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Abstract

Recognizing Textual Entailment (RTE) was
proposed as a unified evaluation framework
to compare semantic understanding of differ-
ent NLP systems. In this survey paper, we
provide an overview of different approaches
for evaluating and understanding the reason-
ing capabilities of NLP systems. We then
focus our discussion on RTE by highlighting
prominent RTE datasets as well as advances
in RTE dataset that focus on specific linguis-
tic phenomena that can be used to evaluate
NLP systems on a fine-grained level. We con-
clude by arguing that when evaluating NLP
systems, the community should utilize newly
introduced RTE datasets that focus on specific
linguistic phenomena.

1 Introduction

As NLP technologies are more widely adopted,
how to evaluate NLP systems and how to deter-
mine whether one model understands language or
generates text better than another is an increasingly
important question. Recognizing Textual Entail-
ment (RTE Cooper et al., 1996; Dagan et al., 2006),
the task of determining whether the meaning of one
sentence can likely be inferred from another was
introduced to answer this question.

We begin this survey by discussing different ap-
proaches over the past thirty years for evaluating
and comparing NLP systems. Next, we will discuss
how RTE was introduced as a specific answer to
this broad question of how to best evaluate NLP
systems. This will include a broad discussion of ef-
forts in the past three decades to build RTE datasets
and use RTE to evaluate NLP models. We will then
highlight recent RTE datasets that focus on specific
semantic phenomena and conclude by arguing that
they should be utilized for evaluating the reasoning
capabilities of downstream NLP systems.

Natural Language Inference or Recognizing
Textual Entailment?

The terms Natural Language Inference (NLI) and
RTE are often used interchangeably. Many papers
begin by explicitly mentioning that these terms are
synonymous (Liu et al., 2016; Gong et al., 2018;
Camburu et al., 2018).1 The broad phrase “natu-
ral language inference” is more appropriate for a
class of problems that require making inferences
from natural language. Tasks like sentiment anal-
ysis, event factuality, or even question-answering
can be viewed as forms of natural language in-
ference without having to convert them into the
sentence pair classification format used in RTE.
Earlier works used the term natural language in-
ference in this way (Schwarcz et al., 1970; Wilks,
1975; Punyakanok et al., 2004).

The leading term recognizing in RTE is fitting as
the task is to classify or predict whether the truth
of one sentence likely follows the other. The sec-
ond term textual is similarly appropriate since the
domain is limited to textual data. Critics of the
name RTE often argue that the term entailment is
inappropriate since the definition of the NLP task
strays too far from the technical definition from
entailment in linguistics (Manning, 2006). Zae-
nen et al. (2005) prefer the term textual inference
because examples in RTE datasets often require
a system to not only identify entailments but also
conventional implicatures, conversational implica-
tures, and world knowledge.

If starting over, we would advocate for the phrase
Recognizing Textual Inference. However, given the
choice between RTE and NLI, we prefer RTE since
it is more representative of the task at hand.

1In fact, variants of the phrase “natural language inference,
also known as recognizing textual entailment” appear in many
papers (Chen et al., 2017; Williams et al., 2017; Naik et al.,
2018; Chen et al., 2018; Tay et al., 2018, i.a.).
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2 Evaluating NLP Systems

The question of how best to evaluate NLP systems
is an open problem intriguing the community for
decades. A 1988 workshop on the evaluation of
NLP systems explored key questions for evaluation.
These included questions related to valid measures
of “black-box” performance, linguistic theories that
are relevant to developing test suites, reasonable ex-
pectations for robustness, and measuring progress
in the field (Palmer and Finin, 1990). The large
number of ACL workshops focused on evaluations
in NLP demonstrate the lack of consensus on how
to properly evaluate NLP systems. Some work-
shops focused on: 1) evaluations in general (Pastra,
2003); 2) different NLP tasks, e.g. machine transla-
tion (ws-, 2001; Goldstein et al., 2005) and summa-
rization (Conroy et al., 2012; Giannakopoulos et al.,
2017); or 3) contemporary NLP approaches that
rely on vector space representations (Levy et al.,
2016; Bowman et al., 2017; Rogers et al., 2019).

In the quest to develop an ideal evaluation frame-
work for NLP systems, researchers proposed multi-
ple evaluation methods, e.g. EAGLES (King et al.,
1995), TSNLP (Oepen and Netter, 1995; Lehmann
et al., 1996), FraCas (Cooper et al., 1996), SENSE-
VAL (Kilgarriff, 1998), CLEF (Agosti et al., 2007),
and others. These approaches are often divided
along multiple dimensions. Here, we will survey
approaches along two dimensions: 1) intrinsic vs.
extrinsic evaluations; 2) general purpose vs task
specific evaluations.2

2.1 Intrinsic vs Extrinsic Evaluations
Intrinsic evaluations test the system in
of itself and extrinsic evaluation test the
system in relation to some other task.

(Farzindar and Lapalme, 2004)

When reviewing Sparck Jones and Galliers
(1996)’s textbook on NLP evaluations, Estival
(1997) comments that “one of the most important
distinctions that must be drawn when performing
an evaluation of a system is that between intrin-
sic criteria, i.e. those concerned with the system’s
own objectives, and extrinsic criteria, i.e. those
concerned with the function of the system in rela-
tion to its set-up.” Resnik et al. (2006) similarly
noted that “intrinsic evaluations measure the perfor-
mance of an NLP component on its defined subtask,

2Resnik and Lin (2010) summarize other evaluation ap-
proaches and Paroubek et al. (2007) present a history and
evolution of NLP evaluation methods.

usually against a defined standard in a reproducible
laboratory setting” while “extrinsic evaluations fo-
cus on the component’s contribution to the per-
formance of a complete application, which often
involves the participation of a human in the loop.”
Sparck Jones (1994) refers to the distinction of in-
trinsic vs extrinsic evaluations as the orientation of
an evaluation.

Under these definitions, for example, “an intrin-
sic evaluation of a parser would analyze the ac-
curacy of the results returned by the parser as a
stand-alone system, whereas an extrinsic evalua-
tion would analyze the impact of the parser within
the context of a broader NLP application” like
answer extraction (Mollá and Hutchinson, 2003).
When evaluating a document summarization sys-
tem, an intrinsic evaluation might ask questions
related to the fluency or coverage of key ideas in
the summary while an extrinsic evaluation might
explore whether a generated summary was useful
in a search engine (Resnik and Lin, 2010). This
distinction has also been referred to as application-
free versus application-driven evaluations (Kováź
et al., 2016).3

Proper extrinsic evaluations are often infeasi-
ble in an academic lab setting. Therefore, re-
searchers often rely on intrinsic evaluations to ap-
proximate extrinsic evaluations, even though intrin-
sic and extrinsic evaluations serve different goals
and many common intrinsic evaluations for word
vectors (Tsvetkov et al., 2015; Chiu et al., 2016;
Faruqui et al., 2016), generating natural language
text (Belz and Gatt, 2008; Reiter, 2018), or text
mining (Caporaso et al., 2008) might not correlate
with extrinsic evaluations.4 Developing intrinsic
evaluations that correlate with extrinsic evaluations
remains an open problem in NLP.

3As another example, in the case of evaluating differ-
ent methods for training word vectors, intrinsic evaluations
might consider how well similarities between word vectors
correlate with human evaluated word similarities. This is
the basis of evaluation benchmarks like SimLex (Hill et al.,
2015), Verb (Baker et al., 2014), RW (Luong et al., 2013),
MEN (Bruni et al., 2012), WordSim-353 (Finkelstein et al.,
2001), and others. Extrinsic evaluations for word embeddings
might consider how well different word vectors help models
for tasks like sentiment analysis (Petrolito, 2018; Mishev et al.,
2019), machine translation (Wang et al., 2019b), or named
entity recognition (Wu et al., 2015; Nayak et al., 2016).

4Although recent work suggest that some intrinsic eval-
uations for word vectors do indeed correlate with extrinsic
evaluations (Qiu et al., 2018; Thawani et al., 2019).
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2.2 General Purpose vs Task Specific
Evaluations

General purpose evaluations determine how well
NLP systems capture different linguistic phenom-
ena. These evaluations often rely on the develop-
ment of test cases that systematically cover a wide
range of phenomena. Additionally, these evalu-
ations generally do not consider how well a sys-
tem under investigation performs on held out data
for the task that the NLP system was trained on.
In general purpose evaluations, specific linguis-
tic phenomena should be isolated such that each
test or example evaluates one specific linguistic
phenomenon, as tests ideally “are controlled and
exhaustive databases of linguistic utterances classi-
fied by linguistic features” (Lloberes et al., 2015).

In task specific evaluations, the goal is to deter-
mine how well a model performs on a held out test
corpus. How well systems generalize on text clas-
sification problems is determined with a combina-
tion of metrics like accuracy, precision, and recall,
or metrics like BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004) in generation tasks. Task spe-
cific evaluations, where “the majority of benchmark
datasets . . . are drawn from text corpora, reflect-
ing a natural frequency distribution of language
phenomena” (Belinkov and Glass, 2019), is the
common paradigm in NLP research today. Re-
searchers often begin their research with provided
training and held-out test corpora, as their research
agenda is to develop systems that outperform other
researchers’ systems on a held-out test set based
on a wide range of metrics.

The distinction between general purpose and
task specific evaluations is sometimes blurred. For
example, while general purpose evaluations are
ideally task agnostic, researchers develop eval-
uations that test for a wide range of linguis-
tic phenomena captured by NLP systems trained
to perform specific tasks. These include lin-
guistic tests targeted for systems that focus on
parsing (Lloberes et al., 2015), machine transla-
tion (King and Falkedal, 1990; Koh et al., 2001;
Isabelle et al., 2017; Choshen and Abend, 2019;
Popović and Castilho, 2019; Avramidis et al.,
2019), summarization (Pitler et al., 2010), and oth-
ers (Chinchor, 1991; Chinchor et al., 1993).

Test Suites vs. Test Corpora This distinction
can also be described in terms of the data used to
evaluate systems. Oepen and Netter (1995) refer
to this distinction as test suites versus test corpora.

They define a test suite as a “systematic collection
of linguistic expressions (test items, e.g. sentences
or phrases) and often includes associated annota-
tions or descriptions.” They lament the state of
test suites in their time since “most of the existing
test suites have been written for specific systems or
simply enumerate a set of ‘interesting’ examples
[but] does not meet the demand for large, system-
atic, well-documented and annotated collections
of linguistic material required by a growing num-
ber of NLP applications.” Oepen and Netter fur-
ther delineate the difference between test corpora
and test suites. Unlike “test corpora drawn from
naturally occurring texts,” test suites allow for 1)
more control over the data, 2) systematic coverage,
3) non-redundant representation, 4) inclusion of
negative data, and 5) coherent annotation. Thus,
test suites “allow for a fine-grained diagnosis of
system performance” (Oepen and Netter, 1995).
Oepen and Netter argue that both should be used
in tandem - “test suites and corpora should stand
in a complementary relation, with the former build-
ing on the latter wherever possible and necessary.”
Hence, both test suites and test corpora are impor-
tant for evaluating how well NLP systems capture
linguistic phenomena and perform in practice on
real world data.

2.3 Probing Deep Learning NLP Models

In recent years, interpreting and analysing NLP
models has become prominent in many research
agendas. Contemporary and successful deep learn-
ing NLP methods are not as interpretable as pre-
viously popular NLP approaches relying on fea-
ture engineering. Approaches for interpreting and
analysing how well NLP models capture linguistic
phenomena often leverage auxiliary or diagnos-
tic classifiers. Contemporary deep learning NLP
systems often leverage pre-trained encoders to rep-
resent the meaning of a sentence in a fixed-length
vector representation. Adi et al. (2017) introduced
the notion of using auxiliary classifiers as a general
purpose methodology to diagnose what language
information is encoded and captured by contem-
porary sentence representations. They argued for
using “auxiliary prediction tasks” where, like in
Dai and Le (2015), pre-trained sentence encodings
are “used as input for other prediction tasks.” The
“auxiliary prediction tasks” can serve as diagnostics,
and Adi et al. (2017)’s auxiliary, diagnostic tasks
focused on how word order, word content, and sen-
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tence length are captured in pre-trained sentence
representations.

As Adi et al.’s general methodology “can be
applied to any sentence representation model,” re-
searchers develop other diagnostic tasks that ex-
plore different linguistic phenomenon (Ettinger
et al., 2018; Conneau et al., 2018; Hupkes et al.,
2018). Belinkov (2018)’s thesis relied on and popu-
larized this methodology when exploring how well
speech recognition and machine translation sys-
tems capture phenomena related to phonetics (Be-
linkov and Glass, 2017), morphology (Belinkov
et al., 2017a), and syntax (Belinkov et al., 2017b).

The general purpose methodology of auxiliary
diagnostic classifiers is also used to explore how
well different pre-trained sentence representation
methods perform on a broad range of NLP tasks.
For example, SentEval (Conneau and Kiela, 2018)
and GLUE (Wang et al., 2018) are used to evalu-
ate how different sentence representations perform
on paraphrase detection, semantic textual similar-
ity, and a wide range of other binary and multi-
class classification problems. We categorize these
datasets as extrinsic evaluations since they often
treat learned sentence-representations as features
to train a classifier for an external task. However,
most of these do not count as test suites, since the
data is not tightly controlled to evaluate specific lin-
guistic phenomena. Rather, resources like GLUE
and SuperGLUE (Wang et al., 2019a) package ex-
isting test corpora for different tasks and provide
an easy platform for researchers to compete on de-
veloping systems that perform well on the suite of
pre-existing, and re-packaged test corpora.

3 Recognizing Textual Entailment

NLP systems cannot be held responsi-
ble for knowledge of what goes on in
the world but no NLP system can claim
to “understand” language if it can’t cope
with textual inferences.

(Zaenen et al., 2005)

Recognizing and coping with inferences is key
to understanding human language. While NLP sys-
tems might be trained to perform different tasks,
such as translating, answering questions, or ex-
tracting information from text, most NLP systems
require understanding and making inferences from
text. Therefore, RTE was introduced as a frame-
work to evaluate NLP systems. Rooted in linguis-
tics, RTE is the task of determining whether the

meaning of one sentence can likely be inferred
from another. Unlike the strict definition of entail-
ment in linguistics that “sentence A entails sentence
B if in all models in which the interpretation of A
is true, also the interpretation of B is true” (Janssen,
2011), RTE relies on a fuzzier notion of entail-
ment. For example, annotation guidelines for an
RTE dataset5 stated that

in principle, the hypothesis must be fully
entailed by the text. Judgment would be
False if the hypothesis includes parts that
cannot be inferred from the text. How-
ever, cases in which inference is very
probable (but not completely certain) are
still judged as True.

(Dagan et al., 2006)

Starting with FraCas, we will discuss influential
work that introduced and argued for RTE as an
evaluation framework.

FraCas Over a span of two years (December
1993 - January 1996), Cooper et al. (1996) devel-
oped FraCas as “an inference test suite for evaluat-
ing the inferential competence of different NLP sys-
tems and semantic theories”. Created manually by
many linguists and funded by FP3-LRE,6 FraCas is
a “semantic test suite” that covers a range of seman-
tic phenomena categorized into 9 classes. These are
generalized quantifiers, plurals, anaphora, ellipsis,
adjectives, comparatives, temporal reference, verbs,
and attitudes. Based on the descriptions in §2, we
would classify FraCas as an intrinsic evaluation
and a general purpose test suite.

Examples in FraCas contain a premise paired
with a hypothesis. Premises are at least one sen-
tence, though sometimes they contain multiple sen-
tences, and most hypotheses are written in the form
of a question and the answers are either Yes, No,
or Don’t know. MacCartney (2009) (specifically
Chapter 7.8.1) converted the hypotheses from ques-
tions into declarative statements.7 Table 4 (in the
appendix) contains examples from FraCas. In total,
FraCas only contains about 350 labeled examples,
potentially limiting the ability to generalize how
well models capture these phenomena. Addition-
ally, the limited number of examples in FraCas

5These were the guidelines in RTE-1.
6https://cordis.europa.eu/programme/id/FP3-LRE
7https://nlp.stanford.edu/˜wcmac/

downloads/fracas.xml

https://nlp.stanford.edu/~wcmac/downloads/fracas.xml
https://nlp.stanford.edu/~wcmac/downloads/fracas.xml


96

Kessler ’s team conducted 60,643 interviews with adults in 14 countries
I Kessler ’s team interviewed more than 60,000 adults in 14 countries

entailed

Capital punishment is a catalyst for more crime
I Capital punishment is a deterrent to crime

not-entailed

Boris Becker is a former professional tennis player for Germany
I Boris Becker is a Wimbledon champion

not-entailed

Table 1: Examples from the PASCAL RTE datasets (modified for space): The first line in each example is the
premise and the line starting with I is the corresponding hypothesis. The first, second, and third examples are
from the RTE1, RTE2, and RTE3 development sets respectively. The second column indicates the example’s label.

prevents its use as a dataset to train data hungry
deep learning models.

Pascal RTE Challenges With a similar broad
goal as FraCas, the Pascal Recognizing Textual
Entailment challenges began as a “generic evalua-
tion framework” to compare the inference capabili-
ties of models designed to perform different tasks,
based on the intuition “that major inferences, as
needed by multiple applications, can indeed be cast
in terms of textual entailment” (Dagan et al., 2006).
Unlike FraCas’s goal of determining whether a
model performs distinct types of reasoning, the
Pascal RTE Challenges primarily focused on us-
ing this framework to evaluate models for distinct,
real-world downstream tasks. Thus, the examples
in the Pascal RTE datasets were extracted from
downstream tasks. The process was referred to as
recasting in the thesis by Glickman (2006).

NLU problems were reframed under the RTE
framework and candidate sentence pairs were ex-
tracted from existing NLP datasets and then labeled
under variations of the RTE definition (including
the quote above (Dagan et al., 2006)).8 For exam-
ple, the RTE1 data came from 7 tasks: comparable
documents, reading comprehension, question an-
swering, information extraction, machine transla-
tion, information retrieval, and paraphrase acquisi-
tion.9 Starting with Dagan et al. (2006), there have
been eight iterations of the RTE challenge, with the
most recent being Dzikovska et al. (2013).

SNLI and MNLI The most popular recent
RTE datasets, Stanford Natural Language Infer-
ence (SNLI; Bowman et al., 2015) and its succes-
sor Multi-NLI (Williams et al., 2017), each con-
tain over half a million examples and enabled re-

8See Appendix A for the annotation guidelines for RTE1,
RTE2, and RTE3.

9Chapter 3.2 of Glickman’s thesis discusses how examples
from these datasets were converted into RTE.

searchers to apply data-hungry deep learning meth-
ods to RTE. Unlike the RTE datasets, these two
datasets were created by eliciting hypotheses from
humans. Crowd-source workers were tasked with
writing one sentence each that is entailed, neutral,
and contradicted by a caption extracted from the
Flickr30k corpus (Young et al., 2014). Next, the
label for each premise-hypothesis pair in the de-
velopment and test sets were verified by multiple
crowd-source workers and the majority-vote label
was assigned for each example. Table 2 provides
such examples for both datasets. Rudinger et al.
(2017) illustrated how eliciting textual data in this
fashion creates stereotypical biases in SNLI. Some
of the biases are gender-, age-, and race-based. Po-
liak et al. (2018c) argue that this may cause addi-
tional biases enabling a hypothesis-only model to
outperform the majority baseline on SNLI by 100
percent (Gururangan et al., 2018; Tsuchiya, 2018).

3.1 Entailment as a Downstream NLP Task

The datasets in the PASCAL RTE Challenges were
primarily treated as test corpora. Teams partici-
pated in those challenges by developing models
to achieve increasingly high scores on each chal-
lenges’ datasets. Since RTE was motivated as a
diagnostic, researchers analyzed the RTE challenge
datasets. de Marneffe et al. (2008) argued that there
exist different levels and types of contradictions.
They focus on different types of phenomena, e.g.
antonyms, negation, and world knowledge, that
can explain why a premise contradicts a hypoth-
esis. MacCartney (2009) used a simple bag-of-
words model to evaluate early iterations of Rec-
ognizing Textual Entailment (RTE) challenge sets
and noted10 that “the RTE1 test suite is the hardest,
while the RTE2 test suite is roughly 4% easier, and
the RTE3 test suite is roughly 9% easier.” Addi-

10In Chapter 2.2 of his thesis
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P A woman is talking on the phone while standing next to a dog
H1 A woman is on the phone entailment
H2 A woman is walking her dog neutral
H3 A woman is sleeping contradiction

P Tax records show Waters earned around $65,000 in 2000
H1 Waters’ tax records show clearly that he earned a lovely $65k in 2000 entailment
H2 Tax records indicate Waters earned about $65K in 2000 entailment
H3 Waters’ tax records show he earned a blue ribbon last year contradiction

Table 2: Examples from the development sets of SNLI (top) and MultiNLI (bottom). Each example contains one
premise that is paired with three hypotheses in the datasets.

tionally, Vanderwende and Dolan (2006) and Blake
(2007) demonstrate how sentence structure alone
can provide a high signal for some RTE datasets.11

Despite these analyses, researchers primarily built
models to perform the task on the PASCAL RTE
datasets rather than leveraging these datasets to
evaluate models built for other tasks.

Coinciding with the recent “deep learning wave”
that has taken over NLP and Machine Learn-
ing (Manning, 2015), the introduction of large scale
RTE datasets, specifically SNLI and MNLI, led
to a resurgence of interest in RTE amongst NLP
researchers. Large scale RTE datasets focusing
on specific domains, like grade-school scientific
knowledge (Khot et al., 2018) or medical informa-
tion (Romanov and Shivade, 2018), emerged as
well. However, this resurgence did not primarily
focus on using RTE as a means to evaluate NLP
systems. Rather, researchers primarily used these
datasets to compete with one another to achieve the
top score on leaderboards for new RTE datasets.

4 Revisiting RTE as an NLP Evaluation

There has been little evidence to suggest
[that RTE models] capture the type of
compositional or world knowledge tested
by datasets like the FraCas test suite.

(Pavlick, 2017)

As large scale RTE datasets, like SNLI and
MNLI, rapidly surged in popularity, some re-
searchers critiqued the datasets’ ability to test the
inferential capabilities of NLP models. A high ac-
curacy on these datasets does not indicate which
types of reasoning RTE models perform or capture.
As noted by White et al. (2017), “researchers com-
pete on which system achieves the highest score on

11Vanderwende and Dolan (2006) explored RTE-1 and
Blake (2007) analyzed RTE-2 and RTE-3.

a test set, but this itself does not lead to an under-
standing of which linguistic properties are better
captured by a quantitatively superior system.” In
other words, the single accuracy metric on these
challenges indicates how well a model can rec-
ognize whether one sentence likely follows from
another, but it does not illuminate how well NLP
models capture different semantic phenomena that
are important for general NLU.

This issue was pointed out regarding the earlier
PASCAL RTE datasets. In her thesis that presented
“a test suite for adjectival inference developed as a
resource for the evaluation of computational sys-
tems handling natural language inference.” Amoia
(2008) blamed “the difficulty of defining the lin-
guistic phenomena which are responsible for infer-
ence” as the reason why previous RTE resources
“concentrated on the creation of applications coping
with textual entailment” rather than “resources for
the evaluation of such applications.”

As current studies began exploring what linguis-
tic phenomena are captured by neural NLP mod-
els and auxiliary diagnostic classifiers became a
common tool to evaluate sentence representations
in NLP systems, (§2.3), the community saw an
interest in developing RTE datasets that can pro-
vide insight into what type of linguistic phenomena
are captured by neural, deep learning models. In
turn, the community is answering Chatzikyriakidis
et al. (2017) plea to the community to test “more
kinds of inference” than in previous RTE challenge
sets. Here, we will highlight recent efforts in creat-
ing datasets that demonstrate how the community
has started answering Chatzikyriakidis et al.’s call.
We group these different datasets based on how
they were created. Table 3 includes additional RTE
datasets focused on specific linguistic phenomena.
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4.1 Automatically Created

White et al. (2017) advocate for using RTE as a sin-
gle framework to evaluate different linguistic phe-
nomena. They argue for creating RTE datasets fo-
cused on specific phenomena by recasting existing
annotations for different semantic phenomena into
RTE. Poliak et al. (2018b) introduce the Diverse
Natural Language Inference Collection (DNC) of
over half a million RTE examples. They create the
DNC by converting 7 semantic phenomena from
13 existing datasets into RTE. These phenomena
include event factuality, named entity recognition,
gendered anaphora resolution, sentiment analysis,
relationship extraction, pun detection, and lexi-
cosyntactic inference. Staliūnaitė (2018)’s master’s
thesis improved Poliak et al. (2018b)’s method used
to recast annotations for factuality into RTE. Other
efforts have created recast datasets in Hindi that
focus on sentiment and emotion detection.12

Concurrent to the DNC, Naik et al. (2018) re-
leased the “NLI Stress Tests” that included RTE
datasets focused on negation, word overlap be-
tween premises and hypotheses, numerical reason-
ing, amongst other phenomena. Naik et al. (2018)
similarly create their stress tests automatically us-
ing different methods for each phenomena. They
then used these datasets to evaluate how well a
wide class of RTE models capture these phenom-
ena. Other RTE datasets that target more specific
phenomena were created using automatic methods,
including Jeretic et al. (2020)’s “IMPRES” diag-
nostic RTE dataset that tests for IMPlicatures and
PRESuppositions.

If not done with thorough testing and care, re-
casting or other automatic methods for creating
these RTE datasets can lead to annotation artifacts
unrelated to RTE that limit how well a dataset tests
for a specific semantic phenomena. For example, to
create not-entailed hypotheses, White et al. (2017)
replaced a single token in a context sentence with a
word that crowd-source workers labeled as not be-
ing a paraphrase of the token in the given context.
In FN+ (Pavlick et al., 2015), two words might
be deemed to be incorrect paraphrases in context
based on a difference in the words’ part of speech
tags.13 This limits the utility of the recast version of

12https://github.com/midas-research/
hindi-nli-data

13Table 5 (in the appendix) demonstrates such examples,
and in the last example, the words “on” and “dated” in the
premise and hypothesis respectively have the NN and VBN
POS tag.

FN+ to be used when evaluating how well models
capture paraphrastic inference.

Similar to the efforts described here to recast
different NLU problems as RTE, others have re-
cast NLU problems into a question answer for-
mat (McCann et al., 2018; Gardner et al., 2019).
Recasting problems into RTE, as opposed to
question-answering, has deeper roots in linguistic
theory (Seuren, 1998; Chierchia and McConnell-
Ginet, 2000; Brinton, 2000), and continues a rich
history within the NLP community.

4.2 Semi-Automatically Created
Other RTE datasets focused on specific phenom-
ena rely on semi-automatic methods. RTE pairs
are often generated automatically using well de-
veloped heuristics. Instead of automatically label-
ing the RTE example pairs (like in the approaches
previously discussed), the automatically created
examples are often labeled by crowdsource work-
ers. For example, Kim et al. (2019) use hueris-
tics to create RTE pairs that test for prepositions,
comparatives, quantification, spacial reasoning,
and negation and then present these examples to
crowdsource workers on Amazon Mechanical Turk.
Similarly, Ross and Pavlick (2019) generate two
premise-hypothesis pairs for each RTE example in
MNLI that satisfy their set of constraints. Next,
they rely on crowdsource workers to annotated
whether the premise likely entails the hypothesis
on a 5-point Likert scale.

Some methods instead first manually annotate
their data and then rely on automatic methods to
construct hypotheses and label RTE pairs. When
generating RTE examples testing for monotonicity,
Richardson et al. (2020) first manually encode the
“monotonicity information of each token in the lexi-
con and built sentences via a controlled set of gram-
mar rules.” They then “substitute upward entailing
tokens or constituents with something ‘greater than
or equal to’ them, or downward entailing ones with
something ‘less than or equal to’ them.”

4.3 Manually Created
While most of these datasets rely on varying de-
grees of automation, some RTE datasets focused on
evaluating how well models capture specific phe-
nomena rely on manual annotations. The GLUE
and SuperGlue datasets include diagnostic sets
where annotators manually labeled samples of
examples as requiring a broad range of linguis-
tic phenomena. The types of phenomena manu-

https://github.com/midas-research/hindi-nli-data
https://github.com/midas-research/hindi-nli-data
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Proto-Roles (White et al., 2017), Paraphrastic Inference (White et al., 2017), Event Factuality (Poliak et al.,
2018b; Staliūnaitė, 2018), Anaphora Resolution (White et al., 2017; Poliak et al., 2018b), Lexicosyntactic
Inference (Pavlick and Callison-Burch, 2016; Poliak et al., 2018b; Glockner et al., 2018), Compositional-
ity (Dasgupta et al., 2018), Prepositions (Kim et al., 2019), Comparatives (Kim et al., 2019; Richardson
et al., 2020), Quantification/Numerical Reasoning (Naik et al., 2018; Kim et al., 2019; Richardson et al.,
2020), Spatial Expressions (Kim et al., 2019), Negation (Naik et al., 2018; Kim et al., 2019; Richardson
et al., 2020), Tense & Aspect (Kober et al., 2019), Veridicality (Poliak et al., 2018b; Ross and Pavlick,
2019), Monotonicity (Yanaka et al., 2019, 2020; Richardson et al., 2020), Presupposition (Jeretic et al.,
2020), Implicatures (Jeretic et al., 2020), Temporal Reasoning (Vashishtha et al., 2020)

Table 3: List of different semantic phenomena tested for in recent RTE datasets.

ally labeled include lexical semantics, predicate-
argument structure, logic, and common sense or
world knowledge.14

5 Recommendations

These efforts resulted in a consistent format and
framework for testing how well contemporary, deep
learning NLP systems capture a wide-range of lin-
guistic phenomena. However, so far, most of these
datasets that target specific linguistic phenomena
have been used to solely evaluate how well RTE
models capture a wide range of phenomena, as op-
posed to evaluating how well systems trained for
more applied NLP tasks capture these phenomena.
Since RTE was introduced as a framework to eval-
uate how well NLP models cope with inferences,
these newly created datasets have not been used to
their full potential.

A limited number of studies used some of these
datasets to evaluate how well models trained for
other tasks capture these phenomena. Poliak et al.
(2018a) evaluated how well a BiLSTM encoder
trained as part of a neural machine translation sys-
tem capture phenomena like semantic proto-roles,
paraphrastic inference, and anaphora resolution.
Kim et al. (2019) used their RTE datasets focused
on function words to evaluate different encoders
trained for tasks like CCG parsing, image-caption
matching, predicting discourse markers, and others.
Those studies relied on the use of auxiliary classi-
fiers as a common probing technique to evaluate
sentence representations. As the community’s in-
terest in analyzing deep learning systems increases,
demonstrated by the recent work relying on (Linzen
et al., 2018, 2019) and improving upon (Hewitt and
Liang, 2019; Voita and Titov, 2020; Pimentel et al.,
2020; Mu and Andreas, 2020) the popular auxiliary

14https://gluebenchmark.com/diagnostics

classifier-based diagnostic technique, we call on
the community to leverage the increasing number
of RTE datasets focused on different semantic phe-
nomena (Table 3) to thoroughly study the represen-
tations learned by downstream, applied NLP sys-
tems. The increasing number of RTE datasets fo-
cused on different phenomena can help researchers
use one standard format to analyze how well mod-
els capture different phenomena, and in turn answer
Sammons et al. (2010)’s challenge to make RTE “a
central component of evaluation for relevant NLP
tasks.”

Another recent line of work uses RTE to eval-
uate the output of text generation systems. For
example, Falke et al. (2019) explore “whether tex-
tual entailment predictions can be used to detect
errors” in abstractive summarization systems and
if errors “can be reduced by reranking alternative
predicted summaries” with a textual entailment sys-
tem trained on SNLI. While Falke et al. (2019) re-
sults demonstrated that current models might not
be accurate enough to rank generated summaries,
Barrantes et al. (2020) demonstrate that contempo-
rary transformer models trained on the Adversarial
NLI dataset (Nie et al., 2020) “achieve significantly
higher accuracy and have the potential of selecting
a coherent summary.” Therefore, we are encour-
aged that researchers might be able to use many of
these new RTE datasets focused on specific phe-
nomena to evaluate the coherency of machine gen-
erated text based on multiple linguistic phenomena
that are integral to entailment and NLU. This ap-
proach can help researchers use the RTE datasets
to evaluate a wider class of models, specifically
non-neural models, unlike the auxiliary classifier
or probing methods previously discussed.

The overwhelming majority, if not all, of these
RTE datasets targeting specific phenomena rely on
categorical RTE labels, following the common for-

https://gluebenchmark.com/diagnostics
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mat of the task. However, as Chen et al. (2020)
recently illustrated, categorical RTE labels do not
capture the subjective nature of the task. Instead,
they argue for scalar RTE labels that indicate how
likely a hypothesis could be inferred by a premise.
Pavlick and Kwiatkowski (2019) similarly lament
how labels are currently used in RTE datasets.
Pavlick and Kwiatkowski demonstrate that a sin-
gle label aggregated from multiple annotations for
one RTE example minimizes the “type of uncer-
tainty present in [valid] human disagreements.” In-
stead, they argue that a “representation should be
evaluated in terms of its ability to predict the full
distribution of human inferences (e.g., by report-
ing crossentropy against a distribution of human
ratings), rather than to predict a single aggregate
score (e.g., by reporting accuracy against a dis-
crete majority label or correlation with a mean
score).” Future RTE datasets targeting specific phe-
nomena that contain scalar RTE labels from multi-
ple annotators (following Chen et al.’s and Pavlick
and Kwiatkowski’s recommendations) can provide
more insight into contemporary NLP models.

6 Conclusion

With the current zeitgeist of NLP research where
researchers are interested in analyzing state-of-the-
art deep learning models, now is a prime time to
revisit RTE as a method to evaluate the inference
capabilities of NLP models. In this survey, we dis-
cussed recent advances in RTE datasets that focus
on specific linguistic phenomena that are integral
for determining whether one sentence is likely in-
ferred by another. Since RTE was primarily moti-
vated as an evaluation framework, we began this
survey with a broad overview of prior approaches
for evaluating NLP systems. This included the dis-
tinctions between instrinsic vs extrinsic evaluations
and general purpose vs task specific evaluations.

We discussed foundational RTE datasets that
greatly impacted the NLP community and included
critiques of why they do not fulfill the promise of
RTE as an evaluation framework. We highlighted
recent efforts to create RTE datasets that focus
on specific linguistic phenomena. By using these
datasets to evaluate sentence representations from
neural models or rank generated text from NLP
systems, researchers can help fulfil the promise of
RTE as unified evaluation framework. Ultimately,
this will help us determine how well models under-
stand language on a fine-grained level.
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A Pascal RTE Annotation Guidelines

In the first iteration of the PASCAL RTE challeges,
the task organizers were frank in their view that
they expected the task definition to change over
time. They wrote that “finally, the task definition
and evaluation methodologies are clearly not ma-
ture yet. We expect them to change over time and
hope that participants’ contributions, observations
and comments will help shaping this evolving re-
search direction.” Here, we include snippets from
the annotation guidelines for the first three PAS-
CAL RTE challenges:

A.1 RTE1 Guidelines

Given that the text and hypothesis might originate
from documents at different points in time, tense as-
pects are ignored. In principle, the hypothesis must
be fully entailed by the text. Judgment would be
False if the hypothesis includes parts that cannot
be inferred from the text. However, cases in which
inference is very probable (but not completely cer-
tain) are still judged at True. . . . To reduce the risk
of unclear cases, annotators were guided to avoid
vague examples for which inference has some pos-
itive probability that is not clearly very high. To
keep the contexts in T and H self contained an-
notators replaced anaphors with the appropriate
reference from preceding sentences where applica-
ble. They also often shortened the hypotheses, and
sometimes the texts, to reduce complexity.

(Dagan et al., 2006)

A.2 RTE2 Guidelines

The data collection and annotation guidelines were
revised and expanded . . . We say that t entails h
if, typically, a human reading t would infer that h
is most likely true. This somewhat informal defini-
tion is based on (and assumes) common human un-
derstanding of language as well as common back-
ground knowledge. Textual entailment recognition
is the task of deciding, given t and h, whether t
entails h. Some additional judgment criteria and
guidelines are listed below:

• Entailment is a directional relation. The hy-
pothesis must be entailed from the given text,
but the text need not be entailed from the hy-
pothesis.

• The hypothesis must be fully entailed by the
text. Judgment would be NO if the hypothesis
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includes parts that cannot be inferred from
the text.

• Cases in which inference is very probable (but
not completely certain) are judged as YES. For
instance, in pair #387 one could claim that al-
though Shapiro’s office is in Century City, he
actually never arrives to his office, and works
elsewhere. However, this interpretation of t is
very unlikely, and so the entailment holds with
high probability. On the other hand, annota-
tors were guided to avoid vague examples for
which inference has some positive probability
which is not clearly very high.

• Our definition of entailment allows presuppo-
sition of common knowledge, such as: a com-
pany has a CEO, a CEO is an employee of the
company, an employee is a person, etc. For
instance, in pair #294, the entailment depends
on knowing that the president of a country is
also a citizen of that country.

(Bar-Haim et al., 2006)

A.3 RTE3 Guidelines
As entailment is a directional relation, the hypothe-
sis must be entailed by the given text, but the text
need not be entailed by the hypothesis.

• The hypothesis must be fully entailed by the
text. Judgment must be NO if the hypothesis
includes parts that cannot be inferred from
the text.

• Cases in which inference is very probable (but
not completely certain) were judged as YES.

• Common world knowledge was assumed, e.g.
the capital of a country is situated in that coun-
try, the prime minister of a state is also a citi-
zen of that state, and so on.

(Giampiccolo et al., 2007)
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QUANTIFIERS (14)
P Neither leading tenor comes cheap. One of the leading tenors is Pavarotti.
Q Is Pavarotti a leading tenor who comes cheap?
H Pavarotti is a leading tenor who comes cheap.
A No

PLURALS (94)
P The inhabitants of Cambridge voted for a Labour MP.
Q Did every inhabitant of Cambridge vote for a Labour MP?
H Every inhabitant of Cambridge voted for a Labour MP.
A Unknown

COMPARATIVES (243)
P ITEL sold 3000 more computers than APCOM. APCOM sold exactly 2500 computers.
Q Did ITEL sell 5500 computers?
H ITEL sold 5500 computers.
A Yes

Table 4: Examples from Fracas: P represents the premise(s), Q represents the question from FraCas, H represents
the declarative statement MacCartney (2009) created and, A represents the label. The number in the parenthesis
indicates the example ID from FraCas.

unemployment is at an all-time low
I unemployment is at an all-time poor

aeoi ’s activities and facility have been tied to several universities
I aeoi ’s activities and local have been tied to several universities

jerusalem fell to the ottomans in 1517 , remaining under their control for 400 years
I jerusalem fell to the ottomans in 1517 , remaining under their regulate for 400 years

usually such parking spots are on the side of the lot
I usually such parking spots are dated the side of the lot

Table 5: Not-entailed examples from FN+’s dev set where the hypotheses are ungrammatical. The first line in each
section is a premise and the lines with I are corresponding hypotheses. Underline words represent the swapped
paraphrases.


