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Abstract
The alarming spread of fake news in social me-
dia, together with the impossibility of scaling
manual fact verification, motivated the devel-
opment of natural language processing tech-
niques to automatically verify the veracity of
claims. Most approaches perform a claim-
evidence classification without providing any
insights about why the claim is trustworthy or
not. We propose, instead, a model-agnostic
framework that consists of two modules: (1)
a span extractor, which identifies the crucial
information connecting claim and evidence;
and (2) a classifier that combines claim, evi-
dence, and the extracted spans to predict the
veracity of the claim. We show that the spans
are informative for the classifier, improving
performance and robustness. Tested on sev-
eral state-of-the-art models over the FEVER
dataset, the enhanced classifiers consistently
achieve higher accuracy while also showing re-
duced sensitivity to artifacts in the claims.

1 Introduction

The increased quantity of information that circu-
lates in social media and on the Web every day,
together with the high cost of assessing its veracity,
has demanded the application of natural language
processing (NLP) techniques to the task of fact
verification. In the last years, the NLP commu-
nity has proposed a large number of datasets and
approaches for addressing this task, facing compli-
cated challenges that are still far from being solved.

The task of fact verification can be split into
(i) retrieving one or more candidate pieces of ev-
idence; (ii) assessing whether they are either sup-
porting or refuting a claim, or whether they con-
tains insufficient information to state either of the
above. In this paper, we mostly focus on the rea-
soning between the claim and the evidence.

To generate models that work on real world data,
fact verification solutions are expected to: (i) per-

Claim Susan Sarandon was nominated for five Emmy Awards.
Evidence [wiki/Susan Sarandon] On television, she is a five-time

Emmy Award nominee, including for her guest roles on the
sitcoms Friends 2001 and Malcolm in the Middle (2002),
and the TV films Bernard and Doris (2007) and You Don’t
Know Jack (2010).

Label SUPPORT

Claim Fantastic Beasts and Where to Find Them was released
only in North America on November 18, 2016.

Evidence [wiki/Fantastic Beasts and Where to Find
Them (film)] Fantastic Beasts and Where to Find

Them premiered in New York City on 10 November 2016
and was released worldwide on 18 November 2016 in 3D,
IMAX 4K Laser and other large format cinemas.

Label REFUTE

Claim Ian Brennan is a film screenwriter.
Evidence [wiki/Ian Brennan (writer)] Ian Brennan (born April 23,

1978) is a television writer, actor, producer and director.
Label NOT ENOUGH INFORMATION

Figure 1: Examples of claim-evidence pairs from the
FEVER dataset. The evidence spans extracted by our
system are underlined and presented in color.

form well not only on synthetic datasets but also in
realistic scenarios, where both text form and text
content are highly unpredictable; (ii) produce trans-
parent decisions, providing an explanation for their
verdict, so that the readers may consider whether
trusting them or not.

To address these two requirements, we propose a
model-agnostic framework that includes two mod-
ules: (i) a span extractor that aims to identify in the
evidence the pieces of relevant information that are
informative with respect to the claim; (ii) a clas-
sifier that uses the claim, evidence and extracted
spans to predict whether the evidence is support-
ing, refuting or containing insufficient information.
The spans extracted by the first module are useful
to enhance the classifier and inform the user. Hu-
mans can in fact exploit the spans to effectively
understand why a claim is true or false.

We evaluate our pipeline with three highly per-
forming neural models on the FEVER dataset
(Thorne et al., 2018), comparing the uninformed to
the informed setting. While this dataset includes
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ground truth for both evidence retrieval and evi-
dence classification, in this paper we only exploit
the latter annotations. Our experiments show that
the models informed with the extracted spans con-
sistently achieve higher performance than their un-
informed counterparts, demonstrating the useful-
ness of spans. We also evaluate our models on the
challenging SYMMETRIC FEVER dataset (Schuster
et al., 2019), which tests system’s robustness in
absence of FEVER’s artifacts. We find the models
trained with our pipeline to achieve higher accu-
racy.

Finally, we assess the quality of the extracted
spans as decision rationales to be shown to end-user.
Manually examining a subset of outputs shows that
67% of the support and 88% of the refute spans
are well explanatory with respect to the decision,
leading to an aggregated score of 75%.

2 Related Work

Fake news detection has recently gained interest in
the NLP community. Most of the initial works have
focused on style (Feng et al., 2012) and linguistic
approaches (Pérez-Rosas and Mihalcea, 2015). De-
spite the good performance in synthetic datasets,
these methods failed when applied to real-world
data. New approaches based on fact verification
over retrieved evidence have therefore taken the
stage in the literature.

Datasets. Several fact verification datasets were
developed over the last decade. Vlachos and Riedel
(2014) created a dataset which consisted of 221
statements and hyperlinks to pieces of evidence
of various formats. Many datasets were created
in the following years, with collections of claims
of increasing size and various kinds of additional
information. Among them Ferreira and Vlachos
(2016)’s debunking dataset (300 rumoured claims
and 2,595 associated news articles) and Wang
(2017)’s LIAR dataset (12,836 short statements la-
beled for veracity, topic and various metadata on
the speaker). In the last years, most systems have
been developed over FEVER (Thorne et al., 2018),
a large-scale dataset for Fact Extraction and VER-
ification that consists of 185,445 claims and their
related evidence, labeled as either supporting, re-
futing or not containing enough information.

Approaches. There has been a large develop-
ment since the first approaches for fact verifica-
tion (Ferreira and Vlachos, 2016; Wang, 2017;
Long et al., 2017). To provide a strong base-

line for FEVER, Thorne et al. (2018) proposed a
pipeline consisting of document and sentence re-
trieval and a multi-layer perceptron as textual en-
tailment recognizer. More sophisticated models
followed. Among them, the Bi-Directional Atten-
tion Flow (BiDAF) network (Seo et al., 2016a),
originally introduced for machine comprehension,
has been recently adapted to the task of fact ver-
ification (Tokala et al., 2019). BiDAF combines
LSTMs with both a context-to-query and query-to-
context attention, to produce a query-aware context
representation at multiple hierarchical levels. Nie
et al. (2019) introduced the Neural Semantic Match-
ing Networks (NSMNs), which aligns two encoded
texts and computes the semantic matching between
the aligned representations with LSTMs and used
it to earn the first place in the first competitions
organized on the FEVER dataset. Soleimani et al.
(2019) exploits the contextualized representations
of a pre-trained BERT (Devlin et al., 2019) model
for both sentence selection and fact verification.

3 Method

Given a claim C = {c1, . . . , cn} and a piece of
evidence E = {e1, . . . , em}, two word sequences
of length n and m respectively, the fact verifica-
tion problem requires to predict the relation rel =
{(S)upports, (R)efutes, (I)nsufficient} between
E and C.
Framework. We propose a pipeline of two mod-
ules: a span extractor Mspan and a classifier
Mclassifier. The goal of Mspan(C,E) is to iden-
tify polarizing pieces of information {ei1 , . . . , eiN }
in E without which rel(E,C) would be neutral
(i.e. C would neither be entailed nor contradicted
by E). The identified pieces of information are
passed to Mclassifier, together with C and E, to per-
form a three-label classification aimed at predict-
ing rel(E,C): Mclassifier(C,E, {ei1 , . . . , eiN }) =
l ∈ {S,R, I}.

3.1 Span Extractor

We utilize the TokenMasker architecture from Shah
et al. (2020) for Mspan. This masker was devel-
oped to identify the minimal group of tokens with-
out which E would be neutral with respect to C.
Mspan is trained by getting feedback from a pre-
trained neutrality classifier. Shah et al. (2020) use
the ESIM model with GloVe embeddings trained
on FEVER as a neutrality classifier. We choose
to use the RoBERTa model (Liu et al., 2019) in-
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Figure 2: Framework outline: (i) the claim and the evidence pass through the span extractor, which quantifies
the relative importance of their words; (ii) claim, evidence and spans are then passed to the classification module,
which decides whether the evidence is supporting, refuting or insufficient to judge the claim.

stead, pretrained on an entailment task over a multi-
genre corpus (i.e. three-label classification: en-
tailment/neutral/contradiction on the MULTINLI
dataset (Williams et al., 2018)).

The choice of using a rationale-style extrac-
tor (Shah et al., 2020) is due to its ability to provide
informative spans that can be used as explanations
to the relation of the evidence with the claim. This
approach was shown to perform better than sim-
ply relying on the internal attention weights of a
classifier (Lei et al., 2016; Jain and Wallace, 2019).

3.2 Classifiers

To test our assumption, we consider three neural
network architectures that have achieved the best
performance on the first FEVER shared Task re-
cently: BiDAF (Seo et al., 2016b), NSMN (Nie
et al., 2019) and BERT (Devlin et al., 2019). Note
that the architecture of Mclassifier is independent
of Mspan. The spans extracted by Mclassifier are
forwarded to the classifier by concatenating them
to the original evidence, followed by a separator
token.
BiDAF consists of four layers: (i) the embedding
layer, which encodes two raw text sequences (i.e.
C and E) into two vector sequences Ĉ and Ê; (ii)
the attention layer, which computes the attention
scores between the two sequences and returns two
attended sequences CA and EA; (iii) the modeling
layer, which takes CA and EA as input and outputs
two fixed size vectors, ĈA and ÊA, that capture the
semantic similarity between the original sequences;
and (iv) the output layer, which takes ĈA and ÊA

and returns the output labels.
NSMN encodes C and E into vector sequences

Ĉ and Ê, similarly to BiDAF. It then applies an
alignment layer, which computes the alignment
matrix, A = ĈT Ê, and the aligned representations,
CA and EA, using Ĉ, Ê,A. It follows a matching
layer, which performs semantic matching using
LSTM between CA and Ĉ, as well as EA and Ê,
to output matching matrices MC and ME, which
are finally pooled by the output layer and mapped
to output labels.
BERT (we use the base-uncased version) con-
sists of 12 encoder layers with self-attention
(enc1, . . . , enc12) and one classification layer.
Each encoder enci takes an input sequence Ii−1

and outputs Ii, a sequence of the same length where
each token is replaced with an embedding captur-
ing its relationship with the other words in Ii−1.
The output of enci becomes the input of enci+1.
I0 is set as the concatenation of C and E, preceded
by the special [CLS] token. The output of the
last encoder enc12 is therefore an highly embedded
representation of C and E. It is passed to the clas-
sification layer which maps the representation of
the [CLS] token to the output labels.

4 Experiments

We evaluate the three classifiers described in sec-
tion 3 in two conditions: uninformed (W/O) and
informed (With), where the latter refers to the uti-
lization of the information extracted by Mspan.

4.1 Data

We use the FEVER dataset to train all of our clas-
sifiers. We evaluate the classifiers both on FEVER

and on SYMMETRIC FEVER.
FEVER dataset (Thorne et al., 2018): the current
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largest available Wikipedia-based dataset, consist-
ing of 185,445 claims. Each claim is matched with
supporting or refuting evidence from Wikipedia or
with a “not enough information” label.

We use the development set from FEVER’s
shared-task as our test set (containing 19,998 sam-
ples). We randomly split FEVER’s training set into
our training and validation sets. Following this pro-
cess, we have 125,451 samples in our training set
(73,369 support, 23,109 refute, and 28,973 insuffi-
cient information).

While evidence sentences for supporting and re-
futing examples are provided in the ground truth,
those for the “insufficient information” were ob-
tained by us. We use the document retrieval module
of the best performing system on the first FEVER

Shared Task (Nie et al., 2019). Given a claim
and the Wikipedia dump provided with the FEVER

dataset, this document retrieval module returns a
list of Wikipedia articles which are possibly related
to the claim, ranked with a score calculated by com-
paring the claim, the title of the article and its first
sentence. We keep the highest scoring document.
Thereafter, we pick the sentence with the highest
TF-IDF similarity with the claim. Also, to disam-
biguate pronouns, we extend all evidence sentences
by appending the title of their Wikipedia page.
SYMMETRIC FEVER (Schuster et al., 2019): a
smaller unbiased extension of FEVER, consisting of
712 claim-evidence pairs which were synthetically
generated from FEVER to remove strong cues in the
claims which could allow predicting the label with-
out looking at the evidence (give-away phrases).

4.2 Hyperparameters

TokenMasker is trained on the same dataset and
configuration as Shah et al. (2020). However, we
replace their neutrailty classifier with a RoBERTa
classifier, pretrained on MNLI. This model is
trained once and used in inference mode for all
subsequent experiments.
BiDAF is trained for 12 epochs using cross entropy
loss and Adam optimizer with initial learning rate
1e-3. We use a dropout probability of 0.2 and a
batch size of 8.
NSMN is trained for 12 epochs using cross entropy
loss and Adam optimizer with initial learning rate
1e-4. We use a dropout probability of 0.5 and a
batch size of 8.
BERT is fine-tuned for 8 epochs using cross en-
tropy loss and Adam optimizer with initial learning

rate 2e-5. We use a dropout probability of 0.1 and
a batch size of 16.

These hyperparemeters were found to achieve
the highest accuracy on our validation set. For our
final classifiers, we fix these settings and retrain
them using the full FEVER training set.

Model W/O With Test set

BiDAF 73.90% *75.12%
FEVERNSMN 72.88% **74.56%

BERT 84.16% 84.33%

BiDAF 49.16% **52.24%
SYMMETRICNSMN 53.35% 54.56%

BERT 71.12% 71.49%

Table 1: Accuracy of the models on the FEVER and the
SYMMETRIC datasets. Results for BERT are the aver-
age over 5 runs with the same hyperparameters. Signif-
icance: * if p < 0.1, ** if p < 0.05.

4.3 Results

Table 1 shows the results obtained in our experi-
ments on both FEVER and the SYMMETRIC dataset.
Scores are much higher in the first dataset as the
systems can rely on give-away phrases, some words
in the claims which have a high correlation with the
correct output label regardless of the evidence. This
situation does not exist in the SYMMETRIC dataset,
where the give-away phrases have been eliminated.
As expected, all systems perform worse on this
dataset, but the drop in performance is more signifi-
cant for the uninformed models (W/O) than for the
informed (With) ones. In fact, the informed models
consistently perform better than the uninformed
ones (W/O), often obtaining statistical significance.
While the difference in performance between W/O
and With is particularly relevant for BiDAF and
NSMN, it thins for BERT, which is already a strong
classifier leveraging on a robust pretraining.
Output Explainability. We also manually evalu-
ated the spans for 100 randomly extracted claim-
output pairs, to assess whether they represented
an understandable explanation for the verdict. The
spans were deemed explanatory in 88% of the cases
for refute claims and 67% of the support claims,
which leads to an aggregated score of 75%. The
extracted spans are therefore not only informative
to the classifier, but can also be used to produce
human-readable justifications for a positive or neg-
ative relation.
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5 Conclusions

This paper has introduced a classifier-agnostic
framework that allows fact verification models to
improve their performance and robustness, utiliz-
ing concise spans of the available evidence sen-
tences. The experiments have shown that the ex-
tracted spans are indeed informative for the final
classifier, supporting the usefulness of the frame-
work. Furthermore, this work opens the possibility
of providing to the human users a justification for
the model’s predictions.
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