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Abstract
Existing work that augment question answer-
ing (QA) models with external knowledge
(e.g., knowledge graphs) either struggle to
model multi-hop relations efficiently, or lack
transparency into the model’s prediction ra-
tionale. In this paper, we propose a novel
knowledge-aware approach that equips pre-
trained language models (PTLMs) with a
multi-hop relational reasoning module, named
multi-hop graph relation network (MHGRN).
It performs multi-hop, multi-relational reason-
ing over subgraphs extracted from external
knowledge graphs. The proposed reasoning
module unifies path-based reasoning methods
and graph neural networks and results in better
interpretability and scalability. We also empir-
ically show its effectiveness and scalability on
CommonsenseQA and OpenbookQA datasets,
and interpret its behaviors with case studies,
with the code for experiments released1.

1 Introduction
Many recently proposed question answering tasks
require not only machine comprehension of the
question and context, but also relational reason-
ing over entities (concepts) and their relationships
by referencing external knowledge (Talmor et al.,
2019; Sap et al., 2019; Clark et al., 2018; Mihaylov
et al., 2018). For example, the question in Fig. 1
requires a model to perform relational reasoning
over mentioned entities, i.e., to infer latent rela-
tions among the concepts: {CHILD, SIT, DESK,
SCHOOLROOM}. Background knowledge such as

“a child is likely to appear in a schoolroom” may not
be readily contained in the questions themselves,
but are commonsensical to humans.

Despite the success of large-scale pre-trained
language models (PTLMs) (Devlin et al., 2019;

ò The first two authors contributed equally. The major
work was done when both authors interned at USC.

1https://github.com/INK-USC/MHGRN
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Figure 1: Illustration of knowledge-aware QA. A
sample question from CommonsenseQA can be better
answered if a relevant subgraph of ConceptNet is pro-
vided as evidence. Blue nodes correspond to entities
mentioned in the question, and pink nodes correspond
to those in the answer. The other nodes are associated
entities introduced in subgraph extraction. ì indicates
the correct answer.

Liu et al., 2019b), these models fall short of pro-
viding interpretable predictions, as the knowledge
in their pre-training corpus is not explicitly stated,
but rather is implicitly learned. It is thus difficult to
recover the evidence used in the reasoning process.

This has led many to leverage knowledge
graphs (KGs) (Mihaylov and Frank, 2018; Lin
et al., 2019; Wang et al., 2019; Yang et al., 2019).
KGs represent relational knowledge between en-
tities with multi-relational edges for models to
acquire. Incorporating KGs brings the potential
of interpretable and trustworthy predictions, as
the knowledge is now explicitly stated. For ex-
ample, in Fig. 1, the relational path (CHILD �
AtLocation � CLASSROOM � Synonym �
SCHOOLROOM) naturally provides evidence for
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Figure 2: Number of K-hop relational paths w.r.t.
the node count in extracted graphs on Common-
senseQA. Left: The path count is polynomial w.r.t. the
number of nodes. Right: The path count is exponential
w.r.t. the number of hops.

the answer SCHOOLROOM.
A straightforward approach to leveraging a

knowledge graph is to directly model these rela-
tional paths. KagNet (Lin et al., 2019) and MH-
PGM (Bauer et al., 2018) extract multi-hop rela-
tional paths from KG and encode them with se-
quence models. Application of attention mecha-
nisms upon these relational paths can further offer
good interpretability. However, these models are
hardly scalable because the number of possible
paths in a graph is (1) polynomial w.r.t. the num-
ber of nodes (2) exponential w.r.t. the path length
(see Fig. 2). Therefore, some (Weissenborn et al.,
2017; Mihaylov and Frank, 2018) resort to only
using one-hop paths, namely, triples, to balance
scalability and reasoning capacities.

Graph neural networks (GNNs), in contrast, en-
joy better scalability via their message passing
formulation, but usually lack transparency. The
most commonly used GNN variant, Graph Con-
volutional Networks (GCNs) (Kipf and Welling,
2017), perform message passing by aggregating
neighborhood information for each node, but ig-
nore the relation types. RGCNs (Schlichtkrull et al.,
2018) generalize GCNs by performing relation-
specific aggregation, making it applicable to multi-
relational graphs. However, these models do not
distinguish the importance of different neighbors
or relation types and thus cannot provide explicit
relational paths for model behavior interpretation.

In this paper, we propose a novel graph encod-
ing architecture, Multi-hop Graph Relation Net-
work (MHGRN), which combines the strengths of
path-based models and GNNs. Our model inherits
scalability from GNNs by preserving the message
passing formulation. It also enjoys interpretability
of path-based models by incorporating structured

GCN RGCN KagNet MHGRN

Multi-Relational Encoding 7 3 3 3
Interpretable 7 7 3 3

Scalable w.r.t. #node 3 3 7 3
Scalable w.r.t. #hop 3 3 7 3

Table 1: Properties of our MHGRN and other repre-
sentative models for graph encoding.

relational attention mechanism. Towards multi-hop
relational reasoning, our key motivation is to al-
low each node to directly attend to its multi-hop
neighbors by performing multi-hop message pass-
ing within a single layer. We outline the desired
merits of knowledge-aware QA models in Table 1
and compare MHGRN with them.

We summarize the main contributions of this
work as follows: 1) We propose MHGRN, a novel
model architecture tailored to multi-hop relational
reasoning, which explicitly models multi-hop rela-
tional paths at scale. 2) We propose a structured
relational attention mechanism for efficient and in-
terpretable modeling of multi-hop reasoning paths,
along with its training and inference algorithms. 3)
We conduct extensive experiments on two question
answering datasets and show that our models bring
significant improvements compared to knowledge-
agnostic PTLMs, and outperform other graph en-
coding methods by a large margin.

2 Problem Formulation and Overview

In this paper, we limit the scope to the task of
multiple-choice question answering, although the
formulation can be easily generalized to other
knowledge-guided tasks (e.g., natural language
inference). The overall paradigm of knowledge-
aware QA is illustrated in Fig. 3. Formally, given a
question q and an external knowledge graph (KG)
as the knowledge source, our goal is to identify the
correct answer from a set C of given options. We
turn this problem into measuring the plausibility
score between q and each option a " C, after which
we select the option with the highest plausibility
score.

To measure the score for q and a, we first con-
catenate q and a to form a statement s = [q; a] and
encode the statement s into the statement represen-
tation s. Then we extract from the external KG
a subgraph G (i.e., schema graph in KagNet (Lin
et al., 2019)), with the guidance of s (detailed in
§5.1). This contextualized subgraph is defined as
a multi-relational graph G = (V, E ,�). Here V
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Figure 3: Overview of the knowledge-aware QA
framework. It integrates the output from graph en-
coder (for relational reasoning over contextual sub-
graphs) and text encoder (for textual understanding) to
generate the plausibility score for an answer option.

is a subset of entities in the external KG, contain-
ing only those relevant to s. E N V ✓ R ✓ V is
the set of edges that connect nodes in V , where
R = {1,⇧,m} are the ids of all pre-defined re-
lation types. The mapping function �(i) ⇥ V �
T = {Eq,Ea,Eo} takes node i " V as input, and
outputs Eq if i is an entity mentioned in q, Ea if
it is mentioned in a, and Eo otherwise2. Finally,
we encode G into g, and concatenate s and g to
calculate the plausibility score.

3 Background: Multi-Relational Graph
Encoding Methods

We leave encoding of s to pre-trained language
models and focus on the challenge of encoding
graph G to capture latent relations between enti-
ties. Current methods for encoding multi-relational
graphs mainly fall into two categories: GNNs and
path-based models. GNNs encode structured in-
formation by passing messages between nodes, di-
rectly operating on the graph structure, while path-
based methods first decompose the graph into paths
and then pool their representations to form a graph
representation.

Graph Encoding with GNNs. For a graph with
n nodes, a graph neural network (GNN) takes a
set of node features {h1,h2, . . . ,hn} as input, and
computes their corresponding node embeddings{h¨

1,h
¨
2, . . . ,h

¨
n} via message passing (Gilmer

et al., 2017). A compact graph representation for
G can thus be obtained by pooling the node embed-
dings {h¨

i}:

GNN(G) = Pool({h¨
1,h

¨
2, . . . ,h

¨
n}). (1)

2It is plausible to accordingly re-design mapping functions
for this paradigm to work in other NLP tasks.

As a notable variant of GNNs, graph convo-
lutional networks (GCNs) (Kipf and Welling,
2017) additionally update node embeddings by
aggregating messages from its direct neighbors.
RGCNs (Schlichtkrull et al., 2018) extend GCNs to
encode multi-relational graphs by defining relation-
specific weight matrix Wr for each edge type:

h
¨
i = �

�⇣�⇧=r"R ∂N r
i ∂↵

�1

=
r"R

=
j"N r

i

Wrhj

�⌘✏ , (2)

where N
r
i denotes neighbors of node i under rela-

tion r.3

While GNNs have proved to have good scalabil-
ity, their reasoning is done at the node level, and are
therefore incompatible with path modeling. This
property also hinders path-level interpretation of
the model’s decisions.

Graph Encoding with Path-Based Models. In
addition to directly modeling the graph with GNNs,
a graph can also be viewed as a set of relational
paths connecting pairs of entities.

Relation Networks (RNs) (Santoro et al., 2017)
can be adapted to multi-relational graph encoding
under QA settings. RNs use MLPs to encode all
triples (one-hop paths) in G whose head entity is
in Q = {j ∂ �(j) = Eq} and tail entity is in
A = {i ∂ �(i) = Ea}. It then pools the triple
embeddings to generate a vector for G as follows,

RN(G) = Pool⇤{MLP(hj h erh

hi) ∂ j " Q, i " A, (j, r, i) " E} . (3)

Here hj and hi are features for nodes j and i, er is
the embedding of relation r " R, h denotes vector
concatenation.

To further equip RN with the ability to model
nondegenerate paths, KagNet (Lin et al., 2019)
adopts LSTMs to encode all paths connecting ques-
tion entities and answer entities with lengths no
more than K. It then aggregates all path embed-
dings via the attention mechanism:

KAGNET(G) = Pool⇤{LSTM(j, r1, j1, . . . , rk, i) ∂
(j, r1, j1),⇧, (jk�1, rk, i) " E , 1 & k & K} .

(4)
3For simplicity, we assume a single graph convolutional

layer. In practice, multiple layers are stacked to enable mes-
sage passing from multi-hop neighbors.
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Figure 4: Our proposed MHGRN architecture
for relational reasoning. MHGRN takes a multi-
relational graph G and a (question-answer) statement
vector s as input, and outputs a scalar that represent the
plausibility score of this statement.

4 Proposed Method: Multi-Hop Graph
Relation Network (MHGRN)

This section presents Multi-hop Graph Relation
Network (MHGRN), a novel GNN architecture
that unifies both GNNs and path-based models.
MHGRN inherits path-level reasoning and inter-
pretabilty from path-based models, while preserv-
ing good scalability of GNNs.

4.1 MHGRN: Model Architecture

We follow the GNN framework introduced in §3,
where node features can be initialized with pre-
trained weights (details in Appendix B). Here we
focus on the computation of node embeddings.

Type-Specific Transformation. To make our
model aware of the node type �, we first perform
node type specific linear transformation on the in-
put node features:

xi = U�(i)hi + b�(i), (5)

where the learnable parameters U and b are specific
to the type of node i.

Multi-Hop Message Passing. As mentioned be-
fore, our motivation is to endow GNNs with the
capability of directly modeling paths. To this end,
we propose to pass messages directly over all the

relational paths of lengths up to K. The set of valid
k-hop relational paths is defined as:

�k = {(j, r1, . . . , rk, i) ∂ (j, r1, j1),
⇧, (jk�1, rk, i) " E} (1 & k & K). (6)

We perform k-hop (1 & k & K) message passing
over these paths, which is a generalization of the
single-hop message passing in RGCNs (see Eq. 2):

z
k
i = =

(j,r1,...,rk,i)"�k

↵(j, r1, . . . , rk, i)/dki �WK
0

⇧W
k+1
0 W

k
rk⇧W

1
r1xj (1 & k & K), (7)

where the W
t
r (1 & t & K, 0 & r & m) matrices

are learnable4, ↵(j, r1, . . . , rk, i) is an attention
score elaborated in §4.2 and dki = <(j⇧i)"�k

↵(j⇧i)
is the normalization factor. The {W k

rk⇧W
1
r1 ∂ 1 &

r1, . . . , rk & m} matrices can be interpreted as the
low rank approximation of a {m✓⇧✓m}k✓d✓d
tensor that assigns a separate transformation for
each k-hop relation, where d is the dimension of
xi.

Incoming messages from paths of different
lengths are aggregated via attention mecha-
nism (Vaswani et al., 2017):

zi =
K

=
k=1

softmax�bilinear�s, zk
i ⌥⌥ � zk

i . (8)

Non-linear Activation. Finally, we apply shortcut
connection and nonlinear activation to obtain the
output node embeddings.

h
¨
i = � ⇥V hi + V

¨
zi� , (9)

where V and V
¨ are learnable model parameters,

and � is a non-linear activation function.

4.2 Structured Relational Attention
Naive parameterization of the attention score
↵(j, r1, . . . , rk, i) in Eq. 7 would require O(mk) param-
eters for k-hop paths. Towards efficiency, we first
regard it as the probability of a relation sequence(�(j), r1, . . . , rk,�(i)) conditioned on s:

↵(j, r1, . . . , rk, i) = p (�(j), r1, . . . , rk,�(i) ∂ s) ,
(10)

4
W

t
0(0 & t & K) are introduced as padding matrices

so that K transformations are applied regardless of k, thus
ensuring comparable scale of zk

i across different k.
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which can naturally be modeled by a probabilistic
graphical model, such as conditional random field
(Lafferty et al., 2001):

p (⇧ ∂ s) ö exp⇧f(�(j), s) + k

=
t=1

�(rt, s)
+

k�1

=
t=1

⌧(rt, rt+1) + g(�(i), s)↵
�= �(r1, . . . , rk, s)Õ “““““““““““““““““““““““““““““““““““““““““““““—“““““““““““““““““““““““““““““““““““““““““““““œ

Relation Type Attention

� �(�(j),�(i), s)Õ ““““““““““““““““““““““““““““““““““““““““““““““—““““““““““““““““““““““““““““““““““““““““““““““œ
Node Type Attention

, (11)

where f(�), �(�) and g(�) are parameterized by
two-layer MLPs and ⌧(�) by a transition matrix
of shape m ✓m. Intuitively, �(�) models the im-
portance of a k-hop relation while �(�) models the
importance of messages from node type �(j) to
�(i) (e.g., the model can learn to pass messages
only from question entities to answer entities).

Our model scores a k-hop relation by decom-
posing it into both context-aware single-hop re-
lations (modeled by �) and two-hop relations
(modeled by ⌧ ). We argue that ⌧ is indis-
pensable, without which the model may assign
high importance to illogical multi-hop relations
(e.g., [AtLocation, CapableOf]) or noisy re-
lations (e.g., [RelatedTo, RelatedTo]).

4.3 Computation Complexity Analysis
Although the message passing process in Eq. 7 and
the attention module in Eq.11 handle potentially
exponential number of paths, computation can be
done in linear time with the help of dynamic pro-
gramming (see Appendix C). As summarized in
Table 2, both the time complexity and space com-
plexity of MHGRN on a sparse graph are linear
w.r.t. the maximum path length K or the number
of nodes n.

4.4 Expressive Power of MHGRN
In addition to efficiency and scalability, we now dis-
cuss the modeling capacity of MHGRN. With the
message passing formulation and relation-specific
transformations, MHGRN is by nature the gener-
alization of RGCN. It is also capable of directly
modeling paths, making it interpretable as are path-
based models such as RN and KagNet. To show
this, we first generalize RN (Eq. 3) to the multi-hop
setting and introduce K-hop RN (formal definition
in Appendix D), which models multi-hop relation
as the composition of single-hop relations. We

Model Time Space

G is a dense graph

K-hop KagNet O ⇥mKnK+1K� O ⇥mKnK+1K�
K-layer RGCN O ⇥mn2K� O (mnK)
MHGRN O ⇥m2n2K� O (mnK)
G is a sparse graph with maximum node degree � 8 n

K-hop KagNet O ⇥mKnK�K� O ⇥mKnK�K�
K-layer RGCN O (mnK�) O (mnK)
MHGRN O ⇥m2nK�� O (mnK)

Table 2: Computation complexity of different K-hop
reasoning models on a dense/sparse multi-relational
graph with n nodes and m relation types. Despite the
quadratic complexity w.r.t. m, MHGRN’s time cost is
similar to RGCN on GPUs with parallelizable matrix
multiplications (cf. Fig. 7).

can show that MHGRN is capable of representing
K-hop RN (proof in Appendix E).

4.5 Learning, Inference and Path Decoding
We now discuss the learning and inference process
of MHGRN instantiated for QA tasks. Following
the problem formulation in §2, we aim to deter-
mine the plausibility of an answer option a " C

given the question q with the information from
both text s and graph G. We first obtain the graph
representation g by performing attentive pooling
over the output node embeddings of answer entities{h¨

i ∂ i " A}. Next we concatenate it with the text
representation s and compute the plausibility score
by ⇢(q, a) = MLP(sh g).

During training, we maximize the plausibility
score of the correct answer â by minimizing the
cross-entropy loss:

L = Eq,â,C �� log
exp(⇢(q, a))

<a"C exp(⇢(q, a))⌧ . (12)

The whole model is trained end-to-end jointly with
the text encoder (e.g., RoBERTa).

During inference, we predict the most plau-
sible answer by argmaxa"C ⇢(q, a). Addition-
ally, we can decode a reasoning path as evidence
for model predictions, endowing our model with
the interpretability enjoyed by path-based mod-
els. Specifically, we first determine the answer
entity iò with the highest score in the pooling layer
and the path length kò with the highest score in
Eq. 8. Then the reasoning path is decoded by
argmax ↵(j, r1, . . . , rkò , iò), which can be com-
puted in linear time using dynamic programming.
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Methods BERT-Base BERT-Large RoBERTa-Large

IHdev-Acc.(%) IHtest-Acc.(%) IHdev-Acc.(%) IHtest-Acc.(%) IHdev-Acc.(%) IHtest-Acc.(%)

w/o KG 57.31 (±1.07) 53.47 (±0.87) 61.06 (±0.85) 55.39 (±0.40) 73.07 (±0.45) 68.69(±0.56)

RGCN (Schlichtkrull et al., 2018) 56.94 (±0.38) 54.50 (±0.56) 62.98 (±0.82) 57.13 (±0.36) 72.69 (±0.19) 68.41 (±0.66)
GconAttn (Wang et al., 2019) 57.27 (±0.70) 54.84 (±0.88) 63.17 (±0.18) 57.36 (±0.90) 72.61( ±0.39) 68.59 (±0.96)
KagNet† (Lin et al., 2019) 55.57 56.19 62.35 57.16 - -
RN (1-hop) 58.27 (±0.22) 56.20 (±0.45) 63.04 (±0.58) 58.46 (±0.71) 74.57 (±0.91) 69.08 (±0.21)
RN (2-hop) 59.81 (±0.76) 56.61 (±0.68) 63.36 (±0.26) 58.92 (±0.14) 73.65 (±3.09) 69.59 (±3.80)

MHGRN 60.36 (±0.23) 57.23 (±0.82) 63.29(±0.51) 60.59 (±0.58) 74.45 (±0.10) 71.11 (±0.81)

Table 3: Performance comparison on CommonsenseQA in-house split. We report in-house Dev (IHdev) and
Test (IHtest) accuracy (mean and standard deviation of four runs) using the data split of Lin et al. (2019) on
CommonsenseQA. † indicates reported results in its paper.

5 Experimental Setup

We introduce how we construct G (§5.1), the
datasets (§5.2), as well as the baseline methods
(§5.3). Appendix B shows more implementation
and experimental details for reproducibility.

5.1 Extracting G from External KG
We use ConceptNet (Speer et al., 2017), a general-
domain knowledge graph as our external KG to test
models’ ability to harness structured knowledge
source. Following KagNet (Lin et al., 2019), we
merge relation types to increase graph density and
add reverse relations to construct a multi-relational
graph with 34 relation types (details in Appendix
A). To extract an informative contextualized graph
G from KG, we recognize entity mentions in s and
link them to entities in ConceptNet, with which we
initialize our node set V . We then add to V all the
entities that appear in any two-hop paths between
pairs of mentioned entities. Unlike KagNet, we do
not perform any pruning but instead reserve all the
edges between nodes in V , forming our G.

5.2 Datasets
We evaluate models on two multiple-choice ques-
tion answering datasets, CommonsenseQA and
OpenbookQA. Both require world knowledge be-
yond textual understanding to perform well.

CommonsenseQA (Talmor et al., 2019) neces-
sitates various commonsense reasoning skills. The
questions are created with entities from Concept-
Net. It is noteworthy that although Common-
senseQA is built upon ConceptNet, its questions
are designed to probe multi-hop/compositional re-
lations between entities that cannot be directly read
from, or are even absent from ConceptNet. This de-

5Models based on ConceptNet are no longer shown on the
leaderboard, and we got our results from the organizers.

Methods Single Ensemble

UnifiedQA† (Khashabi et al., 2020) 79.1 -

RoBERTa† 72.1 72.5
RoBERTa + KEDGN† 72.5 74.4
RoBERTa + KE† 73.3 -
RoBERTa + HyKAS 2.0† (Ma et al., 2019) 73.2 -
RoBERTa + FreeLB†(Zhu et al., 2020) 72.2 73.1
XLNet + DREAM† 66.9 73.3
XLNet + GR† (Lv et al., 2019) 75.3 -
ALBERT† (Lan et al., 2019) - 76.5

RoBERTa + MHGRN (K = 2) 75.4 76.5

Table 4: Performance comparison on official test of
CommonsenseQA with leaderboard SoTAs5 (accuracy
in %). † indicates reported results on leaderboard. Uni-
fiedQA uses T5-11B as text encoder, whose number of
parameters is about 30 times more than other models.

Train Dev Test

CommonsenseQA (OF) 9, 741 1, 221 1, 140
CommonsenseQA (IH) 8, 500 1, 221 1, 241
OpenbookQA 4, 957 500 500

Table 5: Numbers of instances in different dataset
splits.

sign prevents short-cutting the reasoning by taking
advantage of the graph structure.

OpenBookQA (Mihaylov et al., 2018) provides
elementary science questions together with an open
book of science facts. This dataset also probes
general common sense beyond the provided facts.

Dataset split specifications. Common-
senseQA 6 and OpenbookQA 7 all have their leader-
boards, with training and development set publicly
available. As the ground truth labels for Common-
senseQA are not readily available, for model anal-

6https://www.tau-nlp.org/commonsenseqa
7https://leaderboard.allenai.org/open_

book_qa/submissions/public
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ysis, we follow Lin et al. (2019) and take 1,241
examples from official training examples as our
in-house test examples and regard the remaining
8,500 ones as our in-house training examples, form-
ing CommonsenseQA (IH). We also make use of
the official split of CommonsenseQA, denoted as
CommonsenseQA (OF). The numbers of instances
in different dataset splits are listed in Table 5.

5.3 Compared Methods
We implement both knowledge-agnostic fine-
tuning of pre-trained LMs and models that incorpo-
rate external KG as our baselines. Additionally, we
directly compare our model with the results from
corresponding leaderboard. These methods typi-
cally leverage textual knowledge or extra training
data, as opposed to external KG. In all our imple-
mented models, we use pre-trained LMs as text
encoders for s for fair comparison. We do compare
our models with those (Ma et al., 2019; Lv et al.,
2019; Khashabi et al., 2020) augmented by other
text-form external knowledge (e.g., Wikipedia), al-
though we stick to our focus of encoding structured
KG.

Specifically, we fine-tune BERT-BASE, BERT-
LARGE (Devlin et al., 2019), and ROBERTA (Liu
et al., 2019b) for multiple-choice questions. We
take RGCN (Eq. 2 in §3), RN8 (Eq. 3 in §3),
KagNet (Eq. 4 in §3) and GconAttn (Wang
et al., 2019) as baselines. GconAttn generalizes
match-LSTM (Wang and Jiang, 2016) and achieves
success in language inference tasks.

6 Results and Discussions

In this section, we present the results of our models
in comparison with baselines as well as methods
on the leaderboards for both CommonsenseQA and
OpenbookQA. We also provide analysis of models’
components and characteristics.

6.1 Main Results
For CommonsenseQA (Table 3), we first use the
in-house data split (IH) (see §5.2) to compare our
models with implemented baselines. This is dif-
ferent from the official split used in the leader-
board methods. Almost all KG-augmented models
achieve performance gain over vanilla pre-trained
LMs, demonstrating the value of external knowl-
edge on this dataset. Additionally, we evaluate

8We use mean pooling for 1-hop RN and attentive pooling
for 2-hop RN (detailed in Appendix D).

Methods Dev (%) Test (%)

T5-3B† (Raffel et al., 2019) - 83.20
UnifiedQA† (Khashabi et al., 2020) - 87.20

RoBERTa-Large (w/o KG) 66.76 (±1.14) 64.80 (±2.37)
+ RGCN 64.65 (±1.96) 62.45 (±1.57)
+ GconAttn 64.30 (±0.99) 61.90 (±2.44)
+ RN (1-hop) 64.85 (±1.11) 63.65 (±2.31)
+ RN (2-hop) 67.00 (±0.71) 65.20 (±1.18)
+ MHGRN (K = 3) 68.10 (±1.02) 66.85 (±1.19)

AristoRoBERTaV7† 79.2 77.8
+ MHGRN (K = 3) 78.6 80.6

Table 6: Performance comparison on OpenbookQA.
† indicates reported results on leaderboard. T5-3B is 8
times larger than our models. UnifiedQA is 30x larger.

our MHGRN (with text encoder being ROBERTA-
LARGE) on official split, OF (Table 4) for fair
comparison with other methods on leaderboard,
in both single-model setting and ensemble-model
setting. With backbone being T5 (Raffel et al.,
2019), UnifiedQA (Khashabi et al., 2020) tops the
leaderboard9. Considering its training cost, we do
not intend to compare our ROBERTA-based model
with it. We achieve the best performances among
the other models.

For OpenbookQA (Table 6), we use official split
and build models with ROBERTA-LARGE as text
encoder. MHGRN surpasses all implemented base-
lines, with an absolute increase of ⇥2% on Test.
Also, as our approach is naturally compatible with
the methods that utilize textual knowledge or ex-
tra data, because in our paradigm the encoding
of textual statement and graph are structurally-
decoupled (Fig. 3). To empirically show MHGRN
can bring gain over textual-knowledge empow-
ered systems, we replace our text encoder with
AristoRoBERTaV710, and fine-tune our MHGRN
upon OpenbookQA. Empirically, MHGRN contin-
ues to bring benefits to strong-performing textual-
knowledge empowered systems. One takeaway is
that textual knowledge and structured knowledge
are potentially complementary.

6.2 Performance Analysis
Ablation Study on Model Components. As
shown in Table 7, disabling type-specific trans-
formation results in ⇥ 1.3% drop in performance,
demonstrating the need for distinguishing node
types for QA tasks. Our structured relational at-
tention mechanism is also critical, with its two

9The leaderboard in August, 2020.
10https://leaderboard.allenai.org/open_

book_qa/submission/blcp1tu91i4gm0vf484g
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Methods IHdev-Acc. (%)

MHGRN (K = 3) 74.45 (±0.10)
- Type-specific transformation (§4.1) 73.16 (±0.28)
- Structured relational attention (§4.2) 73.26 (±0.31)
- Relation type attention (§4.2) 73.55 (±0.68)
- Node type attention (§4.2) 73.92 (±0.65)

Table 7: Ablation study on model components (re-
moving one component each time) using ROBERTA-
LARGE as the text encoder. We report the IHdev ac-
curacy on CommonsenseQA.

sub-components contributing almost equally.
Impact of the Amount of Training Data. We
use different fractions of training data of Common-
senseQA and report results of fine-tuning text en-
coders alone and jointly training text encoder and
graph encoder in Fig. 5. Regardless of training data
fraction, our model shows consistently more per-
formance improvement over knowledge-agnostic
fine-tuning compared with the other graph encod-
ing methods, indicating MHGRN’s complementary
strengths to text encoders.

Figure 5: Performance change (accuracy in %) w.r.t.
the amounts of training data on CommonsenseQA IHT-
est set (same as Lin et al. (2019)).

Impact of Number of Hops (K). We investigate
the impact of hyperparameter K for MHGRN with
experiments on CommonsenseQA (Fig. 6). The
increase of K continues to bring benefits until K =
4. However, performance begins to drop when
K > 3. This might be attributed to exponential
noise in longer relational paths in the knowledge
graph.

6.3 Model Scalability
Fig. 7 presents the computation cost of MHGRN
and RGCN (measured by training time) with the
text encoder removed. Both grow linearly w.r.t. K.
Although the theoretical complexity of MHGRN

Hops

73.24

73.93

74.65

73.65

74.16

Figure 6: Effect of K in MHGRN. We show IHDev ac-
curacy of MHGRN on CommonsenseQA w.r.t. # hops.

: # Reasoning Hops

RGCN
MHGRN

Figure 7: Analysis of model scalability. Comparison
of per-batch training efficiency w.r.t. # hops K.

is m times that of RGCN, the ratio of their empiri-
cal cost only approaches 2, demonstrating that our
model can be better parallelized. It is noteworthy
that the text encoder part actually dominates the
overall cost. Therefore, the gap between our model
and the RGCN are further narrowed if we consider
the cost of the entire model.

6.4 Model Interpretability

We can analyze our model’s reasoning process by
decoding the reasoning path using the method de-
scribed in §4.5. Fig. 8 shows two examples from
CommonsenseQA, where our model correctly an-
swers the questions and provides reasonable path
evidences. In the example on the left, the model
links question entities and answer entity in a chain
to support reasoning, while the example on the right
provides a case where our model leverage unmen-
tioned entities to bridge the reasoning gap between
question entity and answer entities, in a way that is
coherent with the latent relation between CHAPEL
and the desired answer in the question.
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Where is known 
for a multitude of 
wedding chapels?

A. town B. texas
C. city 
D. church 
building 
E. Nevada*

RenoChapel

PartOf

AtLocation

UƐedFŽƌିଵ Synonym

AtLocation Synonym

Neveda

Baseball

Play_Baseball

HasProperty

UƐedFŽƌିଵ

Fun_to_Play

Why do parents 
encourage their 
kids to play 
baseball?

A. round B. 
cheap C. break 
window D. hard
E. fun to play* Fun_to_Play

HasProperty

Reno

Chapel

AƚLŽcaƚŝŽŶ

Neveda

PartOf

MultiGRNFigure 8: Case study on model interpretability. We
present two sample questions from CommonsenseQA
with the reasoning paths output by MHGRN.

7 Related Work

Knowledge-Aware Methods for NLP Various
work have investigated the potential to empower
NLP models with external knowledge. Many at-
tempt to extract structured knowledge, either in the
form of nodes (Yang and Mitchell, 2017; Wang
et al., 2019), triples (Weissenborn et al., 2017;
Mihaylov and Frank, 2018), paths (Bauer et al.,
2018; Kundu et al., 2019; Lin et al., 2019), or sub-
graphs (Li and Clark, 2015), and encode them to
augment textual understanding.

Recent success of pre-trained LMs motivates
many (Pan et al., 2019; Ye et al., 2019; Zhang et al.,
2018; Li et al., 2019; Banerjee et al., 2019) to probe
LMs’ potential as latent knowledge bases. This line
of work turn to textual knowledge (e.g. Wikipedia)
to directly impart knowledge to pre-trained LMs.
They generally fall into two paradigms: 1) Fine-
tuning LMs on large-scale general-domain datasets
(e.g. RACE (Lai et al., 2017)) or on knowledge-rich
text. 2) Providing LMs with evidence via informa-
tion retrieval techniques. However, these models
cannot provide explicit reasoning and evidence,
thus hardly trustworthy. They are also subject to
the availability of in-domain datasets and maxi-
mum input token of pre-trained LMs.

Neural Graph Encoding Graph Attention Net-
works (GAT) (Velickovic et al., 2018) incorpo-
rates attention mechanism in feature aggregation,
RGCN (Schlichtkrull et al., 2018) proposes rela-
tional message passing which makes it applicable
to multi-relational graphs. However they only per-
form single-hop message passing and cannot be
interpreted at path level. Other work (Abu-El-Haija
et al., 2019; Nikolentzos et al., 2019) aggregate for
a node its K-hop neighbors based on node-wise
distances, but they are designed for non-relational
graphs. MHGRN addresses these issues by rea-
soning on multi-relational graphs and being inter-
pretable via maintaining paths as reasoning chains.

8 Conclusion

We present a principled, scalable method, MHGRN,
that can leverage general knowledge via multi-hop
reasoning over interpretable structures (e.g. Con-
ceptNet). The proposed MHGRN generalizes and
combines the advantages of GNNs and path-based
reasoning models. It explicitly performs multi-hop
relational reasoning and is empirically shown to
outperform existing methods with superior scal-
ablility and interpretability.
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2017. Dynamic integration of background knowl-
edge in neural nlu systems. arXiv preprint
arXiv:1706.02596.

An Yang, Quan Wang, Jing Liu, Kai Liu, Yajuan Lyu,
Hua Wu, Qiaoqiao She, and Sujian Li. 2019. En-
hancing pre-trained language representations with
rich knowledge for machine reading comprehension.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2346–2357, Florence, Italy. Association for Compu-
tational Linguistics.

Bishan Yang and Tom Mitchell. 2017. Leveraging
knowledge bases in LSTMs for improving machine
reading. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1436–1446, Van-
couver, Canada. Association for Computational Lin-
guistics.

Zhi-Xiu Ye, Qian Chen, Wen Wang, and Zhen-Hua
Ling. 2019. Align, mask and select: A sim-
ple method for incorporating commonsense knowl-
edge into language representation models. CoRR,
abs/1908.06725.



1306

Yuyu Zhang, Hanjun Dai, Kamil Toraman, and
Le Song. 2018. Kgˆ2: Learning to reason science
exam questions with contextual knowledge graph
embeddings. CoRR, abs/1805.12393.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Gold-
stein, and Jingjing Liu. 2020. Freelb: Enhanced ad-
versarial training for natural language understanding.
In International Conference on Learning Represen-
tations.



1307

A Merging Types of Relations in
ConceptNet

Relation Merged Relation

AtLocation AtLocationLocatedNear

Causes
CausesCausesDesire

*MotivatedByGoal

Antonym AntonymDistinctFrom

HasSubevent

HasSubevent

HasFirstSubevent
HasLastSubevent
HasPrerequisite

Entails
MannerOf

IsA
IsAInstanceOf

DefinedAs

PartOf PartOf*HasA

RelatedTo
RelatedToSimilarTo

Synonym

Table 8: Relations in ConceptNet that are being merged
in pre-processing. *RelationX indicates the reverse re-
lation of RelationX.

We merge relations that are close in semantics
as well as in the general usage of triple instances
in ConceptNet.

B Implementation Details

CommonsenseQA OpenbookQA

BERT-BASE 3 ✓ 10�5 -
BERT-LARGE 2 ✓ 10�5 -
ROBERTA-LARGE 1 ✓ 10�5 1 ✓ 10�5

Table 9: Learning rate for text encoders on different
datasets.

Our models are implemented in PyTorch. We use
cross-entropy loss and RAdam (Liu et al., 2019a)
optimizer. We find it beneficial to use separate
learning rates for the text encoder and the graph en-
coder. We tune learning rates for text encoders and

CommonsenseQA OpenbookQA

RN 3 ✓ 10�4 3 ✓ 10�4

RGCN 1 ✓ 10�3 1 ✓ 10�3

GconAttn 3 ✓ 10�4 1 ✓ 10�4

MHGRN 1 ✓ 10�3 1 ✓ 10�3

Table 10: Learning rate for graph encoders on different
datasets.

#Param

RN 399K
RGCN 365K
GconAttn 453K
MHGRN 544K

Table 11: Numbers of parameters of different graph en-
coders.

graph encoders on two datasets. We first fine-tune
ROBERTA-LARGE, BERT-LARGE, BERT-BASE
on CommonsenseQA and ROBERTA-LARGE on
OpenbookQA respectively, and choose a dataset-
specific learning rate from {1✓10�5, 2✓10�5, 3✓
10�5, 6 ✓ 10�5, 1 ✓ 10�4} for each text encoder,
based on the best performance on development set,
as listed in Table 9. We report the performance of
these fine-tuned text encoders and also adopt their
dataset-specific optimal learning rates in joint train-
ing with graph encoders. For models that involve
KG, the learning rate of their graph encoders are
chosen from {1 ✓ 10�4, 3 ✓ 10�4, 1 ✓ 10�3, 3 ✓
10�3}, based on their best development set perfor-
mance with ROBERTA-LARGE as the text encoder.
We report the optimal learning rates for graph en-
coders in Table 10. In training, we set the max-
imum input sequence length to text encoders to
64, batch size to 32, and perform early stopping.
AristoRoBERTaV7+MHGRN is the only exception.
In order to host fair comparison, we follow Aris-
toRoBERTaV7 and set the batch size to 16, max
input sequence length to 128, and choose a decoder
learning rate from {1 ✓ 10�3, 2 ✓ 10�5}.

For the input node features, we first use tem-
plates to turn knowledge triples in ConceptNet into
sentences and feed them into pre-trained BERT-
LARGE, obtaining a sequence of token embeddings
from the last layer of BERT-LARGE for each triple.
For each entity in ConceptNet, we perform mean
pooling over the tokens of the entity’s occurrences
across all the sentences to form a 1024d vector as
its corresponding node feature. We use this set of
features for all our implemented models.
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We use 2-layer RGCN and single-layer MHGRN
across our experiments.

The numbers of parameter for each graph en-
coder are listed in Table 11.

C Dynamic Programming Algorithm for
Eq. 7

To show that multi-hop message passing can be
computed in linear time, we observe that Eq. 7 can
be re-written in matrix form:

Z
k = (Dk)�1 =

(r1,...,rk)"Rk

�(r1, . . . , rk, s)
�GArk⇧Ar1FXW

1
r1

„
⇧W

k
rk

„

�W k+1
0

„
⇧W

K
0

„ (1 & k & K), (13)

where G = diag(exp([g(�(v1), s), . . . , g(�(vn),
s)]) (F is similarly defined), Ar is the adjacency
matrix for relation r and D

k is defined as follows:

D
k = diag⇧ =

(r1,...,rk)"Rk

�(r1, . . . , rk, s)
�GArk⇧Ar1FX1↵ (1 & k & K) (14)

Using this matrix formulation, we can compute Eq.
7 using dynamic programming:

D Formal Definition of K-hop RN

Definition 1 (K-hop Relation Network) A multi-
hop relation network is a function that maps a
multi-relational graph to a fixed size vector:

KHopRN(G; W̃ , Ẽ, H̃) = K

=
k=1

=
(j,r1,...,rk,i)"�k

j"Q i"A

�̃(j, r1, . . . , rk, i)�W̃ (h̃jh(ẽr1`⇧`ẽrk)hh̃i),
(15)

where ` denotes element-wise product and �̃(⇧) =
1/(K∂A∂ � ∂{(j ¨, . . . , i) " G ∂ j ¨ " Q}∂) defines the
pooling weights.

E Expressing K-hop RN with MultiGRN

Theorem 1 Given any W̃ , Ẽ, H̃, there exists a pa-
rameter setting such that the output of the model
becomes KHopRN(G;W̃ , Ẽ, H̃) for arbitrary G.

Algorithm 1 Dynamic programming algorithm for
multi-hop message passing.
Input: s,X,Ar(1 & r & m),W t

r (r " R, 1 & t &
k),F ,G, �, ⌧
Output: Z

1: Ŵ
K ⇥ I

2: for k ⇥ K � 1 to 1 do
3: Ŵ

k ⇥ W
k+1
0 Ŵ

k+1

4: end for
5: for r " R do
6: Mr ⇥ FX

7: end for
8: for k ⇥ 1 to K do
9: if k > 1 then

10: for r " R do
11: M

¨
r ⇥ e�(r,s)Ar <r¨"R e⌧(r¨,r,s)Mr¨W

k
r

„

12: end for
13: for r " R do
14: Mr ⇥ M

¨
r

15: end for
16: else
17: for r " R do
18: Mr ⇥ e�(r,s) �ArMrW

k
r

„

19: end for
20: end if
21: Z

k ⇥ G<r"R MrŴ
k

22: end for
23: Replace W

t
r (0 & r & m, 1 & t & k) with identity

matrices and X with 1 and re-run line 1 - line 19 to
compute d

1, . . . ,dK

24: for k ⇥ 1 to K do
25: Z

k ⇥ (diag(dk))�1Zk

26: end for
27: return Z

1,Z2, . . . ,Zk
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Proof. Suppose W̃ = [W̃1, W̃2, W̃3], where
W̃1, W̃3 " Rd3✓d1 , W̃2 " Rd3✓d2 . For
MHRGN, we set the parameters as follows:
H = H̃,Uò = [I;0] " R(d1+d2)✓d1 , bò =[0,1]„ " Rd1+d2 ,W t

r = diag(1 h ẽr) "
R(d1+d2)✓(d1+d2)(r " R, 1 & t & K),V = W̃3 "
Rd3✓d1 ,V ¨ = [W̃1, W̃2] " Rd3✓(d1+d2). We dis-
able the relation type attention module and enable
message passing only from Q to A. By further
choosing � as the identity function and perform-
ing pooling over A, we observe that the output of
MultiGRN becomes:

1∂A∂ =
i"A

h
¨
i

= 1∂A∂ ⇥V hi + V
¨
zi�

= 1

K∂A∂
K

=
k=1

⇥V hi + V
¨
z
k
i �

=
K

=
k=1

=
(j,r1,...,rk,i)"�k

j"Q, i"A

�̃(j, r1, . . . , rk, i)⇤V hi+

V
¨
W

k
rk⇧W

1
r1xj 

=
K

=
k=1

=
(j,r1,...,rk,i)"�k

j"Q

�̃(⇧)⇤V hi + V
¨
W

k
rk

⇧W
1
r1U�(j)hj + V

¨
W

k
rk⇧W

1
r1b�(j) 

=
K

=
k=1

=
(j,r1,...,rk,i)"�k

j"Q, i"A

�̃(⇧)⇤W̃3hi + W̃1hj

+ W̃2(ẽr1 `⇧ ` ẽrk) 
=

K

=
k=1

=
(j,r1,...,rk,i)"�k

j"Q, i"A

�̃(⇧)W̃ ⇤h̃jh

(ẽr1 `⇧ ` ẽrk)h h̃i 
= RN(G; W̃ , Ẽ, H̃)

(16)


