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Abstract

The standard machine translation evaluation
framework measures the single-best output of
machine translation systems. There are, how-
ever, many situations where n-best lists are
needed, yet there is no established way of eval-
vating them. This paper establishes a frame-
work for addressing n-best evaluation by out-
lining three different questions one could con-
sider when determining how one would de-
fine a ‘good’ n-best list and proposing evalua-
tion measures for each question. The first and
principal contribution is an evaluation measure
that characterizes the translation quality of an
entire n-best list by asking whether many of
the valid translations are placed near the top of
the list. The second is a measure that uses gold
translations with preference annotations to ask
to what degree systems can produce ranked
lists in preference order. The third is a mea-
sure that rewards partial matches, evaluating
the closeness of the many items in an n-best
list to a set of many valid references. These
three perspectives make clear that having ac-
cess to many references can be useful when
n-best evaluation is the goal.

1 Introduction

Machine translation evaluation has traditionally fo-
cused on one-best translation results because many
common use cases (translating a user manual, read-
ing a news article, etc.) require only a single transla-
tion. There are, however, many scenarios in which
n-best translation can be useful; examples include
cross-language information retrieval, where query
terms may not match in the single-best output, or
language learning, where a learner is interested in
whether their translation is acceptable.

Optimizing translation systems for such applica-
tions might benefit from evaluation measures that
focus on choosing among systems based on which
produces the best list of translated sentences, what
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we refer to here for brevity as an n-best list. Often
in these n-best scenarios, researchers first select
‘good’” MT systems (i.e., by BLEU) in the hope
that these good systems will also produce good re-
sults beyond the top translation candidate. In this
paper we test that hypothesis, using a newly avail-
able dataset to measure the quality of n-best lists
directly.

To look at the problem in this way we must first
decide what properties of an n-best list we would
consider ‘good’. In this paper we explore three
questions:

1. How well does an n-best list include cor-
rect translations and rank correct translations
above incorrect ones? (Section 3: Head-
weighted Precision)

. How well does an n-best list rank translations
in preference order, with the better (e.g., more
commonly used) translations ahead of those
that are valid, but less preferred? (Section 4:
Preference Correlation)

. How close are all of the translations in an n-
best list to one or more reference translations?
(Section 5: Unweighted Partial Match)

We introduce measures for each of the three ques-
tions, using a ranking quality measure already
widely used in information retrieval for question
1, correlation measures to address question 2, and
variants of BLEU for question 3. In this latter study,
we particularly note that n-best evaluation done
in this way contrasts with a current standard used
for both n-best and 1-best MT evaluation, 1-best
single-reference BLEU.

However, our purpose is not to argue for a single
n-best evaluation measure, but rather to highlight
that different measures produce different system
rankings, and therefore it is crucial that researchers
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Table 1: The top five valid Japanese translations for the
STAPLE prompt i will feel well.

carefully consider what questions to ask when eval-
uating systems. The measures we propose are il-
lustrative as answers to our research questions, but
are not the only solutions; many others might work.
We aim to provide groundwork and encourage fu-
ture work on the topic.

Our investigation is made possible by the recent
availability of annotations created for the Duolingo
Simultaneous Translation and Paraphrase for Lan-
guage Education (STAPLE) shared task, which con-
tains an extensive (although not necessarily exhaus-
tive) set of valid translations for each of several
thousand “input prompt” sentences (Mayhew et al.,
2020).

2 The STAPLE Shared Task

The Duolingo STAPLE dataset consists of thou-
sands of English prompts, with large sets of valid
translations of each, often numbering in the hun-
dreds, each labeled with the relative frequency with
which each valid translation was selected by lan-
guage learners. Table 1 shows the five highest-
frequency Japanese translations for the prompt “I
will feel well,” where the weights of all 480 trans-
lations sum to one. As this example illustrates, the
prompts are relatively short and simple sentences.

In the 2020 STAPLE task, participating systems
were asked to produce all and only the valid transla-
tions. Doing well at this task, which was evaluated
using a variant of the F} measure, requires both
ranking translations well and deciding where to
truncate the n-best list (i.e., the choice of n). Our
focus in this paper is on ranking quality, leaving
the question of how best to evaluate truncation to
other work.

We compare systems from Khayrallah et al.
(2020)’s submission to the 2020 Duolingo STA-
PLE Shared Task. They were built using the data
described in Table 2. In total, we compare 38 Por-
tuguese and 44 Japanese systems. This includes
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source JA PT
Europarl (Koehn, 2005) - 2,408k
Global Voices! 822k 1,585k
OpenSubtitles (Lison and 13,097k 196,960k
Tiedemann, 2016)

Tatoeba (tatoeba . org) 1,5371( 1,2151(
WikiMatrix (Schwenk et al., 9,013k 45,147k
2019)

JW300 (Agi¢ and Vuli¢, 2019) 34,325k 39,023k
QED (Abdelali et al., 2014) 9,064k 8,542k

Table 2: English word tokens for all datasets used to
train the MT models.

some bad systems, many good ones, and many in-
cremental variations in between, especially at the
top end. These systems ranked among the best for
these languages on the STAPLE leaderboard.

All were variations of the following standard
training procedure. We used Transformer archi-
tectures (Vaswani et al., 2017) trained with fairseq
(Ott et al., 2019). Models included 6 encoder and
decoder layers, a model size of 512, a feed forward
layer size of 2048, and 8 attention heads. Models
were trained with the ADAM optimizer (Kingma
and Ba, 2015) with a dropout size of 0.1 and an
effective batch size of 200k tokens. Model training
was terminated when validation perplexity failed
to increase for 10 consecutive epoch-level check-
points.

Our systems varied in the following experimen-
tal parameters:

e Training on all the data in Table 2, or just the
data above the midline.

Whether or not we fine-tuned on Duolingo
STAPLE training data.

Training on just the first million lines of each
corpus.

Varying the effective batch size.

Limiting the training data to sentences con-
taining at most 20% of tokens outside the
Duolingo STAPLE training data vocabulary.

3 Head-weighted Precision

We begin with our first question: how well does a
system produce valid translations and rank them
above invalid translations?


tatoeba.org

A task that might be more aligned with such
a question would be one that necessitates a strict,
binary score for validity and is agnostic to where
a truncation of the list might occur. For example,
a language learner hoping to learn several valid
possible ways to express a sentence in a target lan-
guage may want to peruse many translation outputs,
starting at the top of the list. It would be unknown
where the user would stop, and it would be impor-
tant that the translations are fully valid.

Of course the space of valid translations in this
framework could be enormous, so it is important
to consider the effect of incompleteness in the set
of valid references. We consider that in section 3.2,
but first we introduce a measure for head-weighted
precision with a simplifying assumption that the
set of valid references is complete. Assuming we
have this, we say for the purpose of question 1
that a good n-best list would have a lot of valid
translations, and that it would place them near the
head (i.e., the top) of the ranked list. We refer to
this framework then as head-weighted precision.

3.1 A Head-Weighted Precision Measure

We are not the first to need a measure for the quality
of a ranked list—this is a central question in evalu-
ation of search engines that produced ranked lists
of documents. The simplest setup of the evaluation
task in information retrieval is that documents are
either on topic or off topic (i.e., relevant or not),
and that it is only the order of the documents that
matters. One widely used rank quality measure is
uninterpolated Average Precision (AP), computed
for a ranked list L of length & as follows:
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where N is the number of valid items, 7; is the
number of valid items at or above rank 7, and s; is
the true binary relevance for the item at rank 7 (0
or 1). The core of the computation is 7; /i, which
in information retrieval is called precision; AP is
the expected value of precision, measured only at
optimal stopping points (i.e., where precision is
maximized by just having added one more valid
item). With this measure, ranked lists earn perfect
scores for ranking all valid items at the top and
are punished for invalid items occurring between
valid ones (with invalid items nearer the top having
a more deleterious impact). Because variance in
system behavior across conditions may be high, it
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is common to compare systems using Mean AP
values (MAP) computed over a representative set
of conditions. In information retrieval, conditions
are topics, items are documents, and validity is rel-
evance to the topic. In n-best MT, the conditions
are a representative set of sentences to be trans-
lated (in the STAPLE task, the prompts), the items
are system-produced translations, and validity is
whether a translation is proper (i.e., present in the
STAPLE gold translations).

3.2 Dealing With Incomplete Gold Data

MAP’s reliance on binary validity rather than the
preference order among valid translations simpli-
fied the generation of a gold standard, but the im-
plicit assumption that the reference set of valid
translations is complete is a potential concern. Due
to the richness of human language, most sentences
would admit an immense number of valid transla-
tions (Dreyer and Marcu, 2012). Even the STAPLE
dataset used in this paper, which contains hundreds
of valid reference translations for many sentences,
is surely still not complete. This effect results in
systems being penalized for false negatives, receiv-
ing lower MAP scores than they should.

However, when our goal is to compare systems,
we are most interested in relative, not absolute,
scores. So the question to be answered is whether
missing data in the ground truth adversely affects
comparisons between systems. Zobel (1998) intro-
duced a clever way to characterize such an effect.
The key idea is to ablate the ground truth, and to
examine the effect of that ablation on system com-
parisons. If removing, say, half the ground truth
resulted in few reversals in the preference order be-
tween systems, then one might reasonably assume
that adding even more ground truth would have
similarly small effects.

The art in this approach is to design the ablation
in a way that removes things that are most like the
things that are likely missing. Zobel, using this
technique to study the stability of MAP in infor-
mation retrieval test collections, ablated relevance
judgments that would not have been available had
less effort been devoted to generating such judg-
ments; in information retrieval these are the docu-
ments that no participating system retrieved at high
rank. For the STAPLE dataset, a natural choice
is to ablate the least frequent translations, since it
seems reasonable to presume that if Duolingo was
not aware of the validity of some translation, that
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Figure 1: Spearman’s p and Pearson Rank correlation scores for MAP system rankings for Japanese (left) and
Portugese (right) under different data ablation settings. MAP results obtained for STAPLE are reliable for system
ranking despite incomplete data, with results slightly more reliable for Japanese than Portuguese.

translation is likely to be rather uncommon.

Such an ablation study requires a suite of sys-
tems and a measure that characterizes the swaps
between MAP scores that occur. We therefore use
the aforementioned 38 Japanese MT models and
44 Portuguese MT models. From each model we
generate a 1000-best list.

We can use Spearman’s p to count the num-
ber of times the relative order of two systems is
swapped. One limitation of p, however, is that we
might care more about swaps near the top of the
list of system rankings than lower down (i.e., a
head-weighted measure). Another limitation is that
we might care more about swaps between systems
with very different MAP values than we do about
swaps between systems with closer values (i.e., a
gap-sensitive measure). In addition to p, we there-
fore also report Pearson Rank (Gao et al., 2016), a
more recently introduced correlation measure that
is head-weighted and gap-sensitive.

Figure 1 plots these correlations as progressively
more common translations are ablated. The left
side of the plots show how system rankings from an
ablated data condition that only includes the most
common translations correlate with rankings from
the full data. Moving right, the correlations are
compared for conditions containing more and more
data, with the penultimate point representing a data
condition where only the rarest translations have
been removed. The flatness of the curve on the right
side of the plot suggests (based on extrapolation to
the right) that the presence of additional relatively
uncommon translations would have been unlikely
to result in many system swaps.
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Pearson Rank, which accounts for head-
weightedness, additionally shows that few of the
system swaps are between relatively good systems.
This is likely because good systems will output
high-frequency translations near the top of the n-
best list, so as low-frequency translations are ab-
lated, these good systems are less likely to be af-
fected. From this we can conclude that, at least for
Japanese and Portuguese, the binarized STAPLE
task ground truth is sufficiently complete to support
computation of MAP scores for individual systems
that can reasonably be compared, allowing us to
answer Question 1 using this measure.

3.3 Comparison to the STAPLE Metric
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Figure 2: Correlation of system rankings based on
Weighted Macro F; and MAP in Japanese. 72 = 0.836,
slope = 1.058.

As introduced earlier, the STAPLE task uses a
weighted macro F; measure for evaluation. The



weighted macro F; measure is the same as the
standard macro-averaged F7, but recall is replaced
with weighted recall. Weighted recall is calculated
by using frequency weight sums provided in the
gold translation data for Weighted True Positive
and Weighted False Negative terms, instead of the
standard raw counts.

One difference of this measure compared to
MAP is that it does not evaluate a model’s abil-
ity to generate n-best lists in a pure sense (agnostic
to where that list may be cut off). This is because
the STAPLE systems must not only generate n-
best lists, but also decide where to truncate each
list, in order to maximize weighted macro F. This
means that an n-best list that outputs hundreds of
valid translations only at the top of the list, but is
truncated at rank 1000, would score poorly, due to
precision issues. However, MAP is robust to this,
since values at the very bottom of the list have only
a small effect. The definition of MAP allows it
to function properly for any size lists, potentially
even infinite-size lists, which weighted macro Fy
does not. This is not to argue that MAP is a bet-
ter measure than F, but simply rather that they
are different measures and may be better suited for
separate goals.

Despite this, we produce a correlation plot in
Figure 2 to compare system MAP scores with sys-
tem weighted macro F scores. For these weighted
macro F} scores, we used a thresholding technique
that truncates n-best lists at a manually tuned frac-
tion of the top hypothesis’ model probability for
each prompt. We find that the weighted macro F}
values correlate very strongly with MAP.2 We note
that the correlation is particularly strong at the top-
end of systems compared to the bottom-end. This
is ideal since understanding and trusting evalua-
tion measures are particularly vital for choosing
among the best of systems (often not as important
for choosing among the worst). From this we con-
clude that MAP could have been a useful formative
evaluation measure when tuning n-best MT sys-
tems for the STAPLE shared task and that these
two measures may actually be answering a similar
question despite the differences in their properties.

4 Preference Correlation

Our second question for n-best evaluation is how
well models can rank translations in preference
order. Since we have model scores from the trans-

Spearman’s p = 0.956.

64

lation model and relative prevalence from the STA-
PLE dataset, one type of easily computed measure
of quality for the model scores would be their de-
gree of correlation with the STAPLE score for each
translation (which indicates which of the transla-
tions are more commonly used; i.e., their relative
prevalence).

One interesting aspect of this type of measure is
that it relies on having frequency (or some other
preference score) annotation information for each
reference translation. Certain tasks may be better
imagined to take advantage of such data. For ex-
ample, a task in which models need to generate
diverse translations may want to sample from valid
outputs in a way that more closely reflects natural
human variance. That is, it should sample a fre-
quent translation more often than an infrequent one.
Correlating a model’s scores for translations with
gold frequency scores may then be useful for such
a case.

We consider how these Preference Correlation
scores could be used for system rankings. We cal-
culate both Spearman’s p and Pearson’s 7 on all of
our models in Japanese and Portuguese.> We then
construct a scatterplot of the Preference Correla-
tion and MAP scores for each system, as shown
in Figure 3. From the near-zero slope of a linear
fit and the near-zero r? values, it is clear that both
Spearman’s p and Pearson’s r are measuring some-
thing very different from MAP. That is not to say
that they are not good measures; rather, it says that
they are measuring something different. MAP mea-
sures how reliably systems can place valid transla-
tions early in a ranked list; correlation to the gold
standard preference order measures how reliably
systems can place preferred translations ahead of
less preferred translations.

Both of these measures have additional limita-
tions, which discourage their usage. First is the
requirement for more nuanced gold data. While
MAP only requires access to several valid transla-
tions, these measures require either a preference
order or preference scores for those translations,
which may be difficult to obtain. A second limita-
tion is the handling of missing data. Both measures
compare scores or rankings of translations between

*Spearmans’s p considers only relative rankings, while
Pearson’s r additionally considers the difference in scores.
Neither is head-weighted. We compute Pearson’s r in log
space, excluding system translations not in the STAPLE ref-
erences. Another option would have been to use the model
to force-decode the STAPLE references. We observe similar
trends when doing so.
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Figure 3: Correlation of system rankings based on Preference Correlation scores (Spearman’s p and Pearson’s r)
vs. MAP score in Japanese (left) and Portuguese (right). Rankings do not correlate. Japanese: r2 for Spearman’s
=0.009, slope = -0.145; r2 for Pearson’s = 0.046, slope = -0.356. Portuguese: 2 for Spearman’s = -0.001, slope

all

System Correlation (Spearman's)
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Number of Referenceg

Figure 4: System ranking correlation scores (Spear-
man’s p) between MAP and different configurations of
BLEU (x-references and y-best outputs per source) in
Japanese. Using many references and a larger depth
correlates very well with MAP while 1-best 1-reference
BLEU correlates poorly. Note: striped bars indicate a
negative value; all references is 1536 for Japanese.

two sets. If the intersection between these two sets
is very small, it limits the usefulness of the mea-
sures. Though we have many frequency scores and
relative rankings in the gold translations, if the n-
best lists we use to compare do not contain many
of those translations, the measures could be less
reliable.

5 Unweighted Partial Match

Finally, our third question is how close the transla-
tions are to the reference translations.

A task that may benefit from such a mea-
sure would be cross-language information retrieval
(CLIR). In such a task, the machine translation sys-
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-0.010; r2 for Pearson’s = -0.002, slope = -0.083. Best viewed in color.

tem would serve as an upstream component of the
pipeline. It is less likely for translations to need
to be fully valid to be useful as compared to some
other MT tasks. CLIR could benefit from com-
bining the terms from several translation outputs
regardless of if each entire sentence is perfectly
valid. In this way, a measure that can assign par-
tial credit to translations by matching n-grams as
well as weighting all translations equally may be
appropriate.

For this, we turn to BLEU (Papineni et al., 2002),
which computes n-gram overlap between a sys-
tem’s translations and the available references. This
raises the question of how many references we
should use when we have very many available, and
which of the system translations we should be using
in this computation.

The STAPLE dataset provides an opportunity to
explore this question. In this section, we compute
BLEU measures with different numbers of refer-
ences, to different depths in the n-best list. We find
that at deep depths with many references BLEU
ranks systems similarly to MAP, but that with fewer
references its behavior is quite different.

In order to set up various configurations for our
n-best BLEU measures, we perform a grid search
over {1,5,10,100,1000}-best {1,5,10,100,all*}-
reference BLEU. In what we call x-best y-reference
BLEU, x refers to how many top hypotheses from
the system output are used, and y refers to how
many references are used. When working with
multiple hypotheses in an n-best list, we simply

“all is up to 720 in Portuguese, and 1536 in Japanese



treat them as independent translations in a larger
pseudo-corpus, pairing each with the relevant ref-
erence(s) for evaluation with BLEU.

After obtaining system scores under each of the
BLEU configurations, we calculate the Spearman’s
p and Pearson Rank correlation coefficients be-
tween system rankings from BLEU compared to
those from MAP. We find similar patterns for both
languages and both correlation metrics, so we show
Spearman’s correlation for Japanese in Figure 4.

An important observation is our finding that 1-
best, 1-reference BLEU does not correlate well with
MAP. From this we conclude that when placing
many valid translations near the top of the n-best
list is important, as is the case in some applications,
optimizing for 1-best 1-reference BLEU may be
suboptimal.

This situation is not improved by adding hy-
potheses to the pseudo-corpus, so long as only a
single reference is used. However, increasing the
number of references does bring the correlation to
moderate strength even when still only evaluating
at 1-best. Once the evaluation has access to sev-
eral references, evaluating deeper in the n-best list
further improves the correlation with MAP, and cor-
relations at moderately deep depths are quite sub-
stantial (e.g., p = 0.86 for 100-best 100-reference).

In Figure 5, we zoom in on two of these BLEU
configurations. We choose 1-best 1-reference,
which represents a standard BLEU evaluation
framework, and also 100-best 100-reference, since
it showed nearly the highest correlation with MAP
(increasing the depth to 1000 and the references
to 1000 yields only slightly stronger correlation).
As the slope and 72 of the linear fit indicate, 1-best
1-reference BLEU has little value for predicting
MAP, whereas 100-best 100-reference BLEU has
substantial preditive power. Moreover, this rela-
tionship is strongest for higher values of MAP; this
is important, because when seeking to choose the
best system for some task, a system builder would
choose from among the best-performing ones.

To help explain this difference, we also per-
formed a qualitative analysis. This revealed that
systems with high 1-best 1-reference BLEU scores
but low MAP produced valid translations at the
top of the n-best list, but very poor translations
(e.g., Latin characters in Japanese) deeper in the
list. Systems with both higher MAP and 100-best
100-reference BLEU scores were better at produc-
ing reasonable sentences throughout the entire list.
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This makes sense as a system with a great trans-
lation at rank 1 but terrible translations between
ranks 2 and 100, for example, will have a great 1-
best 1-reference BLEU but will be heavily punished
by MAP.

6 Discussion

Access to frequency scores in STAPLE’s gold data
has provided a unique chance to use correlation
between those scores and model scores as a way
to evaluate systems. However, we see that these
measures behave quite differently from MAP, and
thus we would recommend use of Preference Cor-
relation (§4) only in cases in which fine-grained
distinctions between preference scores are impor-
tant for the intended application.

We also looked into using BLEU for n-best eval-
uation. MAP and BLEU seem like quite different
ways of evaluating in terms of how they approach
the problem. MAP relies on binary scores, gives
no partial credit, and weighs translations at the top
of the list higher. BLEU on the other hand looks
at closeness, allowing for partial credit, and treats
all sentences equally, no matter where they appear
in the n-best list. It could be expected then that
these measures would differ, as we see when com-
paring MAP to 1-best 1-reference BLEU. However,
as we increase depth and number of references
for BLEU, the correlation of the resulting system
rankings increases substantially and ultimately they
yield quite similar system rankings. From this we
can conclude that, at least for the systems we have
experimented with, and for the language learning
task that the STAPLE dataset models, systems that
find many good translations also tend to rank those
translations well. Thus, with enough references the
choice between MAP and BLEU might be made
based on efficiency. We suspect that the ability
of many-best many-reference to work with partial
matches might give it advantages over MAP when
the number of available references is more limited
than in STAPLE, but we leave ablation studies to
test that hypothesis to future work.

Of course, the requirement for large numbers of
references, which are generally expensive to ob-
tain, is a limitation. However, this is a separate
consideration; in the Duolingo dataset that was the
center of our study, they were produced organically
within that task; in other settings, if evaluation of
n-best lists were to be important enough, the req-
uisite investments to create the required resources
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Figure 5: System scores in Japanese by MAP and BLEU (left: 1-best 1-ref, right: 100-best 100-ref). 1-best 1-
reference BLEU does not correlate well with MAP (p = —0.14), but 100-best 100-reference BLEU correlates
highly (p = 0.86). According to MAP, choosing the system with the highest BLEU would result in poor n-best
lists in 1-best 1-ref (left) and strong n-best lists in 100-best 100-ref (right). 1-best: 2 = 0.022, slope = -27.817

100-best: r2 = 0.487, slope = 98.448.

could in some cases be made. In such a setting,
techniques such as crowdsourcing or monolingual
paraphrase generation might possibly be leveraged
to reduce costs. Moreover, our ablation study indi-
cates that the ground truth need not be completely
comprehensive to be useful.

A second limitation is that our experiments were
conducted on the relatively simple sentences used
for the Duolingo STAPLE shared task. As with any
study, it remains to be seen how well it generalizes
to other settings, including other datasets. But this
does not detract from our findings on the STAPLE
dataset, which was after all motivated by a real
language learning task that benefits large number
of of people.

Perhaps our most salient general observation is
that it seems that having access to more references
and evaluating deeper in the list makes for better
evaluation of n-best lists. Of course, this benefit
must be balanced against the cost of generating the
requisite number of references.

7 Conclusion

We have shown how different metrics can be used
to characterize n-best list quality. In particular, we
have introduced MAP as a measure for n-best list
quality for machine translation systems. MAP re-
wards systems that place good translations near the
top of the list. BLEU, computed over a pseudo-
corpus built from n-best lists, and against large
reference sets, ranks systems similarly to MAP.
In both cases, the key distinguishing feature from
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typical MT system evaluation is the use of large ref-
erence sets, which yields insights unavailable with
shallower evaluations using only a single reference.

MAP is but one measure among many that have
been used to characterize the quality of ranked lists
in other settings. As future work, we would be
interested in exploring the use of measures such
as inferred average precision (infAP) that are de-
signed to be particularly robust to missing data in
the gold standard (Aslam and Yilmaz, 2007), and
measures such as normalized Discounted Cumula-
tive Gain (nDCG) (Jarvelin and Kekéldinen, 2002)
that represent multiple degrees of utility (thus re-
quiring more nuanced ground truth, as what we
have in STAPLE).
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