO‘ is fused with or dis-
entangled from the contextual information during
knowledge selection.

3.3.1 Fused Selection

), in the main experiments for

(h ™ =1

Final Selection

Figure 3: Fused Selection module. The contextual in-
formation and the differential information are fused to-
gether to calculate the final knowledge selection distri-
bution.

l‘L’

The Fused Selection module is shown in Fig-
ure 3. Directly taking o] as an extra feature of
k7, it uses the context h to query the difference-
enhanced knowledge sentences:

Bz"r:UT tanh (uneh‘cr'i‘wkey [ z,i; OZ])’ 7

where v, W,e and W), are trainable parameters.

However, it is difficult to distinguish the respec-
tive contributions of contextual and differential
information to knowledge selection in the above
fused variant. We thus devise the disentangled vari-
ant as following, where the roles of two types of
information are separated, which makes it feasible
to conduct ablation study.

3.3.2 Disentangled Selection

1
:hz—l Differential Selector
1

Final Selection

Addition

(h ™ n=1

T
k

-

Contextual Selector

h

Figure 4: Disentangled Selection module. The con-
textual information and the differential information are
disentangled to calculate two separate knowledge se-
lection distributions in two independent selectors.

Figure 4 gives an overview of the Disentangled
Selection module. It has two independent selec-
tors. The Contextual Selector simply looks for
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the knowledge sentence that has high relevance to
the context, just like most existing knowledge se-
lection models do. It only takes advantage of the
context k] to match each knowledge sentence itself

k.;» Obtaining a context-aware selection distribu-
tion:

Blixi = (hD)" hi;.

In contrast, the Differential Selector focuses on
predicting the next knowledge to be selected con-
ditioned on the previously selected knowledge and
differential information, which reveals the process
of knowledge transition. Without the access to
the contextual information, the Differential Selec-
tor views the previously selected knowledge hz_l
as query, and the knowledge sentence r; with its
differential information o] as key, to estimate a
difference-aware selection distribution:

®)

Bl =v" tanh (Waueh[ ™" + Wiey [r]; 0]]) |
&)
where v, Wy,e and Wy are trainable parameters.

The final selection distribution is the summation
of the distributions of two selectors:

B = Blix; + Bhitti-

Note that the Differential Selector relies on the
previously selected knowledge, thus at the first turn,
we set 314 ,; to O for each 7.

(10)

3.3.3 Selecting Knowledge

Finally, either adopting the Fused or Disentangled
Selection module, the model selects the knowledge
sentence with the highest attention score, and uses
its representation for further generation’:

o] = softmax; (5] ), (11)
i =argmaxa;, hj = h .. (12)
3.4 Decoder
The decoding state is updated by a GRU:
st = GRUp (st—-1, e (yi—1);he]),  (13)
so = Wp [he; hi] + bp, (14)

where Wp and bp are trainable parameters, and
e (y;—1) denotes the embedding of the word y;_;
generated in the last time step. Then, the decoder

>The model is trained with teacher forcing, where the
golden selected knowledge hy, ;- is used during training.



outputs the generation probability over the vocabu-
lary (without normalization):

% (g = w) = wt (Wgs; + bg), (15)

where W and b are trainable parameters, and w
is the one-hot vector of the word w. Meanwhile,
a copy mechanism (Gu et al., 2016) is adopted to
output additional copy probability of the words in
the selected knowledge sentence k- (without nor-
malization):

o =w)= Y (s0)"H (h3,). (6

]kj;,J =W

where H is a fully connected layer activated with
tanh. The final probability distribution is com-
puted as follows:

7) (yt = W) = % <6¢G(yt:W) +e¢c (yt:W)) , (17)

where Z is the normalization term. Then we select
the word from vocabulary with the highest proba-
bility, saying: y; = arg max,, P(y; = w).

3.5 Loss

The negative log likelihood loss is adopted:

T Iy

Ly =—» Y logP (y7"),

=1 t=1

(18)

where y7* denotes the ¢-th word in the golden re-
sponse at the 7-th turn and 7 is the length of turns
in the whole dialogue. We also add supervision on
the final knowledge selection distribution:

T
Lrs = —Zlogazﬂ, (19)

T=1

where i7* denotes the index of the golden selected
knowledge sentence at the 7-th turn. The total loss
is their summation:

L = LnrL + ALks. (20)

where we set A = 1 in our experiments.

4 Experiments

4.1 Datasets

We evaluated our method on two widely used
benchmarks: Wizard of Wikipedia (WoW) (Dinan
et al., 2019), and Holl-E (Moghe et al., 2018).
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WoW (Dinan et al., 2019) contains multi-turn
knowledge-grounded conversations, collected by
wizard-apprentice mode. Each utterance of the wiz-
ard is grounded to a selected knowledge sentence,
or indicated by that no knowledge is used. The
dialogues are split into 18,430/1,948/965/968 for
Train/Dev/Test Seen/Test Unseen respectively, with
4 turns per dialogue and 61 provided knowledge
sentences per turn on average. Note that the test
data is split into Test Seen (in-domain) and Test Un-
seen (out-of-domain), where Test Unseen contains
topics that are never seen in Train or Dev.

Holl-E (Moghe et al., 2018) contains conversa-
tions in which one speaker is strictly instructed to
give utterances by copying or modifying sentences
from the given background document. Similarly,
each utterance is annotated regarding the selected
knowledge. Following Kim et al. (2020), we to-
kenized the background document into sentences,
and meanwhile ensured that the annotated span is
included in a whole sentence. The dialogues are
split into 7,211/930/913 for Train/Dev/Test respec-
tively, with 5 turns per dialogue and 60 provided
knowledge sentences per turn on average.

4.2 Baselines

We compared our models with the following typical
knowledge selection baselines:

MemNet (Ghazvininejad et al., 2018) stores knowl-
edge sentences in its memory units, which are at-
tentively read during decoding. We also evaluated
a variant (MemNet+) where knowledge selection
is supervised by the same Lxg as our models do.
PostKS (Lian et al., 2019) estimates two knowl-
edge selection distributions, where the prior distri-
bution is based on only the context and the posterior
one on both the context and the golden response,
and their KL divergence is minimized during train-
ing. The knowledge selection of PostKS is super-
vised by a BOW loss. We also evaluated two vari-
ants, where one uses Lkg instead of the BOW loss
to supervise knowledge selection (PostKS+), and
the other is further equipped with copy mechanism
(PostKS++).

SLKS (Kim et al., 2020) improves PostKS by us-
ing two separate GRUs to update the states of di-
alog history and previously selected knowledge
sentences respectively. For fair comparison, we
replaced the pretrained BERT (Devlin et al., 2019)
encoder and the Transformer (Vaswani et al., 2017)
decoder in SLKS with BiGRU and GRU respec-



Models ACC BLEU-2/4 ROUGE-2
WoW Seen
MemNet 13.2%*  6.6%* 1.8%%* 3.2%%
+LKs 18.4%* 77 % 1.9%: 3.3
PostKS 13.8%*  6,9%* 1.8%% 3. 2%
+LKs 22.5%% 5wk D Fwk 3.7
+Copy | 21.9%* 99** 4 5%* 5.6%*
SLKS 23 .4%* 11.3 5.5 6.5
DiffKSgys 25.5 11.6 5.7 6.8
DiffKSp;s 24.7 11.3 5.7 6.8
WoW Uneen
MemNet 12.8%*  57%* 1.2%% 2.3%:%
+LKs 15.9%*%  5.9%* 1.3%* 2.3%%
PostKS 13.6%*  5.5%* 1.2%* 2.1%*
+LKs 15.8%*  6.6%* 1.5%% 2.6%%*
+Copy | 14.9%%  7.9%*% 3 %% 3.9%:*
SLKS 14.7%%  Q7*% 3k 4.6%%*
DiffKSgys 19.7 10.0 4.7 5.6
DiffKSp;s 18.3%* 9.6 4.5 5.3
Holl-E
MemNet S5.1%%  8.0%*k 4. 5%% 8.9%*
+LKs 25.1%%  J7EE 4 3wk 9.0%:*
PostKS 6.1%*%  6.9%*% 3 g%k 8.6%*
+LKs 20.5%%  159%% 8wk 13.1%*
+Copy | 28.0%* 26.5%* 22 .4%%* 23.1%*
SLKS 28.6%*  28.5%* D4 5%* 24.9*
DiffKSgys 33.0 29.5 25.5 25.9
DiffKSp;s 33.5 29.9 25.9 26.4

Table 1: Automatic evaluation results. The best results
are in bold. Significance tests were conducted between
the best results and other competitors, with sign test for
ACC, bootstrap resampling (Koehn, 2004) for BLEU,
and Student’s t-test for ROUGE. */** indicate p-value
< 0.05/0.005 respectively.

tively, and adopted the same copy mechanism in
SLKS as in our models.

4.3 Implementation Details

All the models were implemented with PyTorch
(Paszke et al., 2017). The sentences were tokenized
with NLTK (Bird and Loper, 2004). We set the
vocabulary size to 20K for WoW and 16K for Holl-
E and used the 300-dimensional word embeddings
initialized by GloVe (Pennington et al., 2014) or
from a standard normal distribution (0, 1). We
applied a dropout rate of 0.5 on word embeddings.
The hidden sizes were set to 200 for the encoders
(totally 400 for two directions) and to 400 for the
decoder. We adopted the ADAM (Kingma and Ba,
2015) optimizer with the initial learning rate set to
0.0005. The batch size was set to 8 dialogues. All
the models share the same hyperparameter setting

and were trained for 20 epochs on one NVIDIA
Titan Xp GPU. The checkpoints of our reported
results were selected according to BLEU-4 on the
Dev sets.

4.4 Automatic Evaluation

We used several automatic metrics: ACC, the ac-
curacy of knowledge selection on the whole test
set, corpus-level BLEU-2/4 (Papineni et al., 2002),
and ROUGE-2 (Lin, 2004).

As shown in Table 13, our method outperforms
significantly all the baselines in all the metrics on
three test sets (except BLEU and ROUGE on WoW
Seen compared with SLKS), which indicates its
superiority in selecting proper knowledge and gen-
erating informative responses. Compared to the
baseline models, our models also demonstrate a
stronger ability of generalization from in-domain
(WoW Seen) to out-of-domain data (WoW Un-
seen). It is worth noting that on WoW Unseen,
our DiffKSg,s obtains a higher accuracy (19.7) of
knowledge selection even than the BERT-enhanced
SLKS in their original paper (18.3). We also ob-
served that DiffKSg,s performs a bit better on WoW
while DiffKSp;s on Holl-E. We conjecture that it is
because in Holl-E, the golden selected knowledge
among different turns usually has high contextual
dependency (for example, they may be continuous
sentences in the document), which makes it feasi-
ble to predict the next selected knowledge simply
conditioned on the differential information.

4.5 Human Observational Evaluation

We conducted human observational evaluation
with pair-wise comparison, where our two mod-
els were compared with PostKS++ and SLKS. 100
dialogues were respectively sampled from WoW
Seen/Unseen. For each pair of dialogues generated
from two models (suppose with T turns), anno-
tators from Amazon Mechanical Turk were hired
to give preferences (win, lose, or tie) for each re-
sponse pair of all the 7" turns in terms of different
metrics. Each pair-wise comparison of dialogues
was judged by 3 curators. We adopted the follow-
ing two metrics: Naturalness evaluates the fluency
and readability of a response. Appropriateness
evaluates the relevance to the context and whether

3We found in Kim et al. (2020) that BERT usually gives
rise to a gain of 2-5 points in ACC, thus our results without us-
ing BERT as encoder are within a reasonable range comparing
with those in the original reference.
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Naturalness Appropriateness
Avs.B Win Lose &k Win Lose k
WoW Seen
Fus / PostKS++ | 50.3% 425 47 | 49.2*% 43,1 40
Fus / SLKS 445 433 50 | 44.0* 38.7 48
Dis / PostKS++ | 50.6* 449 42 | 50.5% 444 38
Dis / SLKS 427 438 41| 464 414 47
Fus / Dis 432 428 49| 393 409 .57
WoW Unseen

Fus /PostKS++ | 48.8% 432 .57 | 49.3*%% 40.5 .60
Fus / SLKS 47.9*% 418 44| 473* 409 47
Dis / PostKS++ | 52.0%* 364 46 | 46.8* 399 49
Dis / SLKS 46.5* 39.7 45| 47.8% 423 47
Fus / Dis 398 424 52| 415 37.8 .53

Table 2: Human observational evaluation results. Ties
are not shown. Significance tests were conducted with
sign test. x denotes the Fleiss’ Kappa which measures
annotation agreement.

Models ‘ WoW Seen WoW Uneen
Human' | 4.13(1.08)  4.34(0.98)
PostKS++ | 2.30 (1.06)  2.13 (1.10)
SLKS 232 (1.11)  222(1.15)
DiffKSpys | 2.43(0.96)  2.39 (1.16)
DiffKSpis | 2.39 (1.17)  2.38(1.19)

Table 3: Human interactive evaluation results. The stan-
dard deviation is marked in parentheses. The results of
human' are from Dinan et al. (2019); Kim et al. (2020).

a response contains appropriate knowledge infor-
mation to the context.

Results are shown in Table 2, where the Fleiss’
Kappa (Fleiss, 1971) values show almost moderate
agreements (0.4 < xk < 0.6). Our models signifi-
cantly outperform PostKS++ in both metrics, and
also generally outperform SLKS in terms of Appro-
priateness. Again, the advantage of our models on
WoW Unseen is more evident than on WoW Seen.

4.6 Human Interactive Evaluation

We further conducted human interactive evalua-
tion where real humans converse with one model
about a specific topic. We compared PostKS++
and SLKS with our two models. The workers from
Amazon Mechanical Turk were asked to first se-
lect one topic from 2-3 provided candidate topics,
and then converse with one of the models for 3-5
dialogue turns. After conversation, they were re-
quired to rate the dialog model with a 5-star scale
in terms of the fluency and informativeness of the
utterances and the coherence of the whole dialog.
Following Dinan et al. (2019); Kim et al. (2020),
the interactive evaluation was implemented with
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Models ACC BLEU-2/4 ROUGE-2
WoW Seen
DiffKSp;s 24.7 11.3 5.7 6.8
w/o DiffSel | 22.3%% 10.6%*%  4,9%* 5.9%:*
w/o CtxSel 24.6 10.9 5.3% 6.5
WoW Unseen
DiffKSp;s 18.3 9.6 4.5 5.3
w/o DiffSel | 15.5%*  8.8**  38** 4.4%*
w/o CtxSel 18.4 9.1* 4.1* 5.0
Holl-E

DiffKSp;s 33.5 29.9 25.9 26.4
w/o DiffSel | 29.1%* 27.9%* 23 8%* 25.1
w/o CtxSel | 31.6%* 28.4%% D4 7%* 24.8*

Table 4: Ablation tests. The larger performance drops
between the two ablation models are underlined. The
significance tests are conducted between the ablation
models and the complete model DiffKSpj;.

ParlAlI (Miller et al., 2017). For each model, we
averaged the scores from 150 collected conversa-
tions on each test set of WoW. We also reported the
results of human-human dialog from Dinan et al.
(2019); Kim et al. (2020), where each worker con-
verses with another human and the latter has access
to knowledge sentences just like the models do.

Results are shown in Table 3%, where DiffKSgys
gains the highest scores and our models both out-
perform the other two state-of-the-art baselines,
indicating that our models are favorably preferred
by human annotators.

4.7 Ablation Test

In order to verify the effectiveness of the dif-
ferential information in knowledge selection, we
conducted ablation tests, which were specifically
based on the disentangled variant DiffKSp;s. In
DiffKSp;s, we removed either the Differential Se-
lector (DiffSel) or the Contextual Selector (CtxSel),
and trained the model with only one of the two se-
lectors.

Results are shown in Table 4. Without the differ-
ential selector, the model performance is remark-
ably impaired in all the metrics on three test sets,
indicating the importance of utilizing differential
information. In comparison, removing the contex-
tual selector is less influential (with less perfor-
mance drop). We conjecture that this may result
from the characteristics of datasets. For instance,

“We found in Dinan et al. (2019); Kim et al. (2020) that
the stddev values of dialog models are usually between 1.0
and 1.4, thus our results are within a reasonable range.



Models M | ACC BLEU-2/4 ROUGE-2
WoW Seen
1 | 255 116 57 6.8
DiffKSpys 2 | 263 11.7 5.8 7.0
3 |261 11.6 57 6.9
1 | 247 113 57 6.8
DiffKSp;s 2 | 26.1 11.7 6.0 7.1
3 | 250 11.1 57 6.7
WoW Uneen
1 19.7 100 4.7 5.6
DiffKSpys 2 | 204 10.6 5.2 6.0
3 195 9.8 438 5.6
1 183 96 45 5.3
DiffKSp;s 2 194 99 4.6 5.3
3 19.1 99 45 5.2
Holl-E
1 | 330 295 255 259
DiffKSpys 2 | 332 30.1 26.1 26.2
3 | 33.1 30.0 263 26.3
1 | 335 299 259 26.4
DiffKSp;s 2 | 33.9 312 272 26.9
3 | 338 313 268 26.7

Table 5: Comparison between results with different M.

in WoW, the apprentice (without access to knowl-
edge) usually reacts passively to the wizard (having
access to knowledge). Thus the apprentice posts
(contextual information) have limited influence in
driving the conversation, which is instead affected
or controlled by the wizard. In this case, our differ-
ential information that can predict the process of
knowledge transition has more influence than the
contextual information. In addition, same as Kim
et al. (2020), the knowledge sentences in Holl-E
are obtained by segmenting a long document into
single sentences, which implies that there exists
the relevance or contextual dependency between
knowledge sentences. Consequently, the differen-
tial information is still able to provide considerable
clues for knowledge selection even without access
to the new user post (the context).

Furthermore, after removing DiffSel, DiffKSp;s
reduces to a vanilla knowledge selection model
where the supervision Lkg was directly applied
on the ‘prior’ selection distribution. Nevertheless,
the performance of the ablated model is some-
times competitive to the baselines (for instance,
in terms of ACC, DiffKSp;; w/o DiffSel obtains
22.3/15.5/29.1 vs. 21.9/14.9/28.0 of PostKS++).
It may result from the gap between training and
inference caused by the prior-posterior framework
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Models 1t 2nd 3rd gt 5t
WoW Seen
PostKS++ | 56.8 156 96 62 4.1
SLKS 574 184 10.1 89 54
DiffKSpys | 574 225 128 98 74
DiffKSp;s | 56.6 215 112 102 7.9
WoW Uneen
PostKS++ | 428 85 41 48 46
SLKS 430 6.1 52 49 50
DiffKSpys | 409 212 105 7.7 4.6
DiffKSp;s | 40.2 16.1 103 7.7 6.1
Holl-E
PostKS++ | 62.8 179 18.8 20.0 23.2
SLKS 652 184 192 213 19.6
DiffKSg,s | 65.8 223 22.1 255 258
DiffKSpis | 63.9 23.0 234 26.0 28.3

Table 6: Knowledge selection accuracy over turns.

adopted in PostKS and SLKS, which may be not
superior over directly training the prior selection
distribution’.

5 Discussion

5.1 Difference From More Turns

To investigate the impact of increasing the turns of
differential information (the M in Equ.4), we addi-
tionally experimented with M = 2, 3, and took the
arithmetic average for simplicity in Equ.4, saying
Vi, \i = 1/M.

Results are shown in Table 5. We can find that
M = 2 generally achieves the best performance
compared with M = 1,3 for both DiffKSgys
and DiffKSp;s (while M = 3 is still better than
M = 1). It further turns out the effectiveness of ex-
plicitly modeling differential information. We also
conjecture that the model performance would be
further improved by assigning the nearest/farthest
difference with the largest/smallest weight in Equ.4,
saying A\; > Ao > --- > Az, which is more rea-
sonable than the simplified arithmetic average.

5.2 Accuracy Over Turns

To verify whether the sequential knowledge selec-
tion facilitates knowledge selection in later turns,
we evaluated the accuracy of knowledge selection
at different turns. The statistics are shown in Ta-
ble 6. Our two models have the highest accuracy

>The prior-posterior framework is first proposed by PostKS
without direct supervision Lxs on knowledge selection.
While in this paper and Kim et al. (2020) the supervision

Lxs is available, the prior-posterior framework may not be
superior any more.



from the 2" to 5™ turns and outperform SLKS and
PostKS++ (and SLKS also generally outperforms
PostKS++). The results show that our models can
select more accurate knowledge consistently over
different turns.

5.3 Case Study

Topic: Georgia (U.S. state)
k1: Georgia is a state in the southeastern United States.
k2: Georgia is known as the ‘Peach State’ and the ‘Empire State of the South’.
k3: It began as a British colony in 1733, the last of the original Thirteen
Colonies.

k4: Named after King George II of Great Britain, the Province of Georgia
covered the area from South Carolina down to Spanish Florida...

kS: It was the last state to be restored to the Union, on July 15, 1870.

k6: The history of Australia refers to the history of the area and people of the
Commonwealth of Australia. ..

Post 1: Hey... have you ever been to Georgia before?

PostKS++ (k1) Georgia is a state in the southeastern United States.

SLKS (k1) Georgia is a state in the southeastern United States.

DiffKSy.. (kl') I have not, but I know it is a state in the southeastern
United States.

DiffKSu, (k1) I have never been to Georgia. It is a state in the

southeastern United States.

Post 2: I haven't been either, but I'd love to go. Peaches are delicious,
especially from Georgia.

(k1) Yes, I know that Georgia is a state in the southeastern

PostKS++
United States.Z\

SLKS (k2) Georgia is known as the ‘Peach State’ and the ‘Empire
State of the South’.

DiffKSu, (k?) It beganAas a British colony in the last of the original
thirteen colonies.

DiffKSus (k3) I've heard of the British colony in the US. It began as a

British colony in the US.
Post 3: Oh I didn't know that either! So it probably has a rich history too.

(k6) It refers to the history of the area and people of the

PostKS++  Commonwealth of Australia and its preceding Indigenous and

colonial societies. X

(k2) T don’t know but I know that Georgia is known as the
SLKS )

‘Peach State” and the ‘Empire State of the South’ A
DiffKS (k4) It is named after King George II of Great Britain, the

1 Fus . . .
e Province of Ceorgia covered the area from South Carolina.

DiffK Sy, (kS) It was the last state to be restored to the Union, on July

15, 1870.

Figure 5: Case study. We marked the selected knowl-
edge sentence in parentheses before each response. The
knowledge k1-k5 are about the topic Georgia (U.S.
state), while k6 is about History of Australia. The blue
A\ denotes duplicate responses resulting from repeti-
tive knowledge selection. The red X denotes incoher-
ent responses resulting from selecting a far different
knowledge from previous turns.

We show a case from WoW Seen in Figure
5, which compares the responses generated by
PostKS++, SLKS and our two models.

At the 2" turn, PostKS++ generates almost the
same responses as at the 1% turn due to the repet-
itive knowledge selection. Similar cases occur
for SLKS at the 2™ and the 3" turns. Moreover,
PostKS++ selects a quite different knowledge sen-
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tence at the 3™ turn from those at previous turns,
which is about the topic History of Australia but
not Georgia (U.S. state). As a result, PostKS++
generates a response which is not coherent to the
previous context at the 3™ turn. In contrast, our two
models select both diverse and appropriate knowl-
edge sentences at all the turns, thereby generating
informative responses and making the dialog co-
herent and natural.

6 Conclusion

We present a novel difference-aware knowledge se-
lection method for multi-turn knowledge-grounded
conversation generation. Our method first com-
pares the candidate knowledge provided at the cur-
rent turn with the previously selected knowledge,
and then selects appropriate knowledge to be used
in generation. Experimental results show that our
method is able to select knowledge more accurately
and to generate more informative responses, outper-
forming significantly the state-of-the-art baselines.
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