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Abstract

In this paper we present our results from the
Second Shared Task on Metaphor Detection,
hosted by the Second Workshop on Figurative
Language Processing. We use an ensemble of
RNN models with bidirectional LSTMs and
bidirectional attention mechanisms. Some of
the models were trained on all parts of speech.
Each of the other models was trained on one
of four categories for parts of speech: ”nouns”,
”verbs”, ”adverbs/adjectives”, or ”other”. The
models were combined into voting pools and
the voting pools were combined using the log-
ical ”OR” operator.

1 Introduction

Figurative language is common in everyday speech
and generally easy for humans who are speaking
the same language to interpret, yet machines have
trouble with it, limiting our interaction with them.
If a machine has trouble understanding our natu-
ral language, then it will have trouble interpreting
our intentions and translating them correctly to an-
other language or human. Therefore, the goal of
our research is to improve metaphor detection to fa-
cilitate the interpretation and translation of natural
language in discourse.

The Second Shared Task on Metaphor Detection
used the Vrije University Amsterdam Metaphor
Corpus (VUAMC) (Steen et al., 2010), which has
been the most widely used database for training
machines to detect metaphors. The metaphor la-
bels in the VUAMC are per word and indicate
whether the word is a metaphor related word (mrw)
or not. An mrw may be an indirect, direct, or im-
plicit metaphor. The VUAMC contains text from
four sources: academic texts, newspapers, conver-
sations, and fiction. Each word was labeled using
the MIPVU procedure, with greater than 0.8 inter-
annotator reliability (Steen et al., 2010). About

13% of the words in the VUAMC are labeled as
metaphor related words.

The Second Shared Task on Metaphor Detection
with the VUAMC demonstrated state of the art per-
formance with the best performer achieving an F1
score of 0.769. On the same training and test sets,
we were able to achieve an F1 score of 0.703, and
when we randomly split the VUAMC data around
sentences vs. fragments (which may contain more
than one related sentence), we were able to achieve
an F1 score of 0.730. Leong et al. (2020) provide a
summary of the results from all participants in the
shared task.

Listed below are our major findings and contri-
butions:

• When forwarding information from a bidirec-
tional LSTM to an attention layer, better per-
formance can be obtained when each attention
cell receives output from only one bidirec-
tional LSTM cell (vs a fully connected archi-
tecture where the output of every bidirectional
LSTM cell is forwarded to every attention
cell). For reference, see the architectural dif-
ferences between Figures 2 and 1.

• It is possible to get better performance from
logically combining the outputs of an en-
semble, compared with using only the usual
ensemble approaches of combining models:
boosting, bagging, or stacking.

• Splitting the training and data sets by ran-
domly sampling sentences rather than frag-
ments (or paragraphs), which contain more
than one sentence, provides for better results.

• Concatenating ELMo (Peters et al., 2018)
with GloVe (Pennington et al., 2014) word
embeddings gives better results than using ei-
ther one alone.
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Next we present related work followed by a dis-
cussion of our approach. Then we present a sum-
mary of our results followed by conclusions. We
conclude with a brief discussion about our future
research plan.

2 Related Work

Dinh et al. (2016) showed that using only word
embeddings to train a neural network to detect
metaphor related words in the VUAMC resulted
in performance that was comparable to the perfor-
mance of approaches that incorporated additional
features, such as parts-of-speech. Using only word
embeddings they achieved 52.4% recall with 58.3%
precision on the shared task data, covering all parts
of speech, from the NAACL 2018 Workshop on
Figurative Language Processing.

Wu et al. (2018) used a layered model with
lemmatized-word embeddings. They layered a bidi-
rectional LSTM (bi-LSTM) on top of a CNN. For
the output layer, they experimented with Condi-
tional Random Fields (CRF) vs. softmax. Their
best performance was with softmax. They used
300d word2vec embeddings and the RMSProp opti-
mizer. They also input one-hot vectors for parts-of-
speech and one-hot vectors for cluster ids from clus-
tering the word embeddings with k-means. They
demonstrated the best performance on the VUAMC
shared task, over all parts of speech, with 70% re-
call and 60.8% precision.

Bizzoni and Ghanimifard (2018) presented two
alternative architectures, a bidirectional LSTM and
a novel bigram model which is a sequence of
fully connected neural networks (concatenation and
ReLU for each network in the sequence). They ex-
perimented with different word embeddings (300d
GloVe and word2vec) and the inclusion of concrete-
ness scores. They used a maximum sentence length
of 50 words. Sentences with more than 50 words
were broken up into smaller chunks. Sentences
with less than 50 words were padded. The best
performance between the two models was with the
bidirectional LSTM using the GloVe embeddings
and concreteness scores, but an ensemble of the
bidirectional LSTM and novel bigram model per-
formed even better. Over all parts of speech on
the VUAMC, they achieved 68% recall with 59.5%
precision.

Stemle and Onysko (2018) also split sentences
into segments depending on a maximum sequence
length. Shorter sequences were padded. They used

a layered model with input to a bidirectional LSTM
which provided input to a fully connected output
layer that was activated by the softmax function.
The length of the output equaled the length of the
input. The output predicted whether each word
from the input layer was a metaphor related word
or not. They used a categorical cross-entropy loss
function to address the imbalance of non-metaphor
related words to metaphor related words. They
experimented with word embeddings from vari-
ous models that were pre-trained on corpora that
varied in their language proficiency levels. On the
VAUMC shared task data sets for all parts of speech,
they achieved 69.8% recall with 55.3% precision.

Leong et al. (2018) used logistic regres-
sion and random forest classifiers with lemma-
tized unigrams, generalized WordNet semantics,
and difference in concreteness ratings between
verbs/adjectives and nouns (Leong et al., 2018;
Beigman Klebanov et al., 2016). During training,
each class was weighted by the inverse of its fre-
quency. For the optimization function, they used
the f1-score. They achieved 69.6% recall with 51%
precision on the VUAMC shared task data sets for
all parts of speech.

Mykowiecka et al. (2018) trained an LSTM on
300d GloVe embeddings. They also experimented
with using part-of-speech information and features
from the General Inquirer, which worsened their
results on the test data. Swarnkar and Singh (2018)
presented an architecture that used a context en-
coder inspired by a bidirectional LSTM. The out-
put of the encoder was fed to a feature selection
module to select features for the token word. They
showed that re-weighting examples and using parts
of speech, WordNet, and concreteness ratings im-
proved the performance of their model. Skurniak
et al. (2018) presented a CRF sequence model that
was trained using GloVe word embeddings and con-
textual information. Pramanick et al. (2018) used
a hybrid model of bi-LSTM and CRF trained with
word2vec embeddings for the token word and its
lemma, 20d vectors representing the POS, and one-
hot vectors for whether the lemma and the token
were the same, and whether the lemma was present
in the token.

Other researchers have made progress in
metaphor detection at the word level, but the results
were reported for data sets other than the VUAMC.
Hovy et al. (2013) used SVMs with tree kernels on
syntactic features and achieved an f1-score of 75%.
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They built a corpus of 3872 labeled metaphors
which they also released. Su et al. (2017) presented
results from using the theory of meaning to iden-
tify metaphors in a subset of the BNC, which they
labeled themselves. They achieved an f1-score of
87%. (The VUAMC is also a subset of the BNC.)
Krishnakumaran and Zhu (2007) used WordNet
bigram counts to identify metaphors in the Master
Metaphor List created by (Lakoff, 1994). They
reported 58% accuracy, 70% precision, and 61%
recall.

3 Method

We designed and experimented with various RNN
architectures using bidirectional LSTMs and at-
tention mechanisms (Bahdanau et al., 2014; Zhou
et al., 2016). The input was an 11-gram for each
word in the training set (or test set during testing).
Each word was represented by an 11-gram and ap-
peared at the center of the 11-gram. Furthermore,
each word in the 11-gram was represented by a
1,324 dimensional word embedding which was the
result of concatenating a 1,024 dimensional ELMo
(Peters et al., 2018) embedding with a 300 dimen-
sional GloVe (Pennington et al., 2014) embedding,
because preliminary testing revealed that ELMo
concatenated with GloVe resulted in better perfor-
mance than either one of them alone.

The 11-grams were from one sentence; i.e., they
never extend across two sentences. Padding was
used if the center word was not in the context of
exactly 5 words to the left or right, so the first
word in a sentence would always have 5 pads to its
left and the last word in a sentence would always
have 5 pads to its right. Five was chosen for the
window size because it produced the best results in
preliminary experiments.

The output was a two-dimensional vector repre-
senting the probabilities for the center word being
a metaphor or not. Softmax was used to choose the
highest probability.

Two architectures were used for our final results
on the Shared Task. They are described below.

The first architecture is a many-to-one bidirec-
tional LSTM with bidirectional attention (see Fig-
ure 1). In this architecture, the outputs of the for-
ward and backward LSTM cells in the attention
layer are concatenated only at the output for the
center, target word, of the 11-gram. The expected
output is a 1 or 0 for the center word in the 11-gram,
depending on whether it is a metaphor related word

Figure 1: Many-to-One Bidirectional LSTM with Bidi-
rectional Attention

Figure 2: Many-to-One Fully-Connected Bidirectional
LSTM with Bidirectional Attention

or not. Each attention cell receives output from
only one bidirectional LSTM cell (vs. a fully con-
nected architecture where the output of every bidi-
rectional LSTM cell is forwarded to every attention
cell). See the difference between Figures 2 and 1
for reference. The intuition behind the choice to
forward only one cell’s output per attention cell is
that the attention cells are intended to process input
in a sequential order (i.e., one word at a time). Pro-
viding each step with the entire matrix of weights
for all words from the bidirectional LSTM seems
to violate the design of the attention mechanisms.
We tried both architectures and got better results
with the architecture in which each attention cell
receives output from only one bidirectional LSTM
cell.

The second model is a many-to-many bidirec-
tional LSTM with bidirectional attention (see Fig-
ure 3). The expected output is a 1 or 0 for each
word in the 11-gram, depending on whether the
word is a metaphor related word or not. However,
in the trained model, only the output for the cen-
ter word, w, is used to assign a prediction to w.
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Precision Recall F1
Many-to-Many 0.683 0.678 0.681
Many-to-One 0.655 0.715 0.684

Table 1: Performance from voting with many-to-many
vs. many-to-one models

The key difference between this model and the first
model is that the many-to-many model updates its
weights based on the performance of the model
on the target word’s context words, in addition to
the performance of the model on target word. The
performance feedback includes whether or not the
target word is in the context (within a window of 5
words on either side) of another metaphor related
word. This is also why we must split across sen-
tences and not allow a sentence from the training
set to also appear in the test set. The many-to-
many model was chosen because its performance
complements the first model (i.e., the many-to-one
bidirectional LSTM with bidirectional attention).
Voting among trained instances of the many-to-
many model gives better precision, while voting
among trained instances of the many-to-one model
gives better recall. Both have comparable F1 scores.
Table 1 shows results from voting with five mod-
els of each architecture type. If at least two of
the five models labeled the word as a metaphor re-
lated word, then it was scored as a metaphor related
word.

Another important note about the many-to-many
model is that the output of the backward attention
layer starting at the last word in the 11-gram, w10,
is concatenated with the output of the forward at-
tention layer for w10; the output of the backward
attention layer for w9 is concatenated with the out-
put of the forward attention layer for w9; and so on
until the output of the backward attention layer for
w0 is concatenated with the output of the forward
attention layer for w0.

We used a training batch size of 200. An Adam
optimizer was used with a learning rate 0.006 and a
decay rate of 0.001. The loss function was categor-
ical cross entropy. A dropout rate of 0.2 was used
for the bi-LSTM layer and a dropout of 0.1 was
used for both the forward and backward attention.
The hidden states for both the bi-LSTM and atten-
tion layers were vectors of length 128. The output
layer of each model used the softmax activation
function. Keras with a Tensorflow backend was
used for the implementation.

Figure 3: Many-to-Many Bidirectional LSTM with
Bidirectional Attention

We trained and tested our models independently
on two data splits. For the first split, 25% of the
data samples (11-grams from the VUAMC) were
randomly selected and held out for testing. Among
the remaining 75%, one-third of the samples were
randomly selected and preserved, along with all of
the positive samples (labeled 1) in the remaining
two-third. The rest of the training samples were
discarded to achieve a more balanced training set.
(However, testing was always performed on the
entire test set.)

For the second split, we used the training and
test sets from the Second Shared Task on Metaphor
Detection. For the Shared Task, the training and
test sets were sampled by fragments, in which a
fragment (e.g., a paragraph) may contain more than
one sentence. We initially used one-third of the
training samples, the same way we did with the
first split, but then we tried using the entire training
set and passed class weights to the Adam optimizer
to mitigate the imbalanced number of samples per
class. The class weights were proportional to the
percentage of samples in each class. We got better
results using all of the samples in the training set.
(We did not go back to the first split to train with
all of the training samples and class weights, but
we hypothesize that we’d get better results if we
did.)

First, we trained and tested our model using
300 dimensional GloVe vectors (Pennington et al.,
2014). Next, we tried 1024 dimensional ELMo
vectors (Peters et al., 2018). Finally, we used 1324
dimensional vectors from combining GloVe with
ELMo. In the last case, for each word, we simply
concatenated the ELMo vector representation for
that word with the GloVe vector representation for
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All POS Verbs Adv/Adj Nouns Other
Many-to-Many 0.681 0.726 0.643 0.665 0.647
Many-to-One 0.684 0.721 0.627 0.672 0.702
Ensemble 0.689 0.737 0.641 0.677 0.672

Table 2: F1 score per models and ensembles per part-of-speech category

that word, resulting in a vector of length 1324.
We trained each architecture independently mul-

tiple times on all parts of speech and then on each
of four categories for parts of speech: ”nouns”,
”verbs”, ”adverbs/adjectives”, or ”other”. We used
the NLTK toolkit (Bird et al., 2009) to derive the
parts of speech.

4 Results

We achieved the best results with an ensemble
of trained models. The ensemble consisted of
five models per architecture trained on all parts
of speech, and five models per architecture trained
independently on each of four parts-of-speech cate-
gories: ”nouns”, ”verbs”, ”adverbs/adjectives”, or
”other”. The five models per architecture per part-
of-speech category (including ”all parts of speech”)
were assembled into a voting pool, so there were
ten models total per category. Each set of ten mod-
els were combined into a voting pool and the voting
pools were combined using the logical ”OR” oper-
ator.

Table 2 shows the F1 score per part-of-speech
category that resulted from voting on whether or
not the target word was a metaphor related word
(mrw). For the many-to-many and many-to-one
models, if at least two of the five models per cate-
gory labeled a word as an mrw, then it was scored
as an mrw. The row for ”Ensemble” shows the
results from voting among the many-to-many and
many-to-one models per category. The Ensemble
row is meant to show the level of improvement that
can be obtained by combining all ten models per
category. An overall F1 score of 0.703, with 0.702
precision and 0.704 recall, was obtained by com-
bining the ”All POS” label with the appropriate
part-of-speech category using the ”OR” operator.
For example, if the target word is a verb, then the
verb was labeled as an mrw if the Ensemble for
”All POS” labeled it as an mrw OR the Ensemble
for ”Verbs” labeled it as an mrw.

We also evaluated our many-to-one model with
respect to the novelty scores provided by Dinh
(Do Dinh et al., 2018) for the VUAMC. On novel

metaphors (i.e. metaphors with a novelty score of
at least 0.5 from (Do Dinh et al., 2018)) the many-
to-one architecture found 52/77, or 67.5% in the
shared task test set.

5 Conclusions and Next Steps

We have described two model architectures and an
ensemble approach for metaphor detection. We
have shown that splitting the training and data sets
by randomly sampling sentences rather than frag-
ments (or paragraphs), which may contain more
than one sentence, may lead to better results. We
believe this may be because there are patterns of
language in the test fragments that were not seen in
the training fragments. Allowing a model to train
on some sentences from a fragment and then test
on the other sentences in the same fragment may
produce better results overall.

We shared that when forwarding information
from a bidirectional LSTM to an attention layer,
better performance can be obtained when each at-
tention cell receives output from only one bidirec-
tional LSTM cell.

Finally, we have revealed that it is possible to
get better performance from logically combining
the outputs of an ensemble.

In future work, we will continue improv-
ing metaphor detection with a focus on novel
metaphors. According to Shutova et al. (2013),
“Cameron (2003) conducted a corpus study of the
use of metaphor in educational discourse for all
parts of speech. She found that verbs account for
around 50% of the data, the rest shared by nouns,
adjectives, adverbs, copula constructions and multi-
word metaphors.” About 43% of metaphors in the
VUAMC are verbs, while verbs are only 23% of
all tokens in the VUAMC database. However,
Do Dinh et al. (2018) found that only about 24% of
the novel metaphors are verbs and 41% are nouns.
The rest are adjectives and adverbs. (Other POS
were not included.) Therefore, future work in de-
tecting novel metaphors may place a heavier weight
on nouns (vs. verbs as has been the case with con-
ventional metaphors).
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