
Proceedings of the Second Workshop on Figurative Language Processing, pages 116–125
July 9, 2020. c©2020 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

116

Character aware models with similarity learning for metaphor detection

Tarun Kumar
Department of CSIS

Birla Institute of Technology
and Science, Pilani, India

f2016005@pilani.bits-pilani.ac.in

Yashvardhan Sharma
Department of CSIS

Birla Institute of Technology
and Science, Pilani, India

yash@pilani.bits-pilani.ac.in

Abstract

Recent work on automatic sequential
metaphor detection has involved recurrent
neural networks initialized with different
pre-trained word embeddings and which are
sometimes combined with hand engineered
features. To capture lexical and orthographic
information automatically, in this paper
we propose to add character based word
representation. Also, to contrast the difference
between literal and contextual meaning, we
utilize a similarity network. We explore these
components via two different architectures - a
BiLSTM model and a Transformer Encoder
model similar to BERT to perform metaphor
identification. We participate in the Second
Shared Task on Metaphor Detection on both
the VUA and TOFEL datasets with the above
models. The experimental results demonstrate
the effectiveness of our method as it outper-
forms all the systems which participated in
the previous shared task.

1 Introduction

Metaphors are an inherent component of natural
language and enrich our day-to-day communication
both in verbal and written forms. A metaphoric ex-
pression involves the use of one domain or concept
to explain or represent another concept (Lakoff and
Johnson, 1980). Detecting metaphors is a crucial
step in interpreting semantic information and thus
building better representations for natural language
understanding (Shutova and Teufel, 2010). This is
beneficial for applications which require to infer
the literal/metaphorical usage of words such as in-
formation extraction, conversational systems and
sentiment analysis (Tsvetkov et al., 2014).

The detection of metaphorical usage is not a triv-
ial task. For example, in phrases such as breaking
the habit and absorption of knowledge, the words
breaking and absorption are used metaphorically
to mean to destroy/end and understand/learn re-
spectively. In the phrase, All the world’s a stage,

the world (abstract) has been portrayed in a more
concrete (stage) sense. Thus, computational ap-
proaches to metaphor identification need to exploit
world knowledge, context and domain understand-
ing (Tsvetkov et al., 2014).

A number of approaches to metaphor detection
have been proposed in the last decade. Many of
them use explicit hand-engineered lexical and syn-
tactic information (Hovy et al., 2013; Klebanov
et al., 2016), higher level features such as con-
creteness scores (Turney et al., 2011; Köper and
Schulte im Walde, 2017) and WordNet supersenses
(Tsvetkov et al., 2014). The more recent methods
have modeled metaphor detection as a sequence la-
beling task, and hence have used BiLSTM (Graves
and Schmidhuber, 2005) in different ways (Wu
et al., 2018; Gao et al., 2018; Mao et al., 2019;
Bizzoni and Ghanimifard, 2018).

In this paper, we use concatenation of GloVe
(Pennington et al., 2014) and ELMo (Peters et al.,
2018) vectors augmented with character level fea-
tures using CNN and highway network (Kim et al.,
2016; Srivastava et al., 2015). Such a method of
combining pre-trained embeddings with charac-
ter level representations has been previously used
in several sequence tagging tasks - part-of-speech
(POS) tagging (Ma and Hovy, 2016) and named
entity recognition (NER) (Chiu and Nichols, 2016),
question answering (Seo et al., 2016) and multi-
task learning (Sanh et al., 2019). This inspires us to
explore similar setting for metaphor identification
as well.

We propose two models for metaphor detection1

with the input prepared as above - a vanilla BiL-
STM model and a vanilla Transformer Encoder
(Vaswani et al., 2017) model similar to BERT (De-
vlin et al., 2019) (but without pre-training). To
contrast the difference between a word’s literal and
contextual representation (Mao et al., 2019) con-

1Our code is available at: https://github.com/
Kumar-Tarun/metaphor-detection

https://github.com/Kumar-Tarun/metaphor-detection
https://github.com/Kumar-Tarun/metaphor-detection

117

catenated the two before feeding into the softmax
classifier. Instead, we extend the idea of cosine
similarity between two words in a phrase of sig-
nifying metaphoricity (Shutova et al., 2016; Rei
et al., 2017) to similarity between the literal and
contextual representations of a word and then feed
this result into the classifier.

Finally, we participate in The Second Shared
Task on Metaphor Detection2 on both the VU Am-
sterdam Metaphor Corpus (VUA) (Steen et al.,
2010) and TOEFL, a subset of ETS Corpus of Non-
Native Written English (Beigman Klebanov et al.,
2018) datasets with the above models and a vanilla
combination of them. The combination of the mod-
els outperforms the winner (Wu et al., 2018) of the
previous shared task (Leong et al., 2018).

2 Related Work

Previous metaphor detection frameworks include
supervised machine learning approaches utiliz-
ing explicit hand-engineered features, approaches
based on unsupervised learning and representa-
tion learning, and deep learning models to detect
metaphors in an end-to-end manner. (Köper and
Schulte im Walde, 2017) determine the difference
of concreteness scores between the target word and
its context and use this to predict the metaphoricity
of verbs in the VUA dataset. (Tsvetkov et al., 2014)
combine vector space representations with features
such as abstractness and imageability and Word-
Net Supersenses to model the metaphor detection
problem in two syntactic constructions - subject-
verb-object (SVO) and adjective-noun (AN). Eval-
uating their approach on the TroFi dataset (Birke
and Sarkar, 2006), they achieve competitive accu-
racy. (Hovy et al., 2013) explore differences in
compositional behaviour of a word’s literal and
metaphorical use in certain syntactic settings. Us-
ing lexical, WordNet supersense features and PoS
tags of sentence tree, they train an SVM using
tree-kernel. (Klebanov et al., 2016) use seman-
tic classes of verbs such as orthographic unigram,
lemma unigram, distributional clusters etc. to iden-
tify metaphors in the VUA dataset.

Some of the methods for metaphor detection
utilize unsupervised learning. (Mao et al., 2018)
train word embeddings on wikipedia dump and use
WordNet compute a best-fit word corresponding to
a target word in a sentence. The cosine similarity

2https://competitions.codalab.org/
competitions/22188

between these two words indicates the metaphoric-
ity of the target word. (Shutova et al., 2016) com-
pute word embeddings and phrase embeddings on
wikipedia dump. They extract visual features from
CNNs using images from Google Images. Next,
multimodal fusion strategies are explored to deter-
mine metaphoricity.

Recently, approaches based on deep learning
have been proposed. The first in this line is Super-
vised Similarity network by (Rei et al., 2017). They
capture metaphoric composition by modeling the
interaction between source and target domain by a
gating function and then using a cosine similarity
network to compute metaphoricity. They evaluate
their method on adjective-noun, verb-subject and
verb-direct object constructions on the MOH (Mo-
hammad et al., 2016) and TSV (Tsvetkov et al.,
2014) datasets.

More recently, the problem has been modeled as
a sequence labeling task, in which at each timestep
the word is predicted as literal or metaphoric. (Wu
et al., 2018) used word2vec (Mikolov et al., 2013),
PoS tags and word clusters as input features to a
CNN and BiLSTM network. They compared in-
ference using softmax and CRF layers, and found
softmax to work better. (Bizzoni and Ghanimifard,
2018) propose two models - a BiLSTM with dense
layers before and after it and a recursive model for
bigram phrase composition using fully-connected
neural network. They also added concreteness
scores to boost performance. (Gao et al., 2018)
fed GloVe and ELMo embeddings into a vanilla
BiLSTM followed by softmax. (Mao et al., 2019)
proposed models based on MIP (Group, 2007) and
SVP (Wilks, 1975, 1978) linguistic theories and
achieved competitive performance on VUA, MOH
and TroFi datasets.

3 Methodology

In this paper we propose two architectures for
metaphor detection based on sequence labeling
paradigm - a BiLSTM model and a Transformer En-
coder model. Both the models are initialized with
rich word representations. First, we describe the
word representations, then, the similarity network,
and subsequently the models (Figure 1).

3.1 Word Representations

The first step in building word representations is the
concatenation of GloVe (Pennington et al., 2014)
and ELMo (Peters et al., 2018) embeddings. The

https://competitions.codalab.org/competitions/22188
https://competitions.codalab.org/competitions/22188

118

ELMo GloVe Char

Concat

+

Highway network

Concat

BiLSTM/
Transformer

Dense +
TanhX

Dense +
Tanh

Dense +
Softmax

car drinks gasoline
0 1 0

Similarity network

Character based
word representation

car drinks gasoline

Dense +
ReLU

Figure 1: Proposed model which includes character em-
beddings and similarity network

combination of these two have shown good perfor-
mance across an array of NLP tasks (Peters et al.,
2018). While these two representations are based
on corpus statistics and bidirectional language mod-
els respectively and serve as a good starting point
as shown by (Gao et al., 2018) and (Mao et al.,
2019), however to learn explicit lexical, syntactic
and orthographic information (so as to be more
suited for metaphor tasks) we augment these word
representations with character level embeddings.
We follow (Kim et al., 2016) to compute character-
level representations by a 1D CNN (see Figure 2)
followed by a highway network (Srivastava et al.,
2015).

Let word at position t be made up of characters
[c1, . . . , cl], where each ci ∈ Rd, l is the length of
word and d is dimensionality3 of character embed-
dings. Let Ct ∈ Rd×l denote the character-level
embedding matrix of word t. This matrix is con-
volved with filter H ∈ Rd×w of width w, followed
by a non-linearity.

f t = tanh(Ct ∗H + b), f t ∈ Rl−w+1 (1)

Next, we apply max-pooling over the length of f
3d is chosen less than the |C|, the size of vocabulary of

characters

to get a output for one filter.

yt = max
1≤j≤l−w+1

{f tj} (2)

Now, we take multiple filters of different widths
and concatenate the output of each to get a vec-
tor representation of word t. Let h be the num-
ber of filters and y1, . . . , yh be the outputs, then
ct = [yt1, . . . , y

t
h]. We concatenate GloVe embed-

ding (gt) with ct and run it through a single layer
highway network (Srivastava et al., 2015).

at = [gt; ct] (3)

t = σ(WTat + bT) (4)

zt = t� g(WHat + bH) + (1− t)� at (5)

zt and at have same dimensionality by con-
struction, WH and WT are square matrices, g is
ReLU activation. t is called as transform gate and
(1 − t) as the carry gate. The role of highway
network is to select the dimensions which are to
be modified and which are to be passed directly
to output. Thus, we allow the network to adjust
the contribution of GloVe and character-based em-
beddings for better learning (thus an adjustment
between semantic and lexical information). We
also concatenated GloVe, ELMo and character em-
beddings and passed through highway layer, but
the former approach performed better with lesser
parameters. Our input representation is [zt; et]
(where et is ELMo vector) which is fed to BiL-
STM/Transformer.

d r o w n

Convolution filters

Character Embeddings

Word Representation

Figure 2: CNN for extracting character-level represen-
tations

3.2 BiLSTM model
We use a single-layer BiLSTM model (Graves and
Schmidhuber, 2005) to produce hidden states ht
for each position t. These hidden states represent
our contextual meaning, the meaning which we
will contrast with the input literal meaning. Using

119

hidden states as a candidate for contextual meaning
has been done previously (Gao et al., 2018; Mao
et al., 2019; Wu et al., 2018). A simple approach
would be to pass ht directly to softmax layer for
predictions. But we condition our predictions both
on ht and input representation as shown in next
sub-section.

3.3 Similarity Network
(Rei et al., 2017) use a weighted cosine similarity
network to determine similarity between two word
vectors in a phrase (Shutova et al., 2016). We ex-
tend this idea further to calculation of similarity
between literal and contextual representations. To
perform this computation, we first project the in-
put embeddings to the size of hidden dimension of
BiLSTM.

xt = [zt; et] (6)

x̃t = tanh(Wzxt) (7)

This step serves two purposes - first reduces the
size to enable calculation, second performs vector
space mapping. Since input embeddings are in
a different semantic vector space (due to the pre-
trained vectors), we allow the network to learn
a mapping to the more metaphor specific vector
space. Next, we element-wise multiply x̃t with ht.

mt = x̃t � ht (8)

mt is input to a dense layer as follows,

ut = tanh(Wumt) (9)

If ut has length 1,Wu has all weights equal to 1 and
linear activation is used instead of tanh, then the
above two steps mimic the cosine similarity func-
tion. But, to provide better generalization, |ut| > 1
and tanh is used to allow the model to learn custom
features for metaphor detection (Rei et al., 2017).
ut is fed to softmax classifier to make predictions.

p(ŷt|ut) = σ(Wyut + b) (10)

σ is the softmax function, Wy and b are trainable
weights and bias respectively.

3.4 Transformer model
The advent of Transformer (Vaswani et al., 2017)
and further general language models such as BERT
(Devlin et al., 2019), GPT-2 (Radford et al., 2019)
have shown excellent performance across multiple

Dataset Train Test
#T #S %M #T #S

VUA All-
POS 72,611 12,122 15% 22,196 4,080

VUA Verb 17,240 12,122 28% 5,873 4,080
TOEFL All-
POS 26,737 2741 7% 9,017 968

TOEFL
Verb 7,016 2741 14% 2,301 968

Table 1: Dataset Statistics. #T denotes the number of
tokens which are annotated. #S denotes the number of
sentences. %M denotes the token-level metaphoricity
percentage.

NLP, NLU and NLG tasks. Inspired by this, we
explore a vanilla transformer model in this paper
which consists of only the encoder stack and is not
pre-trained on any corpus.

The input to the transformer model is the same as
the BiLSTM model. To contrast the literal meaning
with the contextual meaning, we employ equations
6,7,8,9,10 except that ht would denote the output
of the transformer at position t. (Mao et al., 2019)
also explored transformers in their experiments, but
they only computed word representations from a
pre-trained BERT large model and fed it to BiL-
STM, they did not train a transformer model from
scratch. Since transformers do not track positional
information, positional encodings are added for
this purpose, but in our case adding such encoding
did not improve performance. Furthermore, our
transformer model is composed of only a single
transformer block (that is depth=1) with a single
head. Such a simple model is able to reach good
score on the metaphor detection task.

4 Experiment

4.1 Dataset

We evaluate our models on two metaphor datasets
on both ALL-POS and VERB track in the Second
Shared Task on Metaphor Detection. Table 1 shows
the dataset statistics.

First is the VU Amsterdam Metaphor Corpus
(VUA) (Steen et al., 2010) widely studied dataset
for metaphor detection. All the words in this
dataset are labeled as either metaphoric or literal
according to MIPVU (Steen et al., 2010; Group,
2007) protocol. This dataset was also used in the
2018 Shared Task on Metaphor Detection (Leong
et al., 2018).

Second is the TOEFL corpus, a subset of
ETS Corpus of Non-Native Written English

120

(Beigman Klebanov et al., 2018). This dataset con-
tains the essays written by takers of the TOEFL
test having either medium or high English profi-
ciency. The words in this dataset are annotated for
argumentation-relevant metaphors. The essays are
in response to prompts, for which test-takers were
required to argue for or against and in such process
the metaphors used to support one’s argument were
annotated. So, the protocol used (Beigman Kle-
banov and Flor, 2013) is different from MIPVU.

4.2 Baselines

The first four baselines are evaluated on the VUA
test set and the last two on the TOEFL test set.
CNN-BiLSTM (Wu et al., 2018): This model is
the winner of the previous shared task (Leong
et al., 2018). They proposed an ensemble of CNN-
BiLSTM network with input features as word2vec,
PoS tags and word2vec clusters.
BiLSTM (Gao et al., 2018) : This model is a sim-
ple BiLSTM with inputs as concatenation of GloVe
and ELMo embeddings.
BiLSTM-MCHA (Mao et al., 2019) : This model
employs BiLSTM followed by a multi-head con-
textual attention which is inspired by SPV protocol
of metaphor identification. They also use GloVe
and ELMo as input features.
BiLSTM-Concat (Bizzoni and Ghanimifard,
2018) : This model achieved the second position
in the previous shared task. They combined a BiL-
STM (preceded and followed by dense layers) and
a model based on recursive composition of word
embedding. Concreteness scores were added to
boost performance.
CE-BiLSTM : We add a variant of our proposed
model without the Transformer model and the simi-
larity network. All other components are kept same.
CE denotes character embeddings.
Feature-based (Beigman Klebanov et al., 2018) :
They use several hand-crafted features and train a
logistic regression classifier to predict metaphoric-
ity. This is the only known work on TOEFL dataset
to the best of our knowledge.

We note that BiLSTM and BiLSTM-MHCA
models above have different experimental settings
than ours. They trained and tested their models
on different amount of data when compared to the
shared task. For a fair comparison, we evaluate
(train and test) our method in the same data setting
(Table 3).

4.3 Setup
The 300d pre-trained GloVe embeddings are used
along with 1024d pre-trained ELMo embeddings.
The dimension of character-level embeddings is
set to 50. The filters used in CharCNN are
[(1, 25), (2, 50), (3, 75), (4, 100)], where first ele-
ment of each tuple denotes the width of filter and
second element denotes the number of filters used.
Inspired by the effectiveness of PoS tags (Wu et al.,
2018; Beigman Klebanov et al., 2014) in metaphor
detection, we concatenate 30 dimensional PoS em-
beddings. We found 30d embeddings to work bet-
ter than one-hot encodings. These embeddings are
learned during model training. The uni-directional
hidden state size of BiLSTM is set to 300. We
apply Dropout (Srivastava et al., 2014) on input to
BiLSTM and to the output of BiLSTM. The dimen-
sion of ut, the output size of similarity network is
set to 50.

The hidden state size of Transformer is set to
300 as well. We use a single head and single layer
architecture. We also tried multiple heads (8, 16),
but the performance dropped a little. The atten-
tion due to padded tokens is masked out in the
attention matrix during forward pass. The feed-
forward network which is applied after the self-
attention layer consists of two linear transforma-
tions with ReLU activation in between (Vaswani
et al., 2017). First transformation projects 300d to
1200d and second transformation projects 1200d
back to 300d. Dropout is applied both before and
after the feed-forward network. It can be seen that
this transformer model is simplified in terms of
number of parameters when compared to BERT
(Devlin et al., 2019). Our focus here is on the
power of transformer architecture rather than on
transformer based huge language models.

We also explore the combination of both the
models. Specifically, BiLSTM and Transformer
model are combined at the pre-activation stage,
that is, the logits of both networks are averaged
and then input to the softmax layer for predictions.
Both the models are trained in parallel, with their
own losses, whereas the F1-score is calculated from
the combined prediction.

The objective function used is weighted cross-
entropy loss as used in (Mao et al., 2019; Wu et al.,
2018).

L = −
M∑
n=1

wynyn log(ŷn) (11)

121

Model VUA ALL POS VUA VERB
P R F1 P R F1

CNN-BiLSTM 60.8 70.0 65.1 60.0 76.3 67.1
BiLSTM-Concat 59.5 68.0 63.5 - - -

CE-BiLSTM-Transformer 60.6 73.9 66.6 62.7 82.2 71.2
CE-BiLSTM-Transformer (Ensemble) 63.0 71.6 67.0 66.7 77.5 71.7

Table 2: Comparison of our method against the baseline systems on the VUA test set.

Model VUA ALL POS VUA VERB
P R F1 P R F1

BiLSTM 71.6 73.6 72.6 68.2 71.3 69.7
BiLSTM-MHCA 73.0 75.7 74.3 66.3 75.2 70.5

CE-BiLSTM-Transformer 71.3 78.5 74.7 66.1 76.2 70.8
CE-BiLSTM-Transformer (Ensemble) 75.9 74.1 75.0 68.0 75.1 71.4

Table 3: Comparison of our method against the baseline systems on the VUA test set with different experimental
setting.

Model TOEFL ALL POS TOEFL VERB
P R F1 P R F1

Feature-based 49.0 58.0 53.0 50.0 64.0 56.0
CE-BiLSTM 62.7 60.8 61.8 70.0 60.5 64.9

CE-BiLSTM-Transformer 62.3 61.7 62.0 66.9 63.8 65.3

Table 4: Comparison of our method against the baseline systems on the TOEFL test set.

where yn is the gold label, ŷn is the predicted score
and wyn is set to 1 if yn is literal and 2 otherwise.
We use Adam optimizer (Kingma and Ba, 2014)
and early stopping on the basis of validation F-
score. Batch-size is set to 4.

TOEFL dataset contains essays annotated for
metaphor and metadata mapping essays to the re-
spective prompts and English proficiency of test-
takers. We extract all sentences from all the essays
and prepare our dataset considering one sentence
as one example (batch-size x means x such exam-
ples). In this paper, we do not exploit the metadata
of TOEFL corpus.

For both VUA and TOEFL datasets, we have a
pre-specified train and test partition, so for hyper-
parameter tuning we split the train set into train
and validation in the ratio of 10:1 randomly. Since
the models predict labels for all the words in a
sequence, we train a single model and use it for
evaluating both ALL-POS and Verb tracks. We re-
port F-score on test set for metaphor class on both
datasets and tasks. Section 6 presents an ablation
study and explores the performance of different
components.

5 Results

We first compare our method against the baseline
systems which have the same experimental set-
ting as ours on the VUA test set - CNN-BiLSTM

and BiLSTM-Concat. Table 2 reports the results.
As shown, our proposed model (comprising of
both BiLSTM and Transformer) outperforms the
other methods on both the tracks. Specifically, we
achieve F-score of 66.6 on VUA All POS and 71.2
for VUA Verb set. Furthermore, we employ en-
sembling to boost our performance. This strategy
mainly improves precision (60.6 to 63.0 for All
POS, 62.7 to 66.7 for Verb). For ensembling we run
the model 7 times which involves different dropout
probabilities, changing the ratio of metaphoric to
literal loss weights, increasing/decreasing number
of epochs. Thus, we do not modify the number
of parameters in any run. At the end, we take a
majority vote to produce final predictions. Our best
F-score on All POS track is 67.0 and Verb track
is 71.7. We observe higher F-scores on Verb track
than on All POS track, this might be due to fact
that a higher percentage of verbs are annotated as
being metaphoric, hence more training data.

We now compare our method with the other two
baselines on a common experimental setting. We
tune our hyperparameters in this setting due to dif-
ference in training and validation data. Specifically,
since training set is of smaller size, we increase
Dropout probabilities, and the dimension of PoS
embedding is reduced from 30 to 10. As shown
in Table 3, the single best model achieves a higher
F-score than the baselines and the ensemble (with
similar setting as above) improves the performance

122

Model VUA Validation
P R F1

Vanilla BiLSTM 61.7 82.6 70.6
Vanilla Transformer 63.6 75.6 69.1

Vanilla BiLSTM + Transformer 67.1 77.7 72.0

Table 5: Performance of vanilla models on VUA vali-
dation set.

Model VUA Validation
P R F1

CE + BiLSTM 65.7 78.8 71.6
CE + Transformer 67.3 74.7 70.8

CE + BiLSTM + Transformer 71.3 74.2 72.7

Table 6: Addition of Character embeddings to models.

a little more scoring 75.0 on All POS and 71.4 on
Verb tracks.

Lastly, we explore the performance of our
method on the TOEFL test set (Table 4). We added
an extra baseline which does not include the Trans-
former model and the similarity network. Also,
the CE-BiLSTM-Transformer model here does not
include the similarity network. The reason for this
is because it degraded performance. The similar-
ity network contrasts the literal meaning with the
contextual meaning of the target word which is in
line with MIP (Steen et al., 2010) protocol. Since,
TOEFL corpus is annotated for argument-specific
metaphors and not MIP, we hypothesize that this
might be the reason for lower performance. How-
ever, VUA is annotated according to MIP, thus
similarity component improves performance here,
as we show in the ablation section.

Table 4 shows that both our baseline (CE-
BiLSTM) and baseline + Transformer improve
upon the Feature-based model by 8.8 and 9.0 points
respectively on All POS track and 8.9 and 9.3
points respectively on Verb track. Similar to VUA,
here also Verbs score higher than All POS because
of more training instances for verbs.

The scores on TOEFL dataset are lower than the
VUA dataset. This is due to the lesser number of
training instances in TOEFL dataset. Also, while
we have higher recall on VUA, on TOEFL we have
higher precision.

6 Ablation Study

This section considers the performance of different
components of our method in isolation and combi-
nation on the VUA validation set unless otherwise
specified. The reason for choosing validation set is
because we were not able to evaluate some settings

on the test set due to limited time and number of
submissions. Wherever we have test set results we
report those as well.
Impact of Character Embeddings We first note
the performances of vanilla BiLSTM and vanilla
Transformer models and a simple combination of
them in Table 5. Note that vanilla implementa-
tion still includes GloVe and ELMo vectors. We
see that BiLSTM performs better than Transformer
model and that a combination of them seems to
complement each other.

Now, we see the impact of adding character-
level embeddings on both the models. As Table 6
shows, addition of character embeddings improves
both the networks. Particularly, Transformer bene-
fits more from this addition as F1-score increases
from 69.1 to 70.8. On the test set, our vanilla
combination scores 65.2 whereas the combination
of models with character embeddings scores 66.1.
This helps in asserting the usefulness of character-
based features in learning pro-metaphor features.
(Beigman Klebanov et al., 2016) demonstrate the
utility of unigram lemmas and orthographic fea-
tures in metaphor detection. Our character embed-
dings computed from CNN combines features at
different n-grams of a word and thus helps to learn
lexical and orthographic information automatically
which aids in improving performance.

We suspect that employing the baseline uni-
gram features (Beigman Klebanov et al., 2014) pro-
vided by the organizers instead of learned character-
embeddings may be seen as a way to achieve the
same goal. But our method is more robust in the
sense that, we allow for learning of different n-
gram features of a word (including unigram itself).
Particularly, our method is helpful in cases where
the target word has incorrect spelling, because we
learn representations instead of using fixed pre-
computed features.

Impact of Similarity Network Table 7 depicts
the performance after the addition of similarity
network. As the similarity network is guided by
the MIP protocol, it indeed boosts results for the
VUA dataset. We observe that in this case too
Transformer benefits more by the inclusion and the
benefit (1.9 points) is even more than by adding
character embeddings (1.7 points). However, for
both the components increments in BiLSTM per-
formance are equal. Also, the combination of both
models with similarity network outperforms the
combination with character embeddings although

123

Model VUA Validation
P R F1

SN + BiLSTM 66.1 78.1 71.6
SN + Transformer 70.2 74.0 72.0

SN + BiLSTM + Transformer 68.7 77.8 73.0

Table 7: Addition of Similarity network to models. (SN
is the Similarity network)

Model VUA Validation
P R F1

CE + SN + BiLSTM 66.7 79.3 72.4
CE + SN + Transformer 67.7 77.8 72.4
CE + SN + BiLSTM +
Transformer 68.5 79.1 73.4

Table 8: Addition of both SN and CE to the models.

by a small margin. The above reasoning indicates
towards similarity network as being an important
component for detection of MIP guided labeling of
metaphors.

Table 8 reports the numbers when both character
embeddings and similarity network are added to
the base models. The results improve from either of
the additions which indicate that they complement
each other. Our best model so far contains both the
base models and the components. This model on
the VUA test set, scores 66.5 and the model in the
last row of Table 6 scores 66.1.

In all the cases examined till now, Transformer
based models have higher precision than the BiL-
STM based models, and in 3 out of 4 cases of
(Vanilla, CE, SN, CE + SN), the combination has
as even better precision than either of the individ-
ual models. In terms of F-score, BiLSTM based
models score higher than Transformer based ones
in 2 cases (Vanilla and CE), equal in CE + SN and
lower in SN.
Impact of PoS tags Incorporation of PoS tags
proves to be beneficial. It improves the F-score
of the last model in Table 8 from 73.4 to 73.5. On
the test set, it improves the F-score from 66.5 to
66.6 which is in line with (Hovy et al., 2013; Wu
et al., 2018).

7 Conclusion

We proposed two metaphor detection models, a
BiLSTM model based on prior work and a Trans-
former model based on their success in NLP tasks.
We augment these models with two components -
Character Embeddings and Similarity network to
learn lexical features and contrast literal and con-
textual meanings respectively. Our experimental

results demonstrate the effectiveness of our method
as we achieve superior performance than all the
previous methods on VUA corpus and TOEFL cor-
pus. Through an ablation study we examine the
contribution of different parts of our framework in
the task of metaphor detection.

In our future work we would explore metaphor
detection in a multi-task setting with semantically
similar tasks such as Word Sense Disambiguation
and Co-reference Resolution. These auxiliary tasks
may help to better understand the contextual mean-
ing and reach of a word. For TOEFL dataset, fu-
ture avenues would include strategies to exploit the
metadata, and similarity measures more suitable
for argumentation-relevant metaphors.

References
Beata Beigman Klebanov and Michael Flor. 2013.

Argumentation-relevant metaphors in test-taker es-
says. In Proceedings of the First Workshop on
Metaphor in NLP, pages 11–20, Atlanta, Georgia.
Association for Computational Linguistics.

Beata Beigman Klebanov, Ben Leong, Michael Heil-
man, and Michael Flor. 2014. Different texts, same
metaphors: Unigrams and beyond. In Proceedings
of the Second Workshop on Metaphor in NLP, pages
11–17, Baltimore, MD. Association for Computa-
tional Linguistics.

Beata Beigman Klebanov, Chee Wee Leong, E. Dario
Gutierrez, Ekaterina Shutova, and Michael Flor.
2016. Semantic classifications for detection of verb
metaphors. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 101–106, Berlin,
Germany. Association for Computational Linguis-
tics.

Beata Beigman Klebanov, Chee Wee (Ben) Leong, and
Michael Flor. 2018. A corpus of non-native written
English annotated for metaphor. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Pa-
pers), pages 86–91, New Orleans, Louisiana. Asso-
ciation for Computational Linguistics.

Julia Birke and Anoop Sarkar. 2006. A clustering ap-
proach for nearly unsupervised recognition of non-
literal language. In 11th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, Trento, Italy. Association for Computa-
tional Linguistics.

Yuri Bizzoni and Mehdi Ghanimifard. 2018. Bigrams
and BiLSTMs two neural networks for sequential
metaphor detection. In Proceedings of the Workshop
on Figurative Language Processing, pages 91–101,

https://www.aclweb.org/anthology/W13-0902
https://www.aclweb.org/anthology/W13-0902
https://doi.org/10.3115/v1/W14-2302
https://doi.org/10.3115/v1/W14-2302
https://doi.org/10.18653/v1/P16-2017
https://doi.org/10.18653/v1/P16-2017
https://doi.org/10.18653/v1/N18-2014
https://doi.org/10.18653/v1/N18-2014
https://www.aclweb.org/anthology/E06-1042
https://www.aclweb.org/anthology/E06-1042
https://www.aclweb.org/anthology/E06-1042
https://doi.org/10.18653/v1/W18-0911
https://doi.org/10.18653/v1/W18-0911
https://doi.org/10.18653/v1/W18-0911

124

New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Jason P.C. Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional LSTM-CNNs. Trans-
actions of the Association for Computational Lin-
guistics, 4:357–370.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Ge Gao, Eunsol Choi, Yejin Choi, and Luke Zettle-
moyer. 2018. Neural metaphor detection in context.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
607–613, Brussels, Belgium. Association for Com-
putational Linguistics.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural net-
works, 18(5-6):602–610.

Pragglejaz Group. 2007. Mip: A method for iden-
tifying metaphorically used words in discourse.
Metaphor and Symbol, 22(1):1–39.

Dirk Hovy, Shashank Srivastava, Sujay Kumar Jauhar,
Mrinmaya Sachan, Kartik Goyal, Huying Li, Whit-
ney Sanders, and Eduard Hovy. 2013. Identifying
metaphorical word use with tree kernels. In Pro-
ceedings of the First Workshop on Metaphor in NLP,
pages 52–57.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Thirtieth AAAI Conference on Artificial
Intelligence.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Beata Beigman Klebanov, Chee Wee Leong, E Dario
Gutierrez, Ekaterina Shutova, and Michael Flor.
2016. Semantic classifications for detection of verb
metaphors. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 101–106.

Maximilian Köper and Sabine Schulte im Walde. 2017.
Improving verb metaphor detection by propagating
abstractness to words, phrases and individual senses.
In Proceedings of the 1st Workshop on Sense, Con-
cept and Entity Representations and their Applica-
tions, pages 24–30, Valencia, Spain. Association for
Computational Linguistics.

George Lakoff and Mark Johnson. 1980. Metaphors
we live by. Chicago, IL: University of Chicago.

Chee Wee (Ben) Leong, Beata Beigman Klebanov, and
Ekaterina Shutova. 2018. A report on the 2018 VUA
metaphor detection shared task. In Proceedings of
the Workshop on Figurative Language Processing,
pages 56–66, New Orleans, Louisiana. Association
for Computational Linguistics.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1064–1074, Berlin, Ger-
many. Association for Computational Linguistics.

Rui Mao, Chenghua Lin, and Frank Guerin. 2018.
Word embedding and WordNet based metaphor iden-
tification and interpretation. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1222–1231, Melbourne, Australia. Association for
Computational Linguistics.

Rui Mao, Chenghua Lin, and Frank Guerin. 2019. End-
to-end sequential metaphor identification inspired by
linguistic theories. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3888–3898, Florence, Italy. Asso-
ciation for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Saif Mohammad, Ekaterina Shutova, and Peter Turney.
2016. Metaphor as a medium for emotion: An em-
pirical study. In Proceedings of the Fifth Joint Con-
ference on Lexical and Computational Semantics,
pages 23–33.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

https://doi.org/10.1162/tacl_a_00104
https://doi.org/10.1162/tacl_a_00104
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D18-1060
https://doi.org/10.18653/v1/W17-1903
https://doi.org/10.18653/v1/W17-1903
https://doi.org/10.18653/v1/W18-0907
https://doi.org/10.18653/v1/W18-0907
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P18-1113
https://doi.org/10.18653/v1/P18-1113
https://doi.org/10.18653/v1/P19-1378
https://doi.org/10.18653/v1/P19-1378
https://doi.org/10.18653/v1/P19-1378
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202

125

Marek Rei, Luana Bulat, Douwe Kiela, and Ekaterina
Shutova. 2017. Grasping the finer point: A su-
pervised similarity network for metaphor detection.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1537–1546, Copenhagen, Denmark. Association for
Computational Linguistics.

Victor Sanh, Thomas Wolf, and Sebastian Ruder. 2019.
A hierarchical multi-task approach for learning em-
beddings from semantic tasks. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 6949–6956.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603.

Ekaterina Shutova, Douwe Kiela, and Jean Maillard.
2016. Black holes and white rabbits: Metaphor iden-
tification with visual features. In Proceedings of the
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 160–170, San
Diego, California. Association for Computational
Linguistics.

Ekaterina Shutova and Simone Teufel. 2010. Metaphor
corpus annotated for source-target domain map-
pings. In LREC, volume 2. Citeseer.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929–1958.

Rupesh K Srivastava, Klaus Greff, and Jürgen Schmid-
huber. 2015. Training very deep networks. In
Advances in neural information processing systems,
pages 2377–2385.

Gerard Steen, Aletta Dorst, J Berenike Herrmann,
Anna Kaal, Tina Krennmayr, and Trijntje Pasma.
2010. A method for linguistic metaphor identifica-
tion: From MIP to MIPVU, volume 14. John Ben-
jamins Publishing.

Yulia Tsvetkov, Leonid Boytsov, Anatole Gershman,
Eric Nyberg, and Chris Dyer. 2014. Metaphor detec-
tion with cross-lingual model transfer. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 248–258, Baltimore, Maryland. Associ-
ation for Computational Linguistics.

Peter Turney, Yair Neuman, Dan Assaf, and Yohai Co-
hen. 2011. Literal and metaphorical sense identifica-
tion through concrete and abstract context. In Pro-
ceedings of the 2011 Conference on Empirical Meth-
ods in Natural Language Processing, pages 680–
690, Edinburgh, Scotland, UK. Association for Com-
putational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Yorick Wilks. 1975. A preferential, pattern-seeking, se-
mantics for natural language inference. Artificial in-
telligence, 6(1):53–74.

Yorick Wilks. 1978. Making preferences more active.
Artificial intelligence, 11(3):197–223.

Chuhan Wu, Fangzhao Wu, Yubo Chen, Sixing Wu,
Zhigang Yuan, and Yongfeng Huang. 2018. Neu-
ral metaphor detecting with CNN-LSTM model. In
Proceedings of the Workshop on Figurative Lan-
guage Processing, pages 110–114, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

https://doi.org/10.18653/v1/D17-1162
https://doi.org/10.18653/v1/D17-1162
https://doi.org/10.18653/v1/N16-1020
https://doi.org/10.18653/v1/N16-1020
https://doi.org/10.3115/v1/P14-1024
https://doi.org/10.3115/v1/P14-1024
https://www.aclweb.org/anthology/D11-1063
https://www.aclweb.org/anthology/D11-1063
https://doi.org/10.18653/v1/W18-0913
https://doi.org/10.18653/v1/W18-0913

