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Abstract

In this paper we present a novel resource-
inexpensive architecture for metaphor detec-
tion based on a residual bidirectional long
short-term memory and conditional random
fields. Current approaches on this task rely
on deep neural networks to identify metaphor-
ical words, using additional linguistic features
or word embeddings. We evaluate our pro-
posed approach using different model config-
urations that combine embeddings, part of
speech tags, and semantically disambiguated
synonym sets. This evaluation process was
performed using the training and testing par-
titions of the VU Amsterdam Metaphor Cor-
pus. We use this method of evaluation as refer-
ence to compare the results with other current
neural approaches for this task that implement
similar neural architectures and features, and
that were evaluated using this corpus. Results
show that our system achieves competitive re-
sults with a simpler architecture compared to
previous approaches.

1 Introduction

This paper presents a new model for automatic
metaphor detection which has participated at the
FigLang 2020 metaphor detection shared task
(Leong et al., 2020). Our approach, which is based
on neural networks, has been developed in the
framework of the research project MOMENT (Coll-
Florit et al., 2018), a project devoted to the analysis
of metaphors in mental health discourses.

As it is well known in Cognitive Linguistics, a
conceptual metaphor (CM) is a cognitive process
which allows to understand and communicate an
abstract or diffuse concept in terms of a more con-
crete one (cf. e.g. Lakoff and Johnson (1980)).
This process is expressed linguistically by using
metaphorically used words (MUW).

The study of metaphor is a prolific area
of research in Cognitive Linguistics, being the

Metaphor Identification Procedure (MIP) (Praggle-
jaz Group, 2007) and its derivative MIPVU (Steen
et al., 2019) the most standard methods for manual
MUW detection. MIPVU is the method that was
used to annotate the VU Amsterdam Metaphor Cor-
pus (VUA corpus), used in FigLang 2020. More-
over, in the area of Corpus Linguistics, some meth-
ods have been developed for a richer annotation of
metaphor in corpora (Ogarkova and Soriano Sali-
nas, 2014; Shutova, 2017; Coll-Florit and Climent,
2019).

CM is pervasive in natural language text and
therefore it is crucial in automatic text understand-
ing (Shutova, 2010). For this reason automated
metaphor processing has become an increasingly
important concern in natural language process-
ing, as shown by the holding of the Metaphor in
NLP workshop series (at NAACL-HLT 2013, ACL
2014, NAACL-HLT 2015, NAACL-HLT 2016 and
NAACL-HLT 2018) and a growing body of re-
search — see Veale et al. (2016) and Shutova
(2017) for quite recent reviews.

Automatic metaphor processing involves two
main tasks: identifying MUW (metaphor detection
or recognition) and attempting to provide a seman-
tic interpretation for the utterance containing them
(metaphor interpretation). This work deals with
metaphor detection.

This problem has been mainly approached in
the last decade by supervised and semi-supervised
machine learning techniques but recently this
paradigm has largely shifted to the use of deep
learning algorithms, such as neural networks.
Leong et al. (2018) report that all but one of partici-
pating teams on the 2018 VUA Metaphor Detection
Shared Task used this kind of architectures. Our
system follows this trend by trying to improve on
previous neural network methods.

Below we describe the main related works (sec-
tion 2). Next we present our methodology and
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model (section 3), experiments (section 4) and re-
sults (Section 5). We finish with the discussion and
our overall conclusions (sections 6 and 7).

2 Background

Research on metaphor recognition and interpreta-
tion is changing from the use of features (linguis-
tic and concreteness features), classical methods
(as generalization, classification and word associ-
ations) and the use of theoretical principles (con-
struction grammar, frame semantics and conceptual
metaphor theory) to neural networks and other deep
learning techniques.

Concreteness features are used by Klebanov et al.
(2015) along with re-weighting of the training ex-
amples to train a supervised machine learning sys-
tem. The trained system is able to classify all con-
tent words of a text in two groups: metaphorical
and non-metaphorical.

Klebanov et al. (2016) study the metaphoricity
of verbs using semantic generalization and classifi-
cation using word forms, lemmas and several other
linguistic features. They demonstrated the effec-
tiveness of the generalization from orthographic
unigrams to lemmas and the combination of lem-
mas and semantic classes based on WordNet. They
also used automatically generated clusters to com-
bine with unigram lemmas getting a competitive
performance.

The Meta4meaning (Xiao et al., 2016) metaphor
interpretation method uses word associations ex-
tracted from a corpus to retrieve approximate prop-
erties of concepts and provide interpretations for
nominal metaphors of the form NOUN1 is [a]
NOUN2 (where NOUN1 is the tenor and NOUN2

the vehicle). Metaphor interpretation is obtained
as a combination of the saliences of the properties
to the tenor and the vehicle. Combinations can
be aggregations (the product or sum of saliences),
salience difference or a combination of the results
of the two. As an output, Meta4meaning provides
a list of interpretations with weights.

The automatic metaphor detection system
MetaNet (Hong, 2016) has been designed apply-
ing theoretical principles from construction gram-
mar, frame semantics, and conceptual metaphor
theory. The system relies on a conceptual network
of frames and metaphors.

Rosen (2018) developed an algorithm using
deep learning techniques that uses a representa-
tion of metaphorical constructions in an argument-

structure level. The algorithm allows for the iden-
tification of source-level mappings of metaphors.
The author concludes that the use of deep learning
algorithms with the addition of construction gram-
matical relations in the feature set improves the
accuracy of the prediction of metaphorical source
domains.

Wu et al. (2018) propose to use a Convolu-
tional Neural Network - Long-Short Term Memory
(CNN-LSTM) with a Conditional Random Field
(CRF) or Softmax layer for metaphor detection in
texts. They combine CNN and LSTM to capture
both local and long-distance contextual informa-
tion to represent the input sentences. Meanwhile,
Mu et al. (2019) argue that using broader discourse
features can have a substantial positive impact for
the task of metaphorical identification. They ob-
tain significant results using document embeddings
methods to represent an utterance and its surround-
ing discourse. With this material a gradient boost-
ing classifier is trained.

Other works for specific tasks within the scope
of metaphor recognition, such as detecting the
metaphoricity of adjective-noun (AN) pairs in En-
glish as isolated units, include the works by Turney
et al. (2011), Gutierrez et al. (2016), Bizzoni et al.
(2017), and Torres Rivera et al. (2020). The main
goal of this task is to classify AN collocations us-
ing external and internal linguistic features, or tech-
niques such as transfer learning along with word
embeddings.

We propose a model that uses residual bidirec-
tional long short-term memory (biLSTM) with a
CRF, using ELMo embeddings along with addi-
tional linguistic features, such as part of speech
tags (POS) and semantically disambiguated Word-
Net1 synonym sets (synsets) (Fellbaum and Miller,
1998). Our model could be grouped in the same
category as the aforementioned approaches: deep
neural networks models for metaphor detection.

3 Model Description

Most of the approaches mentioned in section 2
used the VUA corpus (Steen et al., 2010) in order
to carry out model training and testing. They di-
vided the training and test sets according to the
VUA Metaphor Detection Shared Task specifica-
tions. To train and test our model we used the VUA
corpus partitions, using ELMo embeddings to rep-
resent words and lemmas, and POS and synsets as

1Freeling implements WordNet version 3.0.
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additional linguistic features. ELMo (Embeddings
from Language Models) embeddings (Peters et al.,
2018) are derived from a bidirectional language
model (biLM) and they are contextualized, deep
and character based. ELMo embeddings have been
successfully used in several NLP tasks.

To process the VUA corpus we used the Natural
Language Toolkit (NLTK) (Loper and Bird, 2002)
for Python, with this tool we performed tokeniza-
tion, lemmatization, and POS tagging. Then we
used Freeling (Padró and Stanilovsky, 2012) to ob-
tain the respective synset of each token. Although
NLTK provides a method for obtaining synsets –
using POS tags or Lesk’s Algorithm–, Freeling
implements UKB (Agirre et al., 2014), a graph-
based word sense disambiguation (WSD) algorithm
that is used to obtain semantically disambiguated
synsets. These features along the ELMo embed-
dings were used –in different configurations– as
input for our model. We set a sequence padding
value equal to 116, which is the maximum sentence
length observed in the corpus. This process nor-
malizes the input in order to train in batches, but
might contribute to sparsity on training data.

We used one-hot encoded representation for
POS, and computed local 100-dimension embed-
dings for synsets. In the case of POS, we have a
small set of tags (43), and therefore resulting in
a low dimensionality of the one-hot embeddings.
For synsets, the computation of local embeddings
provides the semantically disambiguated relations
that exist between the units that compose the train-
ing data. These embeddings, in addition with their
EMLo counterparts, shall provide enough contex-
tual and semantic data to understand metaphorical
instances of words.

The main architecture of our model (shown in
Figure 1) is composed by a residual biLSTM (Kim
et al., 2017; Tran et al., 2017) for sequence labeling.
One of the particularities of this architecture lies
in the implementation of an additive operation that
takes the outputs from each biLSTM layer and
combines them to calculate the residual connection
between them, in order to obtain previously seen
information from both instances.

After computing the residual connection from
both biLSTM layers, our model includes a dropout
layer, followed by a time distributed layer in which
a dense activation with 2 hidden units to each
timestep is applied. We used ReLU (Nair and Hin-
ton, 2010) as activation function in combination

with a He-normal (He et al., 2015) kernel initializa-
tion function for the time distributed layer, which
results in a zero-mean Gaussian distribution with
a standard deviation equal to

√
2
n̂l

. Finally, after
the time distributed layer we used a conditional
random field (CRF) implemented for sequence la-
beling (Lafferty et al., 2001).

Figure 1: Summarized model diagram.

Given that the VUA corpus is composed by
more negative –or literal– labels than positive –or
metaphoric– labels, and that the sequence padding
process added non-informative features to the in-
put array, we opted to treat the training partition
as an imbalanced dataset. We selected the Nadam
optimizer (Dozat, 2016), which is based on Adam
(Kingma and Ba, 2014) and tends to perform better
with sparse data. This last optimization algorithm
has two main components: a momentum and an
adaptive learning rate component. Nadam modifies
the momentum component of Adam using Nes-
terov’s accelerated gradient (NAG). The Nadam
update rule can be written as follows:

wt+1 = wt −
α√
ŵt + ε

(
β1m̂t +

1− β1
1− βt

1

· ∂L
∂wt

)
(1)

4 Experiments

To carry out the evaluation of our model we used
the train and test splits provided in VUA shared task
partitions (Shutova, 2017). In order to obtain a val-
idation split we divided the training partition using
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the following percentages: 80% for training 20%
for validation. With these partitions, we trained
a total of 6 different model configurations: words
and POS (W+POS); lemmas and POS (L+POS);
words, POS and synsets (W+POS+SS); lemmas,
POS and synsets (L+POS+SS); words, lemmas and
POS (WL+POS); and words, lemmas, POS and
synsets (WL+POS+SS).

In all cases we used the same training parameters,
all model configurations were trained in batches
for 5 epochs, using a learning rate = 0.0025. Then,
the resulting models were evaluated –using the pre-
cision, recall and F1 score metrics– on both the all
POS metaphor detection task and the metaphoric
verbs detection task.

5 Results

Regarding the all POS prediction task (Table 1) ,
the L+POS+SS model had the best performance
with a 0.5729 in precision, 0.6027 in recall and
an F1 score equal to 0.5874. Overall, all config-
uration obtained a mean F1 score of 0.58 being
the WL+POS model the one with the lowest score
(0.5615). Regarding the recall score, the highest
observed value was obtained by the W+POS+SS
model, with a recall equal to 0.6438.

Model Precision Recall F1

W+POS 0.5635 0.6098 0.5857
W+POS+SS 0.5313 0.6438 0.5822

L+POS 0.5685 0.5956 0.5817
L+POS+SS 0.5729 0.6027 0.5874

WL+POS 0.5064 0.6302 0.5615
WL+POS+SS 0.5601 0.6174 0.5873

Table 1: All POS task model comparison.

It could be said that a less diverse lexicon ob-
tained by using lemmas instead of words to obtain
embeddings, helped to improve the performance of
the L+POS+SS model. Nevertheless, when com-
paring the W+POS and L+POS configuration, both
obtained similar results, with less than 1% differ-
ence in performance between them. Meanwhile,
when comparing the W+POS+SS and L+POS+SS
models, it can be observed that both models ob-
tained similar F1 scores, but a variation of 4% be-
tween the precision and recall that favours preci-
sion in the L+POS+SS model, and recall in the
W+POS+SS model.

In the case of the metaphoric verb labeling task
(Table 2), the W+POS model obtained the best

scores in precision and F1 score (0.6695 and 0.6543
accordingly), while the W+POS+SS model ob-
tained the highest recall value (0.7032). Overall,
the mean F1 score of all configurations was equal
to 0.6411, being the WL+POS the poorest perform-
ing configuration with a F1 score of 0.6101. In a
similar way to the all POS task, the W+POS+SS
and L+POS+SS configurations obtained precision
and recall scores with a difference of 6% in both
metrics.

Unlike in the all POS task, combining features
did not improve the performance of the models
for verbs labeling. While using synsets to disam-
biguate the meaning of the different words or lem-
mas that were fed to the model, using ELMo em-
beddings and POS tags yielded better results in
this task. One of the possible explanations for this
behavior could be that verbs tend to be more pol-
ysemous than nouns and, therefore, obtain greater
benefit from this feature. According to WordNet
statistics2, verbs have an average polisemy index
of 2.17, while nouns have an average of 1.24.

Model Precision Recall F1

W+POS 0.6695 0.6397 0.6543
W+POS+SS 0.5933 0.7032 0.6436

L+POS 0.6398 0.6413 0.6405
L+POS+SS 0.6544 0.6474 0.6509

WL+POS 0.5576 0.6735 0.6101
WL+POS+SS 0.6201 0.6779 0.6477

Table 2: Verbs task model comparison.

It can be observed the all POS models set the
W+POS architecture has a higher precision in com-
parison to the W+POS+SS configuration. This
behaviour can also be observed in the Verbs task
model set, where both configurations obtained the
higher values for these metrics. On one hand,
the W+POS classifier captures fewer instances of
metaphoric words, but most of the metaphors it
classifies are true positives whereas, on the other
hand, the W+POS+SS is a greedier model that cor-
rectly classifies metaphors but its predictions tend
to include instances of false negatives.

Such variation might be caused by the inclu-
sion of synsets as training feature: when additional
senses are linked to each training word, they pro-
vide a polysemous representation of words and
cause an increase in semantic patterns for both

2https://wordnet.princeton.edu/
documentation/wnstats7wn

https://wordnet.princeton.edu/documentation/wnstats7wn
https://wordnet.princeton.edu/documentation/wnstats7wn
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metaphoric and literal tokens. These semanti-
cally disambiguated patterns broaden the prediction
scope of the model, as words with similar senses
might occur in similar contexts. While the W+POS
architecture correctly predicts metaphors to a cer-
tain degree, its scope is more precise but narrower
than the W+POS+SS architecture in which words
–particularly verbs– have a variety of senses that im-
prove the recall metric at the expense of predicting
literal tokens as metaphoric when compared to the
W+POS model.

6 Discussion

Our proposed architecture has similarities to other
current approaches such as Wu et al. (2018) who
propose a LSTM with Softmax model, and Mu
et al. (2019) who implement an XGBoost classifier
using ELMo embeddings. In comparison to these
approaches, our model shows an improvement in
precision on the verb labeling task with a value
equal to 0.6695, while Mu et al. (2019) reported
a precision score of 0.6003, and Mu et al. (2019)
a precision equal to 0.589. Nevertheless Wu et al.
(2018) reported the highest F1 score (0.671), and
Mu et al. (2019) the highest recall (0.771).

All POS task
Model Precision Recall F1

Wu et al. (2018) 0.608 0.700 0.651
L+POS+SS 0.5729 0.6027 0.5874

Verbs task
Wu et al. (2018) 0.600 0.763 0.671
Mu et al. (2019) 0.589 0.771 0.668

W+POS 0.6695 0.6397 0.6543

Table 3: Comparison with other current approaches.

Regarding the all POS labeling task, the model
presented by Wu et al. (2018) performs better in
all metrics, with a difference of 3% in precision,
10% in recall and 8% in F1 score. It has to be noted
that our model presents a simpler architecture (as
shown in section 3). Wu et al. (2018) trained their
model using 200 biLSTM hidden states and 100
CNN units for 15 epochs, and trained it 20 times
using an ensemble method. On the other hand, the
most simple W+POS architecture that we presented
takes an average time of 5 minutes by epoch4 to

3Both authors reported metric results using three digits.
4The model was trained using a shared NVIDIA Tesla

P100 GPU.

train and validate, thus producing a less complex
model that is faster and less expensive to train.

On both tasks the poorest performing config-
uration was WL+POS, combining these features
improved recall but lowered both precision and
F1. Combining words and lemmas might create
redundancy in certain features that is not possible
to leverage using POS. On the other hand, while
the dimensionality becomes higher than the previ-
ous configuration (1024 + 1024 + 43), once synsets
are added in the WL+POS+SS architecture (and
increasing the feature dimensionality by 100) the
performance of the model improves on both pre-
cision and recall on the all POS task, and in all
metrics on the verbs task.

One of the strategies that we implemented to
leverage the imbalance of the training data was us-
ing a kernel initialization function. The He-normal
function uses the size of the last layer in order to
generate weights that have different ranges. In this
case, the time distributed layer is activated using
RELu, and takes the size of the dropout layer and
then initializes it with a He-normal distribution.

7 Conclusions and further work

In this paper we have described the system we have
presented at the FigLang 2020 metaphor detection
shared task. Our approach is based on neural net-
works using a residual biLSTM with a CRF and
using ELMo embeddings along with the inclusion
of several combinations of words, lemmas and lin-
guistic features as POS and WordNet synsets. The
system achieves competitive results with a simpler
architecture compared to systems found in the lit-
erature. Such systems implement similar elements
such as the use of bidirectional LSTM, CRF and
ELMo embeddings in different configurations, and
with different combination of linguistic features.

As future work, we plan to further analyse which
POS benefits most from the inclusion of synset
information. Other aspect we want to explore
is how to deal with imbalanced data, i.e. how
we can leverage a dataset with only two classes
(metaphoric/literal) where most of the samples are
literal. Other interesting questions that deserve
more research is the effects on optimal dimension-
ality of the addition of linguistic information. Other
features that could be implemented are concrete-
ness value of certain words, or as an strategy to
balance classes according to the influence that this
feature has on literal and metaphoric classes.
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Other future lines of work might include the im-
plementation of this type of model for the detection
of metaphors and source domain identification in
Spanish. Current developments on metaphor detec-
tion are being carried out mainly in English, while
this is a great resource it could be interesting to
create resources in other languages to broaden the
scope of metaphor detection and interpretation. A
possible pipeline could be configured with two sep-
arated model, one that performs the detection of
metaphorical words, followed by another classifier
that predicts the domain of those metaphors.
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