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Abstract

Natural language data exhibit tree-like hi-
erarchical structures such as the hypernym-
hyponym relations in WordNet. FastText, as
the state-of-the-art text classifier based on shal-
low neural network in Euclidean space, may
not model such hierarchies precisely with lim-
ited representation capacity. Considering that
hyperbolic space is naturally suitable for mod-
eling tree-like hierarchical data, we propose a
new model named HyperText for efficient text
classification by endowing FastText with hy-
perbolic geometry. Empirically, we show that
HyperText outperforms FastText on a range of
text classification tasks with much reduced pa-
rameters.

1 Introduction

FastText (Joulin et al., 2016) is a simple and effi-
cient neural network for text classification, which
achieves comparable performance to many deep
models like char-CNN (Zhang et al., 2015) and
VDCNN (Conneau et al., 2016), with a much lower
computational cost in training and inference. How-
ever, natural language data exhibit tree-like hierar-
chies in several respects (Dhingra et al., 2018) such
as the taxonomy of WordNet. In Euclidean space
the representation capacity of a model is strictly
bounded by the number of parameters. Thus, con-
ventional shallow neural networks (e.g., FastText)
may not represent tree-like hierarchies efficiently
given limited model complexity.

Fortunately, hyperbolic space is naturally suit-
able for modeling the tree-like hierarchical data.
Theoretically, hyperbolic space can be viewed as
a continuous analogue of trees, and it can easily
embed trees with arbitrarily low distortion (Kri-
oukov et al., 2010). Experimentally, Nickel and
Kiela (2017) first used the Poincaré ball model to
embed hierarchical data into hyperbolic space and
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Figure 1: The architecture comparison of FastText (up-
per) and HyperText (lower).

achieved promising results on learning word em-
beddings in WordNet.

Inspired by their work, we propose HyperText
for text classification by endowing FastText with
hyperbolic geometry. We base our method on the
Poincaré ball model of hyperbolic space. Specif-
ically, we exploit the Poincaré ball embedding of
words or ngrams to capture the latent hierarchies
in natural language sentences. Further, we use
the Einstein midpoint (Gulcehre et al., 2018) as
the pooling method to emphasize semantically spe-
cific words which usually contain more information
but occur less frequently than general ones (Dhin-
gra et al., 2018). Finally, we employ Möbius lin-
ear transformation (Ganea et al., 2018) to play
the part of the hyperbolic classifier. We evaluate
the performance of our approach on text classifi-
cation task using ten standard datasets. We ob-
serve HyperText outperforms FastText on eight of
them. Besides, HyperText is much more parameter-
efficient. Across different tasks, only 17% ∼ 50%
parameters of FastText are needed for HyperText
to achieve comparable performance. Meanwhile,
the computational cost of our model increases mod-
erately (2.6x in inference time) over FastText.
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2 Method

2.1 Overview

Figure 1 illustrates the connection and distinction
between FastText and HyperText. The differences
of the model architecture are three-fold: First, the
input token in HyperText is embedded using hy-
perbolic geometry, specifically the Poincaré ball
model, instead of Euclidean geometry. Second,
Einstein midpoint is adopted in the pooling layer
so as to emphasize semantically specific words.
Last, the Möbius linear transformation is chosen
as the prediction layer. Besides, the Riemannian
optimization is employed in training HyperText.

2.2 Poincaré Embedding Layer

There are several optional models of hyperbolic
space such as the Poincaré ball model, the Hyper-
boloid model and the Klein model, which offer dif-
ferent affordances for computation. In HyperText,
we choose the Poincaré ball model to embed the
input words and ngrams so as to better exploit the
latent hierarchical structure in text. The Poincaré
ball model of hyperbolic space corresponds to the
Riemannian manifold which is defined as follow:

Pd = (Bd, gx), (1)

where Bd = {x ∈ Rd
∣∣ ‖x‖ < 1} is an open d-

dimensional unit ball ( ‖·‖ denotes the Euclidean
norm) and gx is the Riemannian metric tensor.

gx = λ2xg
E , (2)

where λx = 2
1−‖x‖2 is the conformal factor, gE =

Id denotes the Euclidean metric tensor. While per-
forming back-propagation, we use the Riemannian
gradients to update the Poincaré embedding. The
Riemannian gradients are computed by rescaling
the Euclidean gradients:

5Rf(x) =
1

1− λ2x
5E f(x). (3)

Since ngrams retain the sequence order infor-
mation, given a text sequence S = {wi}mi=1, we
embed all the words and ngrams into the Poincaré
ball, denoted as X = {xi}ki=1, where xi ∈ Bd.

2.3 Einstein midpoint Pooling Layer

Average pooling is a normal way to summarize
features as in FastText. In Euclidean space, the
average pooling is

ū =

∑k
i=1 xi

k
. (4)

To extend the average pooling operation to the
hyperbolic space, we adopt a weighted midpoint
method called the Einstein midpoint (Gulcehre
et al., 2018). In the d-dimensional Klein model
Kd, the Einstein midpoint takes the weighted aver-
age of embeddings, which is given by:

m̄K =

∑k
i=1 γixi∑k
i=1 γi

,xi ∈ Kd, (5)

where γi = 1√
1−‖xi‖2

are the Lorentz factors.

However, our embedding layer is based on the
Poincaré model rather than the Klein model, which
means we can’t directly compute the Einstein mid-
points using Equation (5). Nevertheless, the var-
ious models commonly used for hyperbolic ge-
ometry are isomorphic, which means we can first
project the input embedding to the Klein model,
execute the Einstein midpoint pooling, and then
project results back to the Poincaré model.

The transition formulas between the Poincaré
and Klein models are as follow:

xK =
2xP

1 + ‖xP‖2
, (6)

m̄P =
m̄K

1 +
√

1− ‖m̄K‖2
, (7)

where xP and xK respectively denote token embed-
dings in the Poincaré and Klein models. m̄P and
m̄K are the Einstein midpoint pooling vectors in
the Poincaré and Klein models. It should be noted
that points near the boundary of the Poincaré ball
get larger weights in the Einstein midpoint formula.
These points (tokens) are regarded to be more repre-
sentative, which can provide salient information for
the text classification task (Dhingra et al., 2018).

2.4 Möbius Linear Layer
The Möbius linear transformation is an analogue of
linear mapping in Euclidean neural networks. We
use the Möbius linear to combine features outputted
by the pooling layer and complete the classification
task, which takes the form:

o = M⊗m̄P ⊕ b, (8)

where ⊗ and ⊕ denote the Möbius matrix multi-
plication and Möbius addition defined as follows
(Ganea et al., 2018):

M⊗x = (1/
√
c) tanh

(‖Mx‖
‖x‖ tanh−1(

√
c ‖x‖)

) Mx

‖Mx‖ ,

x⊕ b =
(1 + 2c〈x, b〉+ c‖b‖2)x+ (1− c‖x‖2)b

1 + 2c〈x, b〉+ c2‖x‖2‖b‖2
.

where M ∈ Rd×n denotes the weight matrix, and
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Model AG Sogou DBP Yelp P. Yelp F. Yah. A. Amz. F. Amz. P. TNEWS IFYTEK
FastText 92.5 96.8 98.6 95.7 63.9 72.3 60.2 94.6 54.6 54.0
VDCNN 91.3 96.8 98.7 95.7 64.7 73.4 63.0 95.7 54.8 55.4
DistilBERT(1-layer)∗ 92.9 - 99.0 91.6 58.6 74.9 59.5 - - -
FastBERT(speed=0.8) 92.5 - 99.0 94.3 60.7 75.0 61.7 - - -
HyperText 93.2 97.3 98.5 96.1 64.6 74.3 60.1 94.6 55.9 55.2

Table 1: Accuracy(%) of different models. ∗The results of DistilBERT are cited from Liu et al. (2020)

n denotes the number of class; b ∈ Rn is the bias
vector and c is a hyper-parameter that denotes the
curvature of hyperbolic spaces. In order to obtain
the categorical probability ŷ , a softmax layer is
used after the Möbius linear layer.

ŷ = softmax(o) (9)

2.5 Model Optimization

This paper uses the cross-entropy loss function for
the multi-class classification task:

L = − 1

N

N∑
i=1

y · log(ŷ), (10)

where N is the number of training examples, and
y is the one-hot representation of ground-truth la-
bels. For training, we use the Riemannian opti-
mizer (Bécigneul and Ganea, 2018) which is more
accurate for the hyperbolic models. We refer the
reader to the original paper for more details.

3 Experiments

3.1 Experimental setup

Datasets To make a comprehensive comparison
with FastText, we choose the same eight datasets as
in Joulin et al. (2016) in our experiments. Also, we
add two Chinese text classification datasets from
Chinese CLUE (Xu et al., 2020), which are presum-
ably more challenging. We summarize the statistics
of datasets used in our experiments in Table 2.

Hyperparameters Follow Joulin et al. (2016),
we set the embedding dimension as 10 for first
eight datasets in Table 1. On TNEWS and IFLY-
TEK datasets, we use 200-dimension and 300-
dimension embeddings respectively. The learn-
ing rate is selected on a validation set from
{0.001, 0.05, 0.01, 0.015}. In addition, we use
PKUSEG tool (Luo et al., 2019) for Chinese word
segmentation.

3.2 Experimental Results

Comparison with FastText and deep models
The results of our experiments are displayed in

Dataset #Classes #Train #Test
AG 4 120,000 7,600
Sogou 5 450,000 60,000
DBP 14 560,000 70,000
Yelp P. 2 560,000 38,000
Yelp F. 5 650,000 50,000
Yah. A. 10 1,400,000 60,000
Amz. F. 5 3,000,000 650,000
Amz. P. 2 3,600,000 400,000
TNEWS 15 53,360 10,000
IFLYTEK 119 12,133 2,599

Table 2: Dataset statistics

Table 1. Our proposed HyperText model outper-
forms FastText on eight out of ten datasets, and the
accuracy of HyperText is 0.7% higher than Fast-
Text on average. In addition, from the results, we
observe that HyperText works significantly better
than FastText on the datasets with more label cat-
egories, such as Yah.A., TNEWS and IFLYTEK.
This arguably confirms our hypothesis that Hyper-
Text can better model the hierarchical relationships
of the underlying data and extract more discrim-
inative features for classification. Moreover, Hy-
perText outperforms DistilBERT(Sanh et al., 2019)
and FastBERT(Liu et al., 2020) which are two dis-
tilled versions of BERT. And HyperText achieves
comparable performance to the very deep convo-
lutional network (VDCNN) (Conneau et al., 2016)
which consists of 29 convolutional layers. From
the results, we can see that HyperText has better or
comparable classification accuracy than these deep
models while requiring several orders of magnitude
less computation.

Embedding Dimension Since the input embed-
dings account for more than 90% model param-
eters, we investigate the impact of dimension of
input embedding on the classification accuracy.
The experimental results are presented in Figure
2. As we can see, on most tasks HyperText per-
forms consistently better than FastText in various
dimension settings. In particular, on IFLYTEK and
TNEWS datasets, HyperText with 50-dimension re-
spectively achieves better performance to FastText
with 300-dimension and 200-dimension. On other
eight less challenging datasets, the experiments are
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Figure 2: Accuracy vs Embedding dimension. The x-axis represents the embedding dimension, while the y-axis
represents the accuracy.

conducted in the low-dimensional settings and Hy-
perText often requires less dimensions to achieve
the optimal performance in general. It verifies that
thanks to the ability to capture the internal structure
of the text, the hyperbolic model is more parameter
efficient than its Euclidean competitor.

Computation in Inference FastText is well-
known for its fast inference speed. We compare
the FLOPs versus accuracy under different dimen-
sions in Figure 3. Due to the additional non-
linear operations, HyperText generally requires
more (4.5 ∼ 6.7x) computations compared to Fast-
Text with the same dimension. But since Hyper-
Text is more parameter efficient, when constrained
on the same level of FLOPs, HyperText mostly
performs better than FastText on the classification
accuracy. Besides, the FLOPs level of VDCNN is
105 higher than HyperText and FastText.

Ablation study We conduct the ablation study
to figure out the contribution of different layers.
The results on several datasets are present in Ta-
ble 3. Note that whenever we replace a hyperbolic
layer with its counterpart in Euclidean geometry,
the model performs worse. The results show that all
the hyperbolic layers (Poincaré Embedding Layer,
Einstein midpoint Pooling Layer and Möbius Lin-
ear Layer) are necessary to achieve the best perfor-
mance.

Model Yelp P. AG Yah.A. TNEWS
HyperText 96.1 93.2 74.3 55.9

-PE&EM 95.9 92.8 73.9 55.6
-ML 95.6 92.3 73.2 54.6

Table 3: Ablation study of each components in Hy-
perText (PE for Poincaré Embedding, EM for Einstein
Midpoint, and ML for Möbius Linear layer).
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Figure 3: FLOPs(×103) vs Accuracy(%) under dif-
ferent dimensions. The x-axis represents the FLOPs,
while the y-axis represents the accuracy. Different
points represent different embedding dimensions

4 Related Work

Hyperbolic space can be regarded as a continuous
version of tree, which makes it a natural choice to
represent the hierarchical data (Nickel and Kiela,
2017, 2018; Sa et al., 2018). Hyperbolic geome-
try has been applied to learning knowledge graph
representations. HyperKG (Kolyvakis et al., 2019)
extends TransE to the hyperbolic space, which ob-
tains great improvement over TransE on WordNet
dataset. Balaževic et al. (2019) proposes MURP
model which minimizes the hyperbolic distances
between head and tail entities in the multi-relational
graphs. Instead of using the hyperbolic distance,
Chami et al. (2019, 2020) uses the hyperbolic rota-
tions and reflections to better model the rich kinds
of relations in knowledge graphs. Specifically, the
authors use the hyperbolic rotations to capture anti-
symmetric relations and hyperbolic reflections to
capture symmetric relations, and combine these op-
erations together by the attention mechanism. It
achieves significant improvement at low dimension.
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Hyperbolic geometry is also applied in natural lan-
guage data so as to exploit the latent hierarchies in
the word sequences (Tifrea et al., 2019).

Recently, many hyperbolic geometry based deep
neural networks (Gulcehre et al., 2018; Ganea et al.,
2018) achieve promising results, especially when
the mount of parameters is limited. There are some
applications based on hyperbolic geometry, such
as question answering system (Tay et al., 2018),
recommendation system (Chamberlain et al., 2019)
and image embedding (Khrulkov et al., 2020).

5 Conclusion

We have shown that hyperbolic geometry can en-
dow the shallow neural networks with the ability to
capture the latent hierarchies in natural language.
The empirical results indicate that HyperText con-
sistently outperforms FastText on a variety of text
classification tasks. On the other hand, Hyper-
Text requires much less parameters to retain perfor-
mance on par with FastText, which means neural
networks in hyperbolic space could have a stronger
representation capacity.
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Ivana Balaževic, Carl Allen, and Timothy Hospedales.
2019. Multi-relational poincaré graph embeddings.
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