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Abstract

Word embeddings are an active topic in the
NLP research community. State-of-the-art
neural models achieve high performance on
downstream tasks, albeit at the cost of compu-
tationally expensive training. Cost aware solu-
tions require cheaper models that still achieve
good performance. We present several repro-
duction studies of intrinsic evaluation tasks
that evaluate non-contextual word representa-
tions in multiple languages.

Furthermore, we present 50-8-8, a new data
set for the outlier identification task, which
avoids limitations of the original data set, such
as ambiguous words, infrequent words, and
multi-word tokens, while increasing the num-
ber of test cases. The data set is expanded
to contain semantic and syntactic tests and is
multilingual (English, German, and Italian).

We provide an in-depth analysis of word
embedding models with a range of hyper-
parameters. Our analysis shows the suitabil-
ity of different models and hyper-parameters
for different tasks and the greater difficulty of
representing German and Italian languages.

1 Introduction

Unsupervised word embeddings have largely re-
placed language-specific hand-designed represen-
tations of syntax and semantics (Mikolov et al.,
2013a; Levy and Goldberg, 2014a; Devlin et al.,
2019). Models based on deep neural networks such
as the BERT family (Devlin et al., 2019; Liu et al.,
2019; Sanh et al., 2019) construct contextualized
word vector representations. Showing state-of-the-
art results in benchmarks such as GLUE (Wang
et al., 2018), they are computationally expensive
for both training and inference (Devlin et al., 2019;
You et al., 2020) with significant cost for the en-
vironment (Strubell et al., 2019). In this paper,

*Equal contribution

we turn our attention back to the non-contextual,
less resource-hungry word representations of the
word2vec family (Mikolov et al., 2013a; Levy and
Goldberg, 2014a).

We contribute reproduction studies on the qual-
ity of the non-contextual word representations us-
ing outlier identification (Camacho-Collados and
Navigli, 2016) and the classic word analogy task
(Mikolov et al., 2013a). Replicability and repro-
ducibility have gained increasing importance in the
NLP community: focus on the publication of code
and data with papers, special sections in leading
journals (Branco et al., 2017), and dedicated shared
tasks (Branco et al., 2020). Unfortunately, there
exist opposing definitions of the terms reproduc-
tion and replication (e.g., Branco et al. (2017) and
Chris (2009)), while others propose a spectrum
of reproducibility (Peng, 2011). While we aim
to reproduce the experiments in our target papers
closely, we go beyond a straight-forward reproduc-
tion and address further questions such as effect of
hyper-parameters, linear contexts (CBOW vs. skip-
gram), and non-linear dependency-based contexts
(word2vecf).

We also propose 50-8-8, an alternative to the 8-8-
8 outlier identification data set (Camacho-Collados
and Navigli, 2016) that is several times larger, in-
cludes both semantic and syntactic evaluations, and
addresses result variance issues that affect the orig-
inal 8-8-8 data set. Finally, our 50-8-8 data set
is multilingual, covering English (EN), German
(DE), and Italian (IT). The three languages are chal-
lenging for word representations due to their large
vocabulary, heavy reliance on word compounding
(DE), and complex grammar and sentence structure
(DE and IT).

In our paper, we contribute:

* Reproduction studies of outlier identifica-
tion and word analogy (Camacho-Collados
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and Navigli, 2016; Koper et al., 2015; Berardi
et al., 2015; Mikolov et al., 2013a) through
which we find that most evaluations are repro-
ducible, albeit some, namely outlier identifica-
tion, only after taking variance into account.

* 50-8-8, an improved outlier identification data
set that addresses issues with the 8-8-8 data
set used in the original outlier identification
paper. 50-8-8 is multiple times larger than 8-8-
8, multilingual (English, German, and Italian),
excludes polysemous and rare words, and con-
tains both semantic and syntactic tests.

* Comparative study and analysis of CBOW,
skip-gram, word2vecf, and word2vecf with-
out relation-suffixes, on multiple corpora and
languages (English, German, and Italian), for
multiple hyper-parameters, on outlier iden-
tification and analogy reasoning tasks (both
semantic and syntactic). All results are based
upon multiple instances of the models and
quantify variation in results.

2 Related Work

Contextualized neural word embeddings (Devlin
et al., 2019; Liu et al., 2019) show impressive per-
formance in downstream NLP tasks, at the cost of
training time; pre-training of the base version of
BERT took four days using 16 TPU chips (Devlin
etal., 2019). Efforts to reduce the training time still
require significant computing power on dedicated
hardware (You et al., 2020), with high environmen-
tal cost (Strubell et al., 2019). Some reduction of
memory usage (Sanh et al., 2019) or of training
time and memory usage (Lan et al., 2020) still does
not eliminate the high resource consumption. As
such, less computationally expensive models, such
as word2vec (Mikolov et al., 2013a), word2vecf
(Levy and Goldberg, 2014a), FastText (Bojanowski
et al., 2017), and GloVe (Pennington et al., 2014),
are attractive when showing good performance on
NLP tasks.

Computationally cheaper models, like word2vec,
have some of the same evaluation drawbacks as
their more complicated and expensive counter-
parts: there is no generally agreed upon evalua-
tion. Ghannay et al. (2016) compare word2vec
and word2vecf on attributional similarity, extended
by Li et al. (2017) for combinations of context
representations and context types for CBOW, skip-
gram, and GloVe. But, Faruqui et al. (2016) and

Batchkarov et al. (2016) note that attributional sim-
ilarity is subjective, lacks statistical significance,
and has a low correlation with extrinsic evalua-
tion, making it inconsistent and not necessarily
indicative of model properties. However, Schnabel
et al. (2015) argue that different extrinsic evalua-
tion tasks prefer different embeddings, suggesting
that extrinsic tasks might not be indicators of gen-
eral embedding quality either.

The outlier identification task (Camacho-
Collados and Navigli, 2016) avoids subjective sim-
ilarity measurements. Instead, it employs relative
word vector similarity to identify an outlier from
a group of otherwise semantically related words.
Blair et al. (2017) expanded the outlier identifica-
tion data set algorithmically based on Wikidata.
However, the automatic approach has several limi-
tations, including ambiguous, infrequent, or dupli-
cate words in the same category, and word variants
in the same category, likely due to hierarchy incon-
sistencies in Wikidata (Brasileiro et al., 2016). In
this paper, we return to manually curated data sets
with controlled quality and difficulty.

In light of recent revelations into the instabil-
ity of word2vec (Antoniak and Mimno, 2018), we
reproduce several word vector evaluations. We
find that the original 8-8-8 data set used in the out-
lier identification evaluation leads to high results
variance. We address this issue by proposing an ex-
panded evaluation data set we call 50-8-8. Both the
original outlier identification (Camacho-Collados
and Navigli, 2016) and word similarity publica-
tions (Ghannay et al., 2016; Li et al., 2017) do
not fully explore the effects of hyper-parameters
and randomness. We systematically evaluate mod-
els and hyper-parameters on ten training runs and
measure average performance and variance.

Finally, most evaluations of word2vec embed-
dings focus on English, with notable exceptions
(Koper et al., 2015; Berardi et al., 2015; Svoboda
and Brychcin, 2018; Venekoski and Vankka, 2017;
Rodrigues et al., 2016; Chen et al., 2015; Grave
et al., 2018). However, these are translations of
word similarity tasks and share the weaknesses of
their English language counterparts. We reproduce
the evaluation of core word analogy evaluations
of Koper et al. (2015) and Berardi et al. (2015)
and expand them by comparing word2vec to its
dependency-based counterpart, word2vecf. We use
the word analogy task from Mikolov et al. (2013a)
to give a reference point for model performance
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and ease comparison with other research, even
though the pitfalls from the similarity tasks also
apply to this task (Faruqui et al., 2016; Batchkarov
et al., 2016). To supplement the evaluations on
non-English languages, we manually translate our
new 50-8-8 data set into German and Italian and
thus provide a multilingual outlier identification
data set and evaluation.

3 Tasks

In this section, we introduce the intrinsic tasks and
data sets we use for evaluation. Furthermore, we
summarize previous data sets’ limitations and in-
troduce a new data set for the outlier identification
task.

3.1 Outlier identification

Evaluations of word similarity rely on a similar-
ity score of words. Therefore it is difficult (if not
impossible) to obtain a gold standard as people
cannot agree on similarity scores between words
(e.g., Which is more like a cat? a tiger or a lion?).
On the other hand, outlier identification aims to
identify an outlier in a set of similar words. The
outlier is the word with the lowest average cosine
similarity to the rest of the set. This formulation
makes constructing a gold standard more straight-
forward as the attribution of specific similarity
scores is avoided (Camacho-Collados and Navigli,
2016). Even though word embeddings cannot an-
swer questions involving subtle similarity, they can
represent outliers as sufficiently distinctive from
a group of words that share some similarities (the
inliers).

3.1.1 Measures for outlier identification

We use two performance measures to evaluate, Ac-
curacy (Acc) and QOutlier Position Percentage
(OPP). Accuracy is the ratio of correctly identi-
fied outliers to the total number of test cases and
provides a strict, narrow-focused measure of per-
formance. OPP indicates how close the outliers are
to being correctly classified. OPP is defined as:
3 OP(W)
Wi-1

OPP:WEDTlOO

W is a word set (8 inliers and one outlier), and D
is a data set consisting of | D| such sets of words.
Outlier Position (O P) is the outlier position in the
list of words ordered by the average cosine simi-
larity to the other words in the set. The positions

range from 0 to || — 1, where an OP equal to
|W| — 1 indicates a correct classification of the
outlier, and a lower O P indicates the computed po-
sition of the outlier in the sorted list. The lower the
OP, the worse the system does at identifying the
outlier. While accuracy takes a black-and-white
approach to measuring performance, OPP accounts
for differences in the words’ rankings.

For our experiments, we modify the original
evaluation script of Camacho-Collados and Nav-
igli to address a bug. In the script, vectors are set
to the zero vector for Out-Of-Vocabulary (OOV)
words, resulting in an undeserved successful out-
lier identification. In our experiments, we instead
mark such test cases as unsuccessful. Accordingly,
OOV words decrease performance scores instead
of increasing it. We describe the error and our fix
in Appendix A and share our fixed script with our
50-8-8 data set*.

3.1.2 Data sets for outlier identification

Camacho-Collados and Navigli (2016) provide a
manually curated 8-8-8 data set with their task;
namely, 8 test groups of 8 semantically related
inliers and 8 alternatives for non-related outliers,
resulting in 64 test cases. The data set, however,
has some limitations. First of all, its low number of
test cases results in a significant change in accuracy
for each misclassification. The low number also
results in limited coverage of concepts in a vector
space, which may not represent the semantic infor-
mation encoded. Secondly, it contains ambiguous
words. For example, Smart (used in the German
car manufacturers test group) can denote both the
car manufacturer and an unrelated adjective. Be-
cause the adjective might be more common in a
corpus, it will have a higher influence on the re-
sulting vector and might lead to its corresponding
word being classified as an outlier. We claim that
selecting the word "Smart" as an outlier when the
adjective is prevalent is, in fact, the correct behav-
ior. However, since this goes against the intention
of the data set design (and the ground-truth labels),
we consider such ambiguous words a drawback.
Thirdly, multi-token words are handled by taking
the average vector of all constituting tokens, which
is problematic. The concept denoted by a multi-
token word does not necessarily have connections
to the meaning (i.e., vector) of the tokens that com-
prise it.! Finally, some words in the data set have a

"Mercedes Benz comprises two proper names. Mercedes
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very low frequency in the corpora used for training
in the original paper.”> Low-frequency terms tend
to have unstable word vectors, which can lead to
high variance in evaluation using the 8-8-8 data
set.

WikiSem500 (Blair et al.,, 2017) is an au-
tomatically generated extension of 8-8-8. By
treating Wikidata as a graph such that semantic
word similarities are distances in the graph, the
authors of WikiSem500 automatically construct
500 test groups and 2816 test cases. However,
WikiSem500 has severe limitations. First of all,
many inlier sets have a vague semantic connec-
tion that makes outliers difficult to identify (even
for humans), which may be caused by Wikidata
not always following structural rules from multi-
level model theory (Brasileiro et al., 2016). Wiki-
Data’s crowd-sourced nature causes many hierar-
chies spanning more than one classification level
to follow known anti-patterns such as items that
are simultaneously instances and subclasses other
items; items that are subclasses of several items,
with one of the superclasses an instance of the
other, and lastly, items representing instances of
several items, with one of those also an instance
of the other (Brasileiro et al., 2016). Such incon-
sistencies in the graph are reflected in some of
the test groups in WikiSem500. Take, for exam-
ple, test group Q197, which consists of instances
of airplanes. The inliers include various specific
combat aircraft models (e.g., B-29_Superfortress
and F/A-18_Hornet) and also the terms glider and
fighter_aircraft, which should be subclasses rather
than instances of airplanes and should therefore
not be inliers. At the same time, Mitsubishi F-1 (a
Japanese combat aircraft) is an outlier, although it
should be an instance of an airplane, and therefore
an inlier.

Other problems include: ambiguous words, the
same outliers appear several times in the same test
group (thus overly impacting evaluation results),
the same words with different spellings in the same
test group, infrequent words, and inconsistency
between using the same words or new ones in the
same test group for different languages?.

To overcome the above issues with 8-8-8 and

is a popular female name in latin-language countries, not
related to cars like Mercedes Benz.

’E.g. Nestlé, Thaddaeus, and Alpina have a frequency of
17, 24, and 27, respectively, in UMBC.

Se.g. Q9143, Q341, Q16970, Q23691, and Q349, respec-
tively.

WikiSem500, we propose 50-8-8*, a manually cu-
rated data set comprising two sections: 25-8-8-
Sem and 25-8-8-Syn. We select unambiguous
single-token® words with a minimum frequency of
350 in each training corpus (details in Section 4.2).
We determine word ambiguity using dictionaries
and native speakers. Our outliers have different
degrees of connectedness to the inliers for different
levels of test complexity, i.e., the further down the
list of outliers, the weaker the connection to the
inliers, and more evidently an outlier.

For example, in the test group Greek Gods, the
first two outliers are Cupid (Roman god of love)
and Odysseus (Greek legendary king), which could
be misclassified by someone with little domain
knowledge. The following are Jesus, Sparta, Del-
phi, and Rome, all of which have only a weak
connection to the inliers. The last two outliers are
wrath and Atlanta, with no connection to the in-
liers. 25-8-8-Sem contains 25 test groups, each
comprising eight inliers and eight alternatives for
outliers, resulting in 200 unique test cases, a more
than 3-fold increase in size over the original 8-8-8
data set.

Please note that in preliminary experiments, we
found that random selection of outliers produces
trivial test cases, with all models scoring above
97.05 in accuracy and 99.15 in OPP.

The second part of our 50-8-8 data set, the syn-
tactic 25-8-8-Syn data set consists of 25 syntactic
test groups, as defined by part-of-speech tags (PoS).
We choose words with a unique PoS tag in dictio-
naries to avoid syntactic ambiguity®. Furthermore,
we ensure that the words in each test case share
no semantic connection, such that evaluation can
focus exclusively on distinction by syntactic role.

The two distinct subsets of 50-8-8 improve the
outlier identification task by allowing for evalua-
tions that target semantics and syntax, the two core
aspects that word vectors encode.

In addition to English, we also look at German
(another West Germanic language) and Italian (a
Romance language), which both employ a more
complex grammatical structure than English, and
use declension to mark gender and plurality. Ger-
man also relies heavily on compound words and
grammatical cases. We manually translate our 50-

*The 50-8-8 data set is available for download at ht tps :
//github.com/JesperBrink/50-8-8

SExcept in special cases as explained in Appendix B

®There are minor differences in the definition of syntactic
ambiguity, as explained in Appendix B
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8-8 data set using dictionaries and native speak-
ers. We address translation and language-specific
challenges as follows. First of all, words that are
unambiguous in one language can be ambiguous in
another. We address semantic ambiguity by replac-
ing ambiguous words in any language with words
that are unambiguous in all languages, and syn-
tactic ambiguity by replacing the ambiguous word
with one belonging to the same PoS tag. Syntactic
ambiguity is language-specific, e.g., when trans-
lating adverbs to German, as the suffixes -/y and
-mente often distinguish adjectives from adverbs
in English and Italian, respectively, but German
can use the same lexical form for both®. In Italian,
many adjectives are also nouns, and many nouns
are also conjugations of verbs, which are not as
prevalent in German and English. Secondly, when
a word translates to two synonymous words, we
use the most common, as determined by native
speakers.

Furthermore, for nouns in German, we use the
nominative case of the nouns to avoid the effects of
different grammatical cases. For adjectives in Ital-
ian, we use the masculine gender where applicable
to avoid the effects of gender. Removing syntactic
variation allows the semantic tests to stay focused
on semantics. Thus, all the versions of 25-8-8-Sem
are identical, all versions of 25-8-8-Syn have an
identical distribution of PoS tags within a given test
group, and we use consistent and frequent variants
of words.

3.2 Word analogy task

Our study’s second task is the word analogy task,
which measures how well a model captures the
relational similarity between pairs of words. A
high degree of relational similarity between the
pairs means that the words are analogous (Mikolov
et al., 2013c; Turney, 2006). It includes questions
like Berlin is to Germany as what is to France?
where the model should return Paris. Word anal-
ogy also has separation into semantic and syntactic
tests. As we note in Section 2, there is heavy criti-
cism of this task(Faruqui et al., 2016). We include
it for easy comparison with existing work and to
contextualize the outlier identification results.

3.2.1 Data set for word analogy task

We use the analogy data set of Mikolov et al.
(2013a) consisting of 19 544 test cases in 14 dif-
ferent categories capturing different relations, nine
syntactic and five semantic, resulting in 10 675 syn-

Corpus \ Corpus length \ Vocab. size

UMBC 3457177447 1465802
Wiki EN 2571028591 2306 628
Wiki DE 896 693 693 2154939
Wiki IT 541134131 806 992

Table 1: Summary of corpora

tactic and 8 869 semantic test cases. For German,
we use a version of the analogy data set, which has
a total of 18552 test cases (the adjective-adverb
category is missing as it does not exist in German)
(Koper et al., 2015). We use an Italian translation
of the analogy data set (Berardi et al., 2015), with
19791 test cases, with small changes to the data
set to keep all words as single token words.

Please note that the word analogy data set is
not balanced. Size varies by category, causing
some relations to be over-represented, e.g., two of
the semantic categories evaluate knowledge about
countries and corresponding capitals and represent
more than half of the total semantic tests (Gladkova
etal., 2016).

4 Models and corpora

This section introduces the word embedding mod-
els and the training corpora we use for the evalua-
tion.

4.1 Models

Word2vec consists of two types of models:
CBOW (continuous-bag-of-words) and skip-gram
(Mikolov et al., 2013a,b). Both models use a linear
context, consisting of the n words before and n
words after the current word.

Word2vecf (Levy and Goldberg, 2014a) re-
places the linear context with one based on words
directly connected via the dependency graph of the
sentence. Thus, word2vect eliminates the window
size hyper-parameter of word2vec, increases the
pool of available context tokens up to the sentence
boundaries, and focuses context words selection
by eliminating irrelevant words. The example Aus-
tralian scientist discovers star with a telescope
from the original paper can help understand the
difference in context. For the word discovers and
a window size of 2, word2vec would consider the
words Australian, scientist, star, and with to be
part of the context. There is nothing inherently
Australian about discovering; hence, this word
and with provide noise to the context of discov-
ers. Word2vecf, instead, includes scientist_nsubj,
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star_obj, and telescope_prepwith into the context.
Thus, word2vecf both removes noisy words (aus-
tralian, with) and includes relevant terms (tele-
scope) into the context.

On the downside, word2vecf requires the cor-
pus to be dependency parsed using a dependency
parser, introducing some noise (Chen and Man-
ning, 2014). Word2vecf suffixes the dependency
relation to each word in the context, which mas-
sively increases vocabulary size up to |V - | D]
where |V| denotes the vocabulary size and |D| de-
notes the number of relation types supported by
the dependency parser. The massive vocabulary
increase leads to lower frequency counts and can
result in instability in vectors’ values. Furthermore,
the word vectors are trained on the auxiliary words
with the relation as suffix instead of training word
vectors directly on each other, and as such, words
with dependency relations suffixed act as barriers
to information flow between context words and
target words.

Word2vecf+ addresses the limitations of
word2vecf, more specifically the inclusion of de-
pendency relations as word suffixes; thus, the vo-
cabulary size does not increase. Word2vec+ main-
tains the vocabulary size fixed by removing the
suffix from the word before training, thereby train-
ing words directly on each other and discarding
the auxiliary words (Li et al., 2017). For example,
the word scientist_nsubj from above becomes sci-
entist. While the original paper calls this method
generalized skip-gram with unbound dependency-
based context, for readability, we refer to it as
word2vecf+.

4.2 Training Corpora

We use multiple corpora to derive word vectors for
our evaluations (see summary in Table 1). For En-
glish, we use the UMBC web-based corpus (Han
et al., 2013) and the September 2019 dump of
English Wikipedia. The choice of corpora aims
to reproduce the experiments in the original out-
lier identification work (Camacho-Collados and
Navigli, 2016). The newer version of Wikipedia
is a super-set of the one used in the original ex-
periments. As in the original paper, the use of
two English corpora should eliminate questions of
corpus-specific results.

For German, we derive vectors from the January
2020 version of Wikipedia; for Italian from the
April 2020 version of Wikipedia. The three ver-

sions of Wikipedia have widely different sizes. The
largest (Wiki EN) is almost five times bigger than
the smallest (Wiki IT). However, even the smallest
has over 500 million tokens for a vocabulary of
less than one million word types (average word
type frequency of 670). The smallest corpus (Wiki
IT) has a larger average word type frequency (670)
than the second smallest, Wiki DE (average word
type frequency 416). Such large corpora, com-
bined with repetitions of training and evaluation
cycles, provide a good overview of model perfor-
mance and avoid the of word2vec (Antoniak and
Mimno, 2018).

We use WikiExtractor (Attardi, 2018) to extract
plain text from the Wikipedia corpora, and tokenize
all corpora using Stanford CoreNLP v3.9.2 (Man-
ning et al., 2014). We remove words that appear
less than five times using the original word2vec
code (Mikolov et al., 2013a) or word2vecf (Levy
and Goldberg, 2014a), as appropriate. We depen-
dency parse using the Stanford neural-network de-
pendency parser for models that require depen-
dency relations (word2vecf, word2vecf+) (Chen
and Manning, 2014). For dependency parsing Ital-
ian, we use the model trained by Palmero Aprosio
and Moretti (2016).

5 Experiments

This section presents experimental results, focus-
ing on the reproduction, new data set, window
size, different corpora, and languages. In our
tables and figures, we denote the different ap-
proaches as follows: CBOW, SG (skip-gram),
W2VF (word2vecf), W2VF+ (word2vecf+); each
followed by the size of the window used. We in-
clude a detailed description of the experimental
setup in Appendix C.

5.1 Reproduction results

In Table 2, we compare our reproduction re-
sults with those of Camacho-Collados and Navigli
(2016). We observe a high variance in accuracy,
which illustrates the small 8-8-8 data set’s weak-
ness and further underlines the importance of eval-
uating multiple training runs. We conclude that the
original outlier identification results can be repro-
duced, but with the caveat that accuracy can suffer
from large variance. In Section 5.2, we propose
50-8-8, a data set that alleviates this issue.

Table 3 shows the results of reproducing the
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Model Work UMBC OPP UMBC Acc Wiki OPP Wiki Ace
CBOW 5 Original | 93.80 73.40 95.30 73.40

Our 93.69 £ 0.11 71.88 £4.39 94.51 + 0.09 67.66 + 1.00
SG 10 Original 92.60 64.10 93.80 70.30

Our 92.75 + 0.20 62.81 + 5.27 94.16 + 0.05 69.53 + 1.10
CBOW 2 Our 93.38 + 0.06 67.97 + 2.08 94.94 + 0.04 68.13 + 1.07
CBOW 10 | Our 94.10 + 0.10 72.34 +2.47 | 94.41 £0.02 68.13 + 1.07
SG 2 Our 94.61 +0.04 | 69.53 + 1.59 95.41 + 0.07 71.72 £ 1.68
SG 5 Our 94.16 + 0.02 69.84 + 0.51 94.59 + 0.08 69.69 + 2.54
W2VF Our 89.43 + 0.06 62.50 + 0.00 92.83 £+ 0.20 68.75 + 0.00
W2VF+ Our 92.46 + 0.05 66.41 + 0.61 94.47 + 0.04 75.78 £1.10

Table 2: Outlier identification reproduction of Camacho-Collados and Navigli (2016) (10 runs, 8-8-8 data set);
word2vec with different window sizes, word2vecf and word2vecf+ added for easier comparison with other results.

word analogy task’-®. For English, we see the same
pattern as (Mikolov et al., 2013a), where skip-gram
outperforms CBOW, even though our corpora and
hyper-parameters differ. Comparing the German
Wikipedia results to those of (Koper et al., 2015),
we see a similar pattern in the semantic part, where
skip-gram outperforms CBOW. However, in the
syntactic part, our results differ. Koper et al. ob-
serve that CBOW outperforms skip-gram, whereas
we observe the opposite, which could be due to the
difference in corpora and hyper-parameters such
as vector dimensionality.

Due to the different focus of this paper and that
of Berardi et al. (2015), we can only compare skip-
gram results with window size 10. We observe
a similar semantic performance, but a significant
difference in syntactic performance where Berardi
et al. observe a score of 32.62 compared to our
result of 44.63, which could be the result of the
difference in the number of negative samples (we
use 15, they use 10) and the different Wikipedia
version. However, as they do not cover the CBOW
model, it is difficult to get an overview of model
performance.

5.2 The effect of the new 50-8-8 data set

The results of outlier identification using our pro-
posed 50-8-8 are in Table 4. As expected, given
the more comprehensive tests, on both UMBC and
English Wikipedia, we see significantly lower accu-
racy variance for 25-8-8-Sem than 8-8-8. The only
exception is word2vecf, where the accuracy vari-
ance grows slightly from 0 on 8-8-8 up to 0.15 on
25-8-8-Sem. Although word2vecf accuracy vari-
ance on 8-8-8 is 0, the ten instances do differ in

"Note that 5% of the questions were skipped by the Ger-
man models and 10% of the questions were skipped by the
Italian models due to OOV words. This was also observed by
Berardi et al. (2015).

8We use the 3CosAdd method for solving the task, just
like (Mikolov et al., 2013a). The alternative 3CosMul im-
proves the analogy results and is discussed in Appendix D.

their answers, as can be observed in the OPP vari-
ance in Table 2. Except for a few individual cases,
the variance on 25-8-8-Syn is also low. The perfor-
mance of the best models on 25-8-8-Syn usually
matches that on 25-8-8-Sem, suggesting that the
two subsets of 50-8-8 are balanced in terms of dif-
ficulty. The best performing models on 25-8-8-Syn
is CBOW 2 (except for Italian).

5.3 Effect of window size

Table 4 shows that window size has a limited im-
pact on OPP for semantic tests (25-8-8-Sem), but
affects the results on syntactic tests (25-8-8-Syn),
where skip-gram performs best with low window
size across all corpora. For the word analogy task
(Table 3), the opposite is true for the semantic eval-
uation, where larger window sizes have improved
performance. These results align with Bansal et al.
(2014), who observe that larger window sizes re-
sult in more semantic information, while smaller
lead to more syntactic.

The same pattern can be observed on syntac-
tic German Wikipedia and syntactic UMBC when
taking variance into account. Bansal et al. ob-
serve that CBOW and skip-gram with lower win-
dow size perform better on syntactic tests, and
larger window size performs better on semantic
tests. However, our results show that window
size performance varies with the task. These two
tasks’ preferred window sizes indicate that lower
window sizes better capture clusters with seman-
tically and syntactically similar words. Larger
window sizes are better suited for capturing word
relations. These observations also indicate that
hyper-parameters can have a big influence on the
performance of the models.

5.4 Effect of context type

Table 4 casts a shadow on the superiority
of the word2vecf context construction strategy.
Word2vectf matches or trails the best word2vec

126



Model | UMBC Sem | UMBC Syn_ | EN Wiki Sem | EN Wiki Syn | DE Wiki Sem | DE Wiki Syn | IT Wiki Sem IT Wiki Syn
CBOW 2 10.37 £ 0.03 51.92 £ 0.05 25.34 £ 0.09 43.92 £ 0.03 16.38 + 0.07 15.28 £+ 0.06 4.38 £0.02 21.42 £ 0.08
CBOW 5 15.96 + 0.06 53.01 £ 0.04 35.17 £0.17 48.18 £ 0.06 22.36 £ 0.11 17.70 £ 0.07 5.11 4 0.02 26.06 £ 0.02
CBOW 10 23.36 £ 0.05 54.47 £ 0.06 51.75 £ 0.02 50.95 £ 0.02 27.01 £ 0.11 18.40 £+ 0.04 6.57 + 0.03 28.06 £ 0.07
SG2 56.29 £ 0.58 68.72 £ 0.07 72.84 £ 0.09 63.74 £ 0.09 53.93 + 0.10 28.45 + 0.05 28.06 £ 2.62 42.77 £ 0.11
SG5 64.59 £+ 0.13 69.51 + 0.07 77.70 £ 0.14 64.36 + 0.04 66.26 £ 0.29 31.63 £ 0.08 44.01 £ 0.07 44.98 £ 0.07
SG 10 67.59 + 0.56 69.19 £ 0.80 78.42 + 0.04 62.36 £+ 0.09 68.15 £+ 0.08 32.15 £ 0.03 50.77 £ 0.17 44.63 £ 0.12
W2VF 9.39 4+ 0.08 54.75 £ 0.16 15.22 £+ 0.22 46.05 £ 0.03 6.40 £ 0.02 12.30 4+ 0.03 2.3+ 0.01 21.38 £ 0.01
W2VF+ 30.63 £ 0.23 65.82 £ 0.03 51.90 £ 0.35 62.76 £ 0.03 19.41 £ 0.17 24.49 + 0.06 7.10 £ 0.07 33.41 £0.18

Table 3: Word Analogy on all training corpora; model name followed by window size.

Corpus Model 25-8-8-Sem OPP 25-8-8-Sem Acc 25-8-8-Syn OPP | 25-8-8-Syn Acc
CBOW 2 95.67 + 0.01 85.85 + 0.30 94.38 + 0.02 73.75 + 0.06
CBOW 5 95.67 + 0.40 85.50 + 0.35 94.31 + 0.02 75.85 +0.15
CBOW 10 95.57 + 0.10 84.75 + 0.31 93.98 + 0.04 75.15 + 0.35
UMBC SG2 96.83 + 0.40 87.00 4+ 0.40 92.48 + 0.13 73.35 + 0.95
SG 5 96.79 + 0.01 86.15 4+ 0.05 86.90 + 0.15 62.40 4+ 1.29
SG 10 96.68 + 0.03 86.40 + 0.49 82.86 + 0.24 53.55 + 2.17
W2VF 96.09 + 0.03 84.65 + 0.15 94.15 + 0.38 80.35 +1.95
W2VF+ 97.41 + 0.01 89.45 + 0.32 91.54 + 0.70 71.55 +4.47
CBOW 2 95.83 + 0.01 83.60 + 0.44 95.53 + 0.02 80.00 + 0.50
CBOW 5 96.14 + 0.02 85.00 + 0.20 95.26 + 0.01 80.30 + 0.66
CBOW 10 95.74 + 0.01 83.10 4+ 0.09 94.55 + 0.02 77.05 + 0.27
Wiki EN SG 2 97.68 + 0.01 88.75 + 0.41 90.09 + 0.25 67.00 + 1.65
SG 5 97.44 + 0.01 88.50 + 0.00 86.33 + 0.69 59.60 + 1.54
SG 10 97.05 + 0.01 87.45 + 0.07 82.74+ 1.01 54.00 + 1.75
W2VF 94.66 + 0.03 80.45 + 0.12 90.63 + 0.11 70.00 + 0.75
W2VF+ 97.07 4+ 0.00 88.00 4+ 0.10 84.29 + 0.03 54.75 + 0.41
CBOW 2 92.41 4+ 0.05 74.60 +1.34 93.76 + 0.08 72.95 +1.97
CBOW 5 92.24 + 0.04 73.40 + 0.44 92.46 + 0.03 68.95 + 1.02
CBOW 10 92.48 + 0.03 72.65 +0.70 91.65 + 0.05 65.70 + 0.51
Wiki DE SG2 93.93 + 0.04 79.25 + 0.16 89.16 + 0.03 64.05 + 1.22
SG 5 93.93 + 0.01 78.00 + 0.70 86.09 + 0.12 55.40 +1.14
SG 10 93.83 + 0.03 76.90 4+ 0.29 83.41 + 0.43 51.55 4+ 2.02
W2VF 91.40 4+ 0.00 69.60 4+ 0.24 90.28 + 0.02 72.80 + 0.26
W2VF+ 93.29 + 0.01 74.55 + 0.57 78.58 £ 0.14 48.85 £ 0.50
CBOW 2 94.29 + 0.06 75.05 + 0.62 93.41 + 0.04 75.10 + 0.84
CBOW 5 93.88 + 0.05 73.15 4+ 0.40 93.98 + 0.05 76.55 + 1.67
CBOW 10 93.21 + 0.04 71.55 + 0.62 93.77 + 0.04 74.55 + 2.17
Wiki IT SG2 95.44 + 0.06 79.15 + 0.45 81.20 + 0.26 60.75 + 0.51
SG 5 95.13 + 0.02 77.40 + 0.39 78.69 £ 0.17 56.20 + 0.91
SG 10 94.93 + 0.02 77.40 £ 0.19 75.51 +0.09 50.10 + 0.29
W2VF 92.48 + 0.01 70.20 4+ 0.06 95.37 + 0.02 83.80 + 0.56
W2VF+ 94.39 + 0.03 75.40 + 0.84 78.59 4+ 2.15 55.10 + 2.14

Table 4: Outlier identification on 50-8-8 (25-8-8-Sem, 25-8-8-Syn); model name followed by window size.

model on semantic tests on all corpora. However,
word2vecf seems better suited to syntactic tests,
where it matches or outperforms the best word2vec
model on all four corpora.

We observe the same results in the word analogy
task (Table 3). Despite the expected improvements
in the contexts of word2vecf and word2vecf+, they
consistently underperform the word2vec models,
sometimes underperforming even the weakest of
the word2vec models. This observation is consis-
tent across all data sets on all languages.

5.5 Effect of relation-suffix

The results in Table 4 show that word2vecf+ out-
performs word2vecf on semantic outlier identifi-
cation across all corpora. On the syntactic subset,
25-8-8-Syn, word2vecf consistently outperforms
word2vecf+ on all corpora. The consistent dif-
ference in performance between word2vecf and
word2vecf+ on both the semantic and syntactic

tests suggests that word2vecf might be better suited
for encoding syntactic information and word2vecf+
might be better suited for encoding semantic infor-
mation.

We observe a large drop in syntactic OPP and
accuracy for both word2vect and word2vecf+ from
UMBC to Wiki EN. The drop may be due to the
quality of dependency relations from the Stanford
CoreNLP dependency parser, which learned from
the Penn Treebank, a corpus of scientific abstracts,
news stories, and bulletins (Chen and Manning,
2014; Marcus et al., 1993). Thus, Penn Treebank
resembles UMBC more than English Wikipedia,
which could explain the performance drop.

On the word analogy task (Table 3), word2vecf+
performs better than word2vecf. On the syntactic
tests, word2vecf is comparable to CBOW, but re-
moving the relation suffix (word2vecf+) results in
scores closer to skip-gram, which is the best per-
forming model; on the semantic tests, removing
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the relation suffix results in a 3-fold increase in
word2vecf+ performance over word2vecf.

Based on these observations, we conclude that
word2vecf+ is better able to capture semantic infor-
mation as it avoids word2vecf’s dramatic, artificial,
increase in vocabulary. It allows word vectors to
directly influence each other during training result-
ing in better semantically positioned related words
in the embedding space and better capturing both
syntactic and semantic similarities in word pairs.
In contrast, the relational suffixes improve the clus-
tering of syntactically related words.

5.6 Results across languages

Table 4 shows that the models trained on German
and Italian are generally less capable than those
trained on the English corpora. The difference
between German and English is noticeable in syn-
tactic analogy (Table 3). The German performance
is almost half that of English across all models
while Italian is better, but is still significantly lower
than English. Furthermore, in the semantic part of
word analogy, the performance of models trained
on UMBC is closer to models trained on Wiki DE
than models trained on Wiki EN. In general, Ta-
ble 4 shows a drop in performance for languages
other than English, in line with our expectation that
German and Italian are more difficult to model.

6 Conclusions

We contribute several reproduction studies of the
outlier identification task and the classic word
analogy task, both intrinsic evaluations of non-
contextual word representations. We provide an
in-depth analysis of word2vec, word2vecf, and
word2vecf+ on the two tasks analyzing the effects
of window size, context type, and context repre-
sentation on English, German, and Italian. We find
that the context construction strategy of word2vecf
and word2vecf+ is not always effective. Some-
times the two models underperform even the weak-
est of the word2vec models.

Our reproduction of outlier identification shows
high variance, which we attribute to the original
data set’s limitations. To address these limitations,
we propose 50-8-8, a new data set that is multi-
ple times larger, manually curated, multilingual,
and contains syntactic and semantic tests. Besides
eliminating the variance issues, 50-8-8 quantifies
the drop in performance in representations of lan-
guages with more complicated grammar and mor-

phology than English.
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