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Abstract

This paper studies sentiment classification in
the lifelong learning setting that incremen-
tally learns a sequence of sentiment classifi-
cation tasks. It proposes a new lifelong learn-
ing model (called L2PG) that can retain and
selectively transfer the knowledge learned in
the past to help learn the new task. A key in-
novation of this proposed model is a novel
parameter-gate (p-gate) mechanism that reg-
ulates the flow or transfer of the previously
learned knowledge to the new task. Specifi-
cally, it can selectively use the network param-
eters (which represent the retained knowledge
gained from the previous tasks) to assist the
learning of the new task t. Knowledge distilla-
tion is also employed in the process to preserve
the past knowledge by approximating the net-
work output at the state when task t − 1 was
learned. Experimental results show that L2PG
outperforms strong baselines, including even
multiple task learning.

1 Introduction

A typical sentiment analysis (SA) or social media
company that provides sentiment analysis services
has to work for a large number of clients (Liu,
2012). Each client normally wants to study peo-
ple’s opinions about a particular category of prod-
ucts or services, which we also call a domain. If
we regard each such study/project as a task, we
can model a SA company’s working on a large
number of studies/projects for clients as perform-
ing a sequence of SA tasks. A natural question
that one would ask is whether after analyzing opin-
ions about a number of products or services (tasks),
the SA system of the company can do better on a
new task by retaining the knowledge learned from
the past/previous tasks and selectively transfer the
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prior knowledge to the new task to help it learn bet-
ter. The answer should be yes because words and
phrases used to express opinions or sentiments in
different domains are similar and thus can mostly
be shared or transferred across domains, although
different domains do have domain specific senti-
ment expressions. This is a lifelong learning set-
ting (Thrun, 1998; Silver et al., 2013; Chen and
Liu, 2016). This paper focuses on lifelong senti-
ment classification (Chen et al., 2015).

Problem Definition: We consider incremen-
tally learning a sequence of supervised sentiment
classification (SC) tasks, 1, ..., t, .... Each task t
has a training dataset Dt

train = {xti, yti}
nt
i=1, where

xti is an input instance and yti is its label, and nt
is the number of training examples of the tth task.
Our goal is to design a lifelong learning algorithm
f(·; θt) or neural network that can retain the knowl-
edge learned in the past and selectively transfer the
knowledge to improve the learning of each new
task t. It is assumed that after each task is learned,
its training data is deleted and thus not available to
help learn any subsequent tasks. This is a common
scenario in practice because clients usually want
to ensure the confidentiality of their data and don’t
want their data shared or used by others.

This problem is clearly related a continual learn-
ing (CL) (Chen and Liu, 2018; Parisi et al., 2019; Li
and Hoiem, 2017; Wu et al., 2018; Schwarz et al.,
2018; Hu et al., 2019; Ahn et al., 2019), which
also aims to learn a sequence of tasks incremen-
tally. However, the main objective of the current
CL techniques is to solve the catastrophic forget-
ting (CF) problem (McCloskey and Cohen, 1989).
That is, in learning each new task, the network pa-
rameters need to be modified in order to learn the
new task. However, this modification can result
in accuracy degradation for the previously learned
tasks. In the problem defined above, our goal is
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to forward transfer the past knowledge to improve
the new task learning. We don’t need to ensure
the classifiers or models learned for previous tasks
still work well.1 However, as we will see in the
experiment section, the proposed method is able
to outperform the current state-of-the-art CL algo-
rithms. Although there is some existing work on
lifelong sentiment classification (Chen et al., 2015;
Wang et al., 2019) based on naive Bayes. Our deep
learning model is based on an entirely different
approach and it performs markedly better.

To solve the proposed lifelong sentiment classifi-
cation problem using a single neural network, two
objectives have to be achieved. The first objective
is to selectively transfer some pieces of knowledge
learned in the past to assist the new task learning.
Knowledge selection is critical here because not
every piece of the past knowledge is useful (some
even harmful) to the new task. The second objec-
tive is to preserve the knowledge learned in the
past during learning the new task because if many
pieces of previous knowledge are corrupted due to
updates made in learning a new task, future tasks
will not be able to benefit from them.

This paper proposes a novel model, called
L2PG (Lifelong Learning with Parameter-Gates),
to achieve the objectives. To achieve the first ob-
jective, we propose a novel mechanism called the
parameter-gate (p-gate) to give suitable impor-
tance values to the network parameters represent-
ing the past knowledge according to how useful
they are to the new task and transfer them to the
new task to enable it to learn better. We split the
parameters θt of the proposed model f(·; θt) into
three subsets: (1) the shared parameters θs,t, (2) the
task classification parameters θc,t and (3) the p-gate
parameters, where the shared parameters θs,t and p-
gate parameters are continuously updated with the
learning of each new task t. θc,t remains unchanged
for task t once the task is learned/trained. In learn-
ing a new task t, we only randomly initialize the
task classification parameters θc,t, and use an input
p-gate to select parameters (or knowledge) from
the shared parameters θs,t−1 of the network state
after learning task t− 1 that are helpful to the new
task t and use a block p-gate to block part of the
previous training step parameters of θs,t that are
not useful (or harmful) to task t.

To achieve the second objective, knowledge dis-
1Lifelong learning and continual learning are often re-

garded as the same. Here, we follow (Thrun, 1998) and make
this distinction.

tillation (Hinton et al., 2015) is used to ensure
that the updated network can preserve the previ-
ous model’s knowledge in learning the new task.

This paper makes three main contributions:
• It proposes a novel deep learning model L2PG

that uses a novel p-gate mechanism and knowl-
edge distillation for lifelong sentiment classi-
fication. To the best of our knowledge, this
approach has not been reported in the existing
lifelong or continual learning literature.
• Unlike traditional gates that regulate the fea-

ture information flow through the sequence
chain, the goal of the proposed p-gates is to
select useful parameters (which represent the
learned knowledge from previous tasks) to be
transferred to the new task to make it learn bet-
ter. In other words, p-gates regulate the knowl-
edge transfer from the past to the present.
• It creates a 3-class sentence level sentiment

classification corpus from reviews of 10 di-
verse product categories for lifelong learning
evaluation. Such evaluations need many tasks.
To our knowledge, no existing sentence senti-
ment classification corpus fits this need.

Experimental results show that L2PG outper-
forms state-of-the-art baselines including multi-
task learning, which optimizes all the tasks at the
same time.

2 Related Work

Our work is related to sentiment classification (Liu,
2012), lifelong learning and continual learning.
For sentiment classification, recent deep learning
models have been shown to outperform traditional
methods (Kim, 2014; Devlin et al., 2018; Shen
et al., 2018; Zhang et al., 2019; Qin et al., 2020).
However, these models don’t retain or transfer the
knowledge to new tasks.

Lifelong learning: Most relevant to our work
is lifelong learning (Thrun, 1998; Silver et al.,
2013; Ruvolo and Eaton, 2013; Chen and Liu,
2014, 2016). For lifelong sentiment classification,
Chen et al. (2015) used naive Bayes to leverage
word probabilities under different classes in old
tasks/domains as priors to help optimize the new
task learning. Wang et al. (2019) worked similarly
but their method can improve the model of a previ-
ous task without retraining. Xia et al. (2017) pro-
posed a voting method but their method works on
the same data from different time periods. Lv et al.
(2019) proposed a model using two networks, one
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for knowledge retention and one for feature learn-
ing. But it was shown to be weaker than (Wang
et al., 2019). L2PG has a very different approach
and performs markedly better. Wang et al. (2018)
studied aspect level sentiment classification, which
is not the goal of L2PG. However, to the best of
our knowledge, none of these methods used gated
mechanisms to regulate the transfer of knowledge
in the lifelong learning process.

Continual learning: It is similar to lifelong
learning, but its main goal is to overcome catas-
trophic forgetting to ensure learning of a new task
will not forget the models learned for previous tasks
(McCloskey and Cohen, 1989; Goodfellow et al.,
2013). For example, LWF (Li and Hoiem, 2017)
uses knowledge distillation loss to ensure that after
learning a new task, it can still approximate the per-
formance of the old tasks. EWC (Kirkpatrick et al.,
2017) introduces constraints to control parameter
changes when learning a new task. HAT (Serrà
et al., 2018) masks units that are important to pre-
vious tasks by a hard attention. PGMA (Hu et al.,
2019) generates a subset of parameters. Two re-
views of continual learning can be found in (Chen
and Liu, 2018; Parisi et al., 2019). Our lifelong
learning setting focuses on transferring the past
knowledge to the current task. We don’t ensure
that the models learned in the past still work well
after learning a new task. Although Progressive
Networks (Rusu et al., 2016) also tries to help fu-
ture learning through knowledge transfer, but it is
not scalable as its network size scales quadratically
in the number of tasks.

Knowledge Distillation Loss was proposed
in (Hinton et al., 2015) for transferring knowledge
in a large model to a smaller one. LWF uses knowl-
edge distillation to help deal with forgetting. Dhar
et al. (2019) proposed an information preserving
penalty, attention distillation loss, to preserve the
information about existing classes. This setting is
different from ours as it incrementally learns more
classes. Each of our tasks is an independent senti-
ment classification problem with multiple classes.

3 The Proposed L2PG Model

The working of the proposed model L2PG in learn-
ing the new task t is illustrated in Figure 1. Our
learner f(·; θt) consists of three modules and two
loss functions. The first module is the shared
knowledge module (SK), which consists of a CNN
(i.e., convolutional neural network) with various fil-

it's a charming journey.
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Figure 1: The proposed L2PG model. In learning task
t, the parameters in the yellow boxes are temporary
copies of the parameters of task t − 1 (a superscript
• is used to indicate a copy) and are not changed (they
are deleted after learning task t). The parameters in the
blue boxes and blue disk are updated. Green lines are
for knowledge distillation.

ters. It contains the shared knowledge across tasks
in its parameters θs,t. The second module is the
task classification module (TC) with parameters
θc,t, which is a fully connected layer for the clas-
sification of task t. There is one TC for each task
and it is fixed once t is learned. The third module
is the p-gate module (PG).

In learning each new task t, a temporary copy of
SK and of TC (in the yellow boxes of Figure 1) are
made from the state of the network after task t− 1
was learned. For clarity, we use the superscript
• to indicate a copy of something. For example,
θs,t−1,• and θc,t−1,• denote the copies of θs,t−1 and
θc,t−1 respectively. They are fixed and not updated
during the learning of task t. SK (in the blue box)
and PG (in the blue disk) are updated in learning
task t, and are also used in testing. The goal of PG
is to identify useful knowledge for task t from the
parameters θs,t−1,• of SK after task t− 1 training
and to block the unhelpful or harmful knowledge in
SK (see Sec. 3.3) for the current task. Knowledge
distillation is used to ensure that in learning task t,
the knowledge gained from the previous tasks are
not forgotten. Updating the parameters of SK, TC
and PG are done through back propagation. The
two loss functions used are knowledge distillation
loss and cross entropy loss.

3.1 Shared Knowledge Module (SK)

Let the training data of task t be Dt
train, and an in-

stance of it with length L (after padding or cutting)
be xti with label yti . Training of SK (in the blue box
of Figure 1) for the new task t starts with SK of
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the task t − 1 model f(·; θt−1). After training of
task t, f(·; θt−1) becomes SK of the model f(·; θt)
for task t. During training, the input instance goes
through SK to get advanced features to be used by
task t’s TC module. Let V t

ij ∈ Rk be the word
vector corresponding to the jth word of xti and
Xt

i ∈ RL×k be the embedding matrix of xti. SK
receives Xt

i from the input layer, and then extracts
advanced features Ct

i in the form of a n-gram, i.e.,

Ct
i = [c1, c2, ..., cL−n+1] = [cj ]

L−n+1
j=1 (1)

where cj represents the output produced by CNN’s
filter on Xt

i [j : j + n − 1, :]. Mathematically, a
convolution operation consists of a filter W t ∈
Rn×k and a bias bt ∈ R. cj can be expressed as:

cj = g(W t ·Xt
i [j : j + n− 1, :] + bt) (2)

where g is a nonlinear activation function such
as Relu. We use a Maxpooling operation over
the feature map and take the maximum value
Ct

i = max{Ct
i} as the feature corresponding to

this particular filter. The shared knowledge from
SK of the current task t is

Ct
i = SK(Xi; θ

s,t) (3)

where θs,t is the whole set of parameters of SK of
the current task t.

3.2 Task Classification Module (TC)
Using Eq. 3 we obtain a high-level representation
of the input instance xti. Then, we pass the fea-
ture of xti through TC of the task t to obtain the
classification result,

ŷti = Softmax(Ct
i ·W t

c + btc) (4)

where W t
c , btc are the weight and bias of the clas-

sifier. Like SK above, we refer the classifier from
the TC module of the current task t as

ŷti = TC(Ct
i; θ

c,t) (5)

where θc,t is the set of all parameters of the TC
(classifier) of the current task t. As mentioned
earlier, TC is a fully connected layer (in the top
blue box of Figure 1) and is randomly initialized.

3.3 P-Gate Module (PG)
Recall that in learning the new task t, the proposed
p-gate mechanism (PG) selectively transfers some
pieces of knowledge from the parameters θs,t−1

after task t − 1 is learned, i.e., f(·; θt−1), to the
current task t. At the same time, PG also needs
to block the knowledge that is not helpful to the
current task or knowledge that may cause forgetting
for previous tasks. We achieve the goals using two
p-gates, an input p-gate and a block p-gate.

The input p-gate uses the Sigmoid function to
determine what proportion of each parameter in the
SK from the previous task should help the current
task to learn. The input p-gate is formulated as,

z = Sigmoid(Wz · θs,t−1,•) (6)

where θs,t−1,• is a copy of θs,t−1, the parameters
of the network state after task t − 1 was learned
(see the top yellow box in Figure 1), and Wz is the
set of trainable input p-gate’s parameters. θs,t−1,•

does not change during training. zij → 1 means
that the corresponding parameter is almost com-
pletely helpful to the learning of the current task,
and zij → 0 means that the parameter is of no help
(or harmful) to the current task t.

The block p-gate blocks some SK’s parameters
from the previous training step S−1 in the training
process of the current task t. θs,tS−1 serves as the
initial parameters of θs,tS of the current training step
S. The block p-gate is formulated as,

b = Sigmoid(Wb · θs,tS ) (7)

where Wb is the set of trainable block p-gate’s pa-
rameters. bij → 0 means that the current parameter
almost certainly has a negative effect on the next
learning or may lead to forgetting. Both the input
p-gate’s parameters Wz and block p-gate’s parame-
ters Wb are trained by minimizing the loss function
of the current task t’s classification module TC.

After this step of training using a batch of ex-
amples for task t is completed, SK’s parameters
of step S is revised by the following combination
operation, i.e., the trained θs,tS is replaced,

θs,tS := z ∗ θs,t−1,• + b ∗ θs,tS (8)

This operation is to reduce the interference of the
new task t on the existing knowledge learned in the
past and cause forgetting.

After the parameter combination and revision is
done, the training goes to the next step/iteration
S + 1 using another batch of data. Note that this
combination and replacement operation is not used
if S is the last step of an epoch.
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3.4 Objective of Optimization
In order for the model to retain old knowledge dur-
ing the learning process, we use the knowledge dis-
tillation loss in (Hinton et al., 2015) to encourage
the outputs of one network to approximate the out-
puts of another, similar to LWF. Therefore, when
we start training task t, we first use f(·; θt−1) to get
the softmax output Y t

o = {ytoi}
nt
i=1 of all training

instances of t and Ŷ t
o = {ŷtoi}

nt
i=1 is the softmax

outputs of SK of task t combining TC of task t− 1,
which are used to build a knowledge distillation
loss. Let Y t = {yti}

nt
i=1 be all ground truth labels

of task t and Ŷ t = {ŷti}
nt
i=1 be the softmax outputs

of f(·; θt) used to build the cross entropy loss. nt
is the number of training examples of task t.

We now present the L2PG’s optimization goals
when sequentially learning each new task t.

Knowledge Distillation Loss: It is defined as:

LD(Y
t
o , Ŷ

t
o ) = −

nt∑
i=1

y′toi · log(ŷ′toi) (9)

y′toi =
(ytoi)

1/K∑
j(y

t
oj)

1/K
, ŷ′toi =

(ŷtoi)
1/K∑

j(ŷ
t
oj)

1/K
. (10)

where K is a hyperparameter and Hinton et al.
(2015) suggestsK > 1, which increases the weight
of smaller logit values and encourages the network
to better encode similarities among classes.

Classification Loss: The classification loss of
the current learner f(·; θt) for task t is cross en-
tropy of Ŷ t and Y t,

LC(Y
t, Ŷ t) = −

nt∑
i=1

yti · log(ŷti) (11)

So, the total loss is

L = LC(Y
t, Ŷ t)+λLD(Y

t
o , Ŷ

t
o )+βR(θ

t) (12)

where λ and β are hyperparameters, R(θt) is the
regularization term (we use L2 regularizer), and θt

includes θc,t, θs,t,Wb and Wz .
The algorithm of L2PG for training the new task

t is given in Algorithm 1, which is self-explanatory.

4 Experiments

We now evaluate L2PG and compare it with two
main types of baselines, i.e., those under lifelong
sentiment classification and those under continual
learning for dealing with catastrophic forgetting.

Algorithm 1 L2PG - Learning the new task t

1: Input: Training set Dtrain
t of task t, and

shared parameters θs,t−1,• and task classifica-
tion parameters θc,t−1,• from task t− 1.

2: Initialize:
θs,t0 ← θs,t−1 // 0 denotes training step
θc,t0 ← Random(|θc,t|)

3: for each training step S = 0, 1, ...,M do
4: Sample one batch Xt

S from Dtrain
t ;

5: // compute outputs for loss LD

6: Y t
o = f(Xt

S ; θ
s,t−1,•, θc,t−1,•);

7: Ŷ t
o = f(Xt

S ; θ
s,t
S , θc,t−1,•) ;

8: // compute output for loss LC

9: Ŷ t = f(Xt
S ; θ

s,t
S , θc,tS );

10: Update parameters:
11: Parameters θs,tS , θc,tS , Wz and Wb are up-

dated by minimize Eq. 12;
12: // Use the trained p-gate parameters to

// select the knowledge for the next step
13: z = Sigmoid(Wz · θs,t−1,•);
14: b = Sigmoid(Wb · θs,tS );
15: θs,tS := z ∗ θs,t−1,• + b ∗ θs,tS

16: end for

4.1 Datasets

We carried out experiments on two datasets. The
first dataset is for document level sentiment classi-
fication with two classes, positive and negative. It
consists of reviews of 16 diverse kinds of products
(domains) commonly used in multi-task text classi-
fication (Liu et al., 2017). The reviews of the first
14 products are from Amazon.com. The remaining
two are about movie reviews (IMDB and MR). The
number of training and testing samples for each
product (or task) is about 1,400 and 400, respec-
tively. We call this dataset Mix-16, which gives us
16 tasks, one per product category/domain.

The second dataset is for sentence-level senti-
ment classification and is created by us. It con-
sists of review sentences of 10 types of prod-
ucts/domains crawled from Amazon.com, which
gives us 10 tasks. Each sentence is labeled with
positive, negative or neutral. The sentences with
conflict opinions (e.g., both positive and negative)
are not used. Sentence sentiment classification of
each domain forms a task. The review sentences
of each product are annotated by two annotators
independently. We trained all the annotators and
provided them with an annotation instruction doc-
ument. After training, each of them was asked to
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Dataset Avg.L Train Test |V |
Air conditioner 15 1,018 439 2,714
Diaper 17 1,065 459 2,685
Stove 15 1,084 467 2,813
Headphone 15 1,186 510 3,476
Bike 16 1,021 441 3,097
Luggage 17 1,211 520 3,380
Smartphone 16 1,187 511 3,778
GPS 17 1,318 567 3,976
TV 16 1,346 579 4,053
Hotel 16 1,466 630 4,015

Table 1: Dataset statistics of Amazon-10. Avg.l: Aver-
age sentence length. Train, Test: number of training
and test sentences respectively. |V |: Vocabulary size.

perform annotation of 50 sentences to assess their
annotation quality. They started their annotation
only after we were satisfied with their annotations.
After they completed their annotations, sentences
with disagreements were identified and discussed
by the annotators to come to an agreement. The
Kappa score for annotator agreement was 0.7947.

Note that we are aware that there are some ex-
isting sentence sentiment classification data, but
each of them is only from reviews of a single prod-
uct. We are unable to create many different domain
tasks from them to suit lifelong learning. Further-
more, they mostly have only two classes, positive
and negative, which do not reflect all review sen-
tences because many review sentences express no
sentiment (neutral), e.g., ”I bought this camera
yesterday.” That is why we created the new dataset
with 10 different categories of products, which give
us 10 tasks for lifelong learning.2 We denote this
dataset as Amazon-10.

4.2 Baselines

We consider the following baselines for compari-
son with the proposed L2PG model. The feature
extraction module (e.g., SK of L2PG) of all models
including L2PG uses CNN (Kim, 2014) and each
classifier is a fully connected layer (e.g., TC of
L2PG for each task).

I-CNN: I-CNN is a single-task CNN classifier,
where one CNN model performs each task inde-
pendently, no sharing of knowledge across tasks.

S-CNN: S-CNN is I-CNN but uses one CNN
model (one feature extractor and one classifier) to
incrementally learn all tasks. No mechanism is
used to deal with knowledge transfer or forgetting.

LWF-T: This is a continual learning model
based on Learning without forgetting (LWF) (Li

2Our code and the newly created dataset can be found from
https://github.com/Qqinmaster/L2PG

and Hoiem, 2017). It uses knowledge distillation
to deal with catastrophic forgetting. Since LWF
was originally designed for image classification,
we modified it for text classification using the same
model as the above, i.e., CNN for the shared pa-
rameter module, one fully connected layer for each
task’s classifier (each task has its own classifier).
When training the new task, the parameters of the
task-specific classifiers of the previous tasks are
fixed. We denote this LWF model as LWF-T.

HAT: This is a well-known algorithm for con-
tinual learning that deals with catastrophic forget-
ting (Serrà et al., 2018). Since HAT (or UCL
below) was also designed for image classification,
we again adapted it for text. HAT has almost no
forgetting for image classification.

UCL: This is a latest continual learning model
(Ahn et al., 2019) that improves HAT.

LSC: This is the naive Bayes-based lifelong sen-
timent classification model in (Chen et al., 2015).

LNB: LNB (Wang et al., 2019) is similar to LSC
but is able to improve the model of a previous
task without retraining. The system in (Lv et al.,
2019) is not compared as it performed poorer than
LNB (Wang et al., 2019).

MTL: This is a multi-task learning baseline us-
ing CNN as the shared knowledge module as L2PG
and each task has its own task-specific classifier
like L2PG, HAT, and UCL.3 In (Li and Hoiem,
2017), MTL’s performance was regarded as the up-
per bound of continual learning because the train-
ing data of all tasks are available during training.
But for L2PG, after each sentiment classification
task is learned, its data is assumed deleted.

Training details. For all models in our experi-
ments, the word embedding are randomly initial-
ized as 300-dimension vectors and then modified
during training. We use filter sizes of [3,4,5] with
100 feature maps each in the CNN module, and
dropout rate of 0.5. In L2PG, we set mini-batch
size to 50, learning rate to 0.001, temperature
T = 2 and λ, β = 1. We use the same feature
extractor CNN and classifier as other models. For
HAT and UCL, we modified their code for text and
optimized their parameters (their original param-
eters performed poorly for text), but we did not
change their algorithms. HAT and UCL need 300

3Note that we use a comparable architecture for MTL to
other baseline models for fair comparisons. It is not the state-
of-the-art model reported in the literature, which uses more
sophisticated architectures and achieves better results.
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I-CNN S-CNN LWF-T HAT UCL LSC LNB MTL L2PG
Health 84.05 (± 0.99) 86.40 (± 0.58) 86.00 (± 0.50) 84.50 (± 1.53) 87.00 (± 0.61) 87.50 88.25 86.80 (± 0.69) 88.45 (± 0.69)
Toys 84.30 (± 0.97) 86.40 (± 0.52) 86.95 (± 0.48) 84.75 (± 0.52) 86.55 (± 0.70) 86.25 89.50 85.70 (±0.21) 88.00 (± 0.88)
Electronics 82.60 (± 0.55) 85.05 (± 0.45) 86.85 (± 1.50) 82.75 (± 2.16) 85.69 (± 0.82) 82.75 78.50 87.35 (±0.38) 88.15 (± 1.17)
Books 79.45 (± 0.48) 82.60 (± 0.91 ) 81.10 (± 0.91) 77.75 (± 2.43) 81.20 (± 1.36) 78.75 79.00 80.15 (±0.58) 84.05 (± 0.78 )
Music 77.60 (± 0.45) 80.90 (± 1.19) 80.85 (± 1.05) 76.50 (± 2.46) 81.50 (± 0.89) 80.00 79.25 80.50 (±0.66) 82.25 (± 1.00)
Baby 84.90 (± 0.99) 86.20 (± 0.72) 86.40 (± 0.72) 85.35 (± 2.27) 86.45 (± 1.10) 82.00 83.75 86.25 (±0.47) 88.75 (± 0.47)
Magazines 90.70 (± 0.62 ) 90.45 (± 0.76 ) 92.20 (± 0.37) 89.75 (± 1.26) 91.14 (± 0.52) 92.75 88.25 91.70 (±0.67) 92.20 (± 0.48)
MR 66.00 (± 1.45) 68.50 (± 0.98) 70.25 (± 0.68) 58.70 (± 1.18) 68.28 (± 0.88) 70.00 71.50 70.60 (±0.91) 71.35 (± 1.10)
Sports 84.00 (± 0.35) 87.85 (± 0.63) 85.30 (± 0.93) 86.00 (± 1.28) 86.80 (± 0.82 ) 87.00 86.00 88.40 (±0.89) 87.20 (± 1.30)
Kitchen 83.45 (± 0.57) 86.90 (± 0.49) 86.30 (± 0.54) 81.50 (± 1.84) 86.30 (± 0.52) 85.00 85.25 88.60 (±0.34) 89.30 (± 0.41)
Apparel 85.75 (± 0.35) 86.95 (± 0.89) 86.55 (± 0.82) 84.00 (± 1.23) 85.47 (± 0.65) 84.75 86.25 87.20 (±0.37) 86.90 (± 0.76 )
IMDB 74.45 (± 1.07) 76.20 (± 0.51) 77.35 (± 0.89) 71.75 (± 1.25) 78.60 (± 1.20) 80.19 79.95 76.35 (±1.36) 80.65 (± 0.93)
Software 85.35 (± 1.42) 87.40 (± 0.49) 87.15 (± 0.84) 81.50 (± 1.25) 86.55 (± 0.76) 87.00 83.75 87.40 (±0.49) 88.15 (± 1.17)
Vido 80.00 (± 0.71) 84.00 (± 0.47) 83.70 (± 0.67) 81.00 (± 1.01) 83.35 (± 1.29) 81.75 81.50 87.40 (±0.49) 85.95 (± 0.60 )
Camera 87.45 (± 1.28) 87.80 (± 0.72) 88.15 (± 0.68) 84.15 (± 0.25) 84.59 (± 0.51) 85.50 86.50 87.40 (±0.49) 88.60 (± 0.88 )
DVD 78.20 (± 1.10) 79.95 (± 0.91) 80.00 (± 0.79 77.35 (± 0.75 79.85 (± 0.46 ) 80.75 81.00 81.05 (±1.02 ) 82.45 (± 0.33)
Average 81.77 (± 0.83) 83.97 (± 0.70) 84.07 (± 0.77) 80.46 (± 1.42) 83.71 (± 0.82)) 83.25 83.01 84.56 (±0.63) 85.78 (± 0.81)

Table 2: Mix-16: Average accuracy (%) of each task (or domain) over 5 different task sequences for every candidate
model under the lifelong learning setting. LSC and LNB don’t have ±sd as they are task sequence independent.

I-CNN S-CNN LWF-T HAT UCL MTL L2PG
Bike 64.44(± 0.79) 65.47 (± 1.04) 65.88 (± 1.07) 62.17 (± 4.42) 65.85 (± 0.81) 66.32 (± 0.79) 67.48 (± 0.47)
GPS 60.98 (±0.47) 66.03 (±1.72) 67.13 (±1.11) 60.49 (±3.45) 66.08 (±0.93) 64.93 (±1.50) 68.78 (±0.75)
Hotel 65.01 (± 0.71) 64.50 (± 1.03) 66.05 (± 1.15) 60.28 (±1.55) 66.44 (±0.88) 64.66 (±0.61) 68.73 (±1.48)
Luggage 69.23 (±0.35) 73.36 (±0.64) 73.42 (± 0.25) 70.16 (±1.23) 73.41 (±0.37) 73.22 (±0.51) 76.58 (±0.71)
Diaper 63.83 (±0.84) 65.94 (±1.22) 66.33 (±1.49) 62.77 (±1.35) 64.74 (±0.51) 66.12 (±0.88) 68.05 (±1.26)
Smartphone 60.61 (±1.18) 66.76 (±0.55) 67.73 (±0.93) 60.43 (±3.63) 65.63 (±1.16) 66.10 (±1.28) 69.74 (±0.35)
Stove 67.23 (±0.94) 68.28 (±0.64) 69.89 (±1.05) 67.19 (±2.05) 68.24 (±0.43) 69.92 (±0.67) 70.67 (±1.28)
Headphone 62.74 (±0.62) 65.17 (±1.21) 65.61(± 0.95) 61.36 (±2.41) 65.90 (±0.68) 64.18 (± 1.14) 68.18 (±1.08)
TV 61.27 (±0.46) 64.43 (±0.36) 65.34 (±1.55) 61.18 (±1.37) 64.58 (±0.42) 64.18 (±0.65) 66.70 (±1.24)
Air-condition 61.63 (±0.67) 65.77 (±0.85) 66.22 (±0.79) 63.87 (±2.21) 67.10 (±1.27) 65.10 (±1.24) 69.66 (±1.02)
Average 63.70 (±0.71) 66.57 (±0.93) 67.36 (±1.04) 62.98 (±2.37) 66.80 (±0.75) 66.47 (±0.93) 69.46 (±0.97)

Table 3: Amazon-10: Average accuracy (%) of each task (or domain) over 5 different task sequences for every
candidate model under the lifelong learning setting. LSC and LNB are not used here because their algorithms
cannot handle more than 2 classes in a task.

and 100 epochs to achieve the best results respec-
tively, but for others, 20 epochs are sufficient. For
LSC and LNB, we use their original code. Note
that LSC and LNB can only deal with two-class
sentiment classification due to the limitation of its
knowledge sharing mechanism. Thus we cannot
run it on the second dataset which has three classes.

4.3 Results and Analysis

For our lifelong learning setting, we use 5 random
task sequences to compute the accuracy as differ-
ent task sequences may give different results.4 For
each sequence, each task (also a domain) is used as
the last task in turn to collect its test result. This is
because we are only interested in improving the ac-
curacy of the current/new task based on knowledge
learned in the previous tasks. Table 2 and Table 3
give the mean accuracy of each task when it is the
last task for Mix-16 and Amazon-10 respectively.
The average accuracy of each column is given in the
last row of each table. L2PG significantly outper-
forms every baseline on both datasets with p-value
< 0.01 on paired t-test. Compared with I-CNN,
L2PG increases the averaged accuracy by 4.01%

4Because LSC and LNB pairs are naive bayes based meth-
ods, they will not be affected by task order under lifelong
learning setting.

on Mix-16 and 5.76% on Amazon-10. This is be-
cause I-CNN treats each task independently, but
L2PG performs knowledge transfer. Even naive
single continual learning of S-CNN outperforms
I-CNN by 2.20%, 2.87% on the two datasets re-
spectively. This shows that significant knowledge
sharing exists in sentiment classification tasks.

Compare with Lifelong Sentiment Classifica-
tion Models: LSC and LNB are only designed
for 2-class lifelong sentiment classification. They
cannot handle three classes in Amazon-10 and
thus have no result for it. L2PG is only com-
pared to LSC and LNB on Mix-16. In Table 2,
we see that L2PG outperforms LSC and LNB by
2.53%, 2.77% respectively. One reason is that LSC
and LNB are naive Bayes approaches, which can-
not model the contextual relationship due to its
conditional independence assumption on features
(words). L2PG does not have this limitation.

Compare with Continual Learning Models:
For continual learning models LWF-T, HAT and
UCL, to be consistent with the lifelong setting of
L2PG, we also take turns to put each task as the
last and use the final model to get the accuracy of
the last task (there is no forgetting for the last task).
The average accuracy of L2PG on both datasets is
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System Average

L2PG 69.46 (±0.97)
w/o LD (L2GP-NK) 68.31 (±0.64)
w/o PG (LWF-T) 67.36 (±1.04)
w/o LD or PG (S-CNN) 66.57 (±0.93)

Table 4: Ablation experiments on Amazon-10. For
each system, the result is the average of all tasks’ ac-
curacy in the lifelong learning setting, where LD is the
knowledge distillation loss.

markedly higher than these models. For example,
on Amazon-10, L2PG’s average accuracy is 2.20%
higher than LWF-T, 6.48% higher than HAT and
2.66% higher than UCL. As we can see, contin-
ual learning models LWF-T and UCL (the latest
algorithm) that only deals with catastrophic forget-
ting also achieve better results than I-CNN as the
tasks are similar and share a great deal of knowl-
edge (HAT is markedly worse). However, since
they do not have specific mechanisms to perform
knowledge transfer, they are weaker than L2PG.

Compare with MTL: Under the condition that
the same CNN is used as the feature extractor and
a fully connected layer is used as a task-specific
classifier for each task, L2PG is on average 1.22%
better than MTL on Mix-16 and 2.99% better than
MTL on Amazon-10. MTL is often considered the
upper bound of continual learning because it trains
all the tasks together. However, its loss is the sum
of the losses of all tasks, which does not mean it
optimizes for every individual task. L2PG in the
lifelong learning setting tries to do the best for the
new/current task.

Ablation Experiments and Analysis: To show
the usefulness of each component of L2PG, we
perform ablation experiments on the Amazon-10
data without using knowledge distillation loss, the
p-gate modele (PG), or both. Their results are given
in Table 4.

When only removing the knowledge distillation
loss from L2PG (w/o LD), which we call L2PG-
NK, the average accuracy drops by about 1.15%,
which indicates that using knowledge distillation
loss to actively preserve the old knowledge is use-
ful. When only removing the p-gate module from
L2PG (w/o PG), which is actually LWF-T, the aver-
age accuracy drops by about 2.10%, which shows
that our PG mechanism can choose and transfer
the right knowledge to the new task. Without both
knowledge distillation loss and PG (w/o LD or
PG), which is actually S-CNN, the result is much
worse. Comparing L2PG-NK with LWF-T and
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Figure 2: Mix-16: accuracy of its 16 tasks of continual
learning. LSC, LNB and MTL are not used as they
don’t work in the continual learning setting.
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Figure 3: Amazon-10: accuracy of its 10 tasks of con-
tinual learning. LSC, LNB & MTL do not work in the
continual learning setting.

S-CNN, we can see L2PG-NK’s average score is
0.95% higher than LWF-T, 1.74% higher than S-
CNN, which indicates that even without distillation
loss, the PG mechanism can effectively retain the
past knowledge and use it effectively.

4.4 L2PG in the Continual Learning Setting
Here we run L2PG as a continual learning system.
Like LWF-T, HAT and UCL, after all tasks are
learned, L2PG is tested on every task’s test data
(note, in the lifelong learning setting, we only test
on the last task). The continual learning results on
the two datasets are presented in Figures 2 and 3,
where six models are compared, namely, I-CNN,
S-CNN, LWF-T, HAT, UCL and L2PG. From the
figures, we observe that L2PG actually can out-
perform all the other five models. This is due to
the fact that L2PG encourages knowledge trans-
fer, while the continual learning systems LWF-T,
HAT and UCL only focus on preserving the past
knowledge.

5 Conclusion

This paper proposed an effective model L2PG for
lifelong sentiment classification. L2PG not only
can retain what it has learned, but also selectively
transfer the past knowledge to learn the new task
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better. The key component is the proposed parame-
ter gate (p-gate) mechanism that is able to select the
right previously learned knowledge or parameters
to transfer to the new task. Knowledge distilla-
tion is also employed to maintain the knowledge or
models learned for the previous tasks. Empirical
evaluation showed L2PG outperforms strong base-
lines in lifelong learning, continual learning, and
even multi-task learning.
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