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Abstract

Language models have emerged as a central
component across NLP, and a great deal of
progress depends on the ability to cheaply
adapt them (e.g., through finetuning) to new
domains and tasks. A language model’s vocab-
ulary—typically selected before training and
permanently fixed later—affects its size and is
part of what makes it resistant to such adapta-
tion. Prior work has used compositional input
embeddings based on surface forms to amelio-
rate this issue. In this work, we go one step be-
yond and propose a fully compositional output
embedding layer for language models, which
is further grounded in information from a struc-
tured lexicon (WordNet), namely semantically
related words and free-text definitions. To our
knowledge, the result is the first word-level
language model with a size that does not de-
pend on the training vocabulary. We evalu-
ate the model on conventional language mod-
eling as well as challenging cross-domain set-
tings with an open vocabulary, finding that it
matches or outperforms previous state-of-the-
art output embedding methods and adaptation
approaches. Our analysis attributes the im-
provements to sample efficiency: our model is
more accurate for low-frequency words.

1 Introduction

Language models (LMs) are at the heart of natu-
ral language processing, especially following their
recent success in the pretraining paradigm (Dai
and Le, 2015; Peters et al., 2018; Devlin et al.,
2019; Radford et al., 2019, inter alia). Continued
advances in NLP rely on the adaptability of LMs
to domains beyond their training data and to new
domains and tasks, e.g., through domain adaptive
pretraining followed by finetuning (Gururangan
et al., 2020). Here, we focus on an important com-
ponent of LMs, namely the output vocabulary—
over which a LM’s probability distribution over the

“next word” (given the history) ranges—and inves-
tigate the impact of the type of its representation
on the adaptability of neural LMs.

Today, LMs are typically trained with a closed
output vocabulary derived from the training data;
the vocabulary is not modified when the language
model is adapted or deployed. This makes large pre-
trained language models struggle with rare words,
despite being able to produce contextualized rep-
resentations for them (Schick and Schütze, 2020).
More importantly, this means a generative LM can
never give nonzero probability to a specific word
it did not see in training. This is a longstanding
challenge of language modeling (Jelinek, 1997),
but it becomes especially important when we adapt
to new domains and tasks.

One way to “open up” the vocabulary is to
model sequences of bytes, characters, or “word-
pieces” rather than the conventional word tokens
(Sennrich et al., 2016; Radford et al., 2018; Ponti
et al., 2019). While effective, this approach re-
quires the LM to memorize subsequences if it is
to treat them as words. These models appear to
require greater network depth and show slower
convergence than word-based alternatives (Cherry
et al., 2018; Al-Rfou et al., 2019); the extra work
comes at a cost. This is one of the reasons why the
area of word-level language modeling is still very
active (Baevski and Auli, 2019; Sukhbaatar et al.,
2019; Khandelwal et al., 2020; Press et al., 2020).

Interpolations between word- and character- or
morphology-based LMs represent another class of
solutions (Mielke and Eisner, 2018; Gerz et al.,
2018; Ataman et al., 2020). These “hybrid” ap-
proaches combine benefits from both model types.
However, they introduce complexity which makes
them potentially more difficult to train, maintain,
and analyze. Notable for enabling adaptability are
interpolated LMs based on copy mechanisms (Mer-
ity et al., 2017), dynamic evaluation (Krause et al.,
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2018), and neural caches (Grave et al., 2017c,a);
the last provides state-of-the-art adaptation perfor-
mance and, unlike the rest, it does not require addi-
tional training.

We propose a new word-level Grounded Com-
positional output LM (GroC) that applies a com-
positional representation to the output vocabulary
(Section 3). Each word’s output embedding is built
from its surface character sequence and (if avail-
able) those of semantically related words and a
free-text definition of from WordNet (Fellbaum,
1998). This parameterization offers two chief ad-
vantages. First, GroC can assign probability to
words not seen during training. This means that a
vocabulary different from the training vocabulary—
e.g., one associated with a different text domain,
crucial in adaptive settings—can be considered at
inference time. Second, because there are no word
type-specific parameters, the number of model pa-
rameters in GroC does not depend on the training
vocabulary or its size.

We evaluate GroC on language modeling with
both fixed and open vocabularies in English. On
standard language modeling (Section 4) we observe
that our model has superior perplexity and is more
sample efficient than a variety of existing output
embedding approaches, including the recent adap-
tive embedding of Baevski and Auli (2019). The
open-vocabulary settings include a cross-domain
setting and finetuning (Section 5). We find that
GroC also outperforms strong interpolated base-
lines, including the unbounded neural cache model
of Grave et al. (2017a) on “near” domains and per-
forms competitively on “far” domains.

Our analysis shows that our approach has im-
proved sharing across words in the output vocabu-
lary. We show experimentally that the perplexity
gains are strongest for low-frequency words, im-
plying improved sample efficiency relative to base-
lines: compositional output representations allow
us to predict words from fewer training examples.

2 Preliminaries on Language Modeling

Language models assign probability to sequences
of tokens; the task is usually framed as learning the
conditional probability distributions over individ-
ual tokens given their histories of tokens to the left
(Bahl et al., 1983). Training requires a sequence of
T tokens x = 〈x1, . . . , xT 〉, each xt a member of
a preselected vocabulary V . We let xt ∈ {0, 1}|V|
denote the one-hot encoding of xt. The probability

of the sequence x is factored using the chain rule
of probability:

p(x) =
T∏
t=1

p(xt | x1, . . . , xt−1). (1)

To approximate this joint distribution, researchers
have fit parametric families based on relative fre-
quencies (Bahl et al., 1983; Kneser and Ney, 1995;
Goodman, 2001) and neural networks (Bengio
et al., 2003; Mikolov et al., 2010). Here, we focus
on the latter due to their established effectiveness
(Merity et al., 2018; Baevski and Auli, 2019). To-
kens in this work correspond to words but they can
also correspond to individual characters (Al-Rfou
et al., 2019) or byte pairs (Radford et al., 2019).

2.1 Neural Language Models
To make clear this paper’s contributions, we de-
scribe neural language models by decomposing
them into several abstract parts.

In most neural language models, the first layer
of computation obtains an input embedding of each
history word xj using a lookup function. In our
notation, this corresponds to selecting the word
type’s row in a fixed input embedding matrix,
Ein : x>j E

in , which we denote einxj
. Importantly,

however, input embeddings need not be lookups;
for example, they can be built compositionally from
the characters in the surface form of the word (Ling
et al., 2015), an idea central to this work.

Next, the history or “prefix” words x<t =
〈x1, . . . , xt−1〉 is encoded into a fixed, d-
dimensional vector ht−1 using a prefix function
f : V∗ → Rd. f can be a recurrent or feedforward
network; we will experiment with LSTMs (Hochre-
iter and Schmidhuber, 1997) in Section 4, but our
method is agnostic to the prefix function design. In
general, each history encoding is defined as

ht−1 = f(einx1
, . . . , einxt−1

). (2)

Finally, the distribution over the next word (random
variable Xt) is given by

p(Xt = xt | ht−1) ∝ exp
(
Eoutht−1 + b

)
, (3)

where Eout ∈ R|V|×d is the output embedding
matrix and b ∈ R|V| is the bias vector (corre-
sponding roughly to unigram log-frequencies of
words in the vocabulary).

The parameters of the model—including all pa-
rameters of the prefix function f , Ein , Eout , and
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b—are all chosen by maximizing the likelihood of
the training sequence x under the model (Eq. 1).
Note that, though we focus on an autoregressive
(left-to-right) language model objective, our anal-
ysis below is applicable to other language model
pretraining objectives such as masked language
modeling (Devlin et al., 2019) and replaced token
detection (Clark et al., 2020).

2.2 Choice of Output Representations

Above we assumed an output embedding matrix
Eout that independently parameterizes each word
in the vocabulary with a separate d-dimensional
vector. This approach requires d× |V| parameters,
leading to concerns about cost and overparameter-
ization. Prior work addressed this issue by tying
parameters between the input and output embed-
ding matrices (i.e., Eout = Ein ; Inan et al., 2017;
Press and Wolf, 2017). However, the parameters
for each word are still independent from each other,
as displayed in Figure 1(a).

An alternative, also considered here, is to share
output parameters across words as well as with the
input embeddings. Specifically, this involves mak-
ing the output embedding a function of the input
embedding using a shared parameterization across
words, Eout = g(Ein), as displayed in Figure 1(b).
For example, Gulordava et al. (2018) used a lin-
ear transformation, while Baevski and Auli (2019)
used a linear transformation for each frequency bin
to dedicate parameters to words proportional to
their frequencies. Pappas and Henderson (2019)
used a deep residual transformation as g, demon-
strating that shared parameterizations perform bet-
ter than independent ones. The two latter studies
also provided evidence that models with shared
parameterization are more sample efficient than in-
dependent parameterizations since they perform
better on low-frequency words.

Limitations We argue that dependence of a
model’s parameterization on the size of the vocab-
ulary leads to several limitations shared by current
word-level language models. First, the output em-
bedding methods above have terms that scale with
the vocabulary size, such as the lookup table for the
input embedding or the bias vector, which is a con-
cern for the parameterization of infrequent words.
Second, handling of words unseen in the training
data leads us to the convention of uninformative
“out-of-vocabulary” word types or linguistically
naı̈ve, data-driven vocabulary transformations that

+
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(a) Independent 

(b) Shared
Figure 1: Existing output layer parameterizations.

aggressively decompose words into smaller units
(Sennrich et al., 2016). Finally, when pretrained
language models are adapted on a downstream task,
they do not allow graceful modifications to the vo-
cabulary as required by the task or its data domain.
Decoupling the training vocabulary from the target
vocabulary that a model can use during inference
or finetuning will simplify sequential training and
enable open vocabularies.

Building on encouraging results with compo-
sitional input embeddings (Ling et al., 2015;
Józefowicz et al., 2016; Peters et al., 2018), we
introduce a language model with shared composi-
tional embeddings for input as well as for output
word representations. Further, we go beyond past
work based on surface forms, making optional use
of relations and natural language definitions from
structured lexicons like WordNet (Fellbaum, 1998).
To our knowledge, this is the first word-level lan-
guage model whose parameters do not depend on
the vocabulary size and which is grounded to an
external structured lexicon. Our experiments show
that our models are more sample efficient (Section
4) on closed vocabularies and perform competi-
tively on cross-domain settings (Section 5).

3 GroC: Grounded Compositional
Output Language Models

We present our grounded compositional output lan-
guage model (Figure 2).1 Following the decomposi-
tion of neural language models in Section 2 (Equa-
tions 2–3), we consider each part of the model
in turn: input embeddings (Section 3.1), output
embeddings (Section 3.2), and bias (Section 3.3).
As noted above, our approach is agnostic to the

1Code: https://github.com/Noahs-ARK/groc

https://github.com/Noahs-ARK/groc
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Figure 2: Grounded compositional output language modeling. (Left) The compositional input embedding is
grounded in surface, relational, and definitional word forms from an external structured lexicon. (Right) The
encoded prefix words are given as input to the prefix function and the words in an arbitrary vocabulary are given
as input to the output embedding function and the bias function to predict the next word.

training vocabulary (V) and to the prefix encoder
(f ) that has been the focus of most innovations in
neural language model design.

3.1 Compositional Input Embeddings

We build on the compositional model of Ling et al.
(2015), which encodes a word using its surface
string (i.e., character sequence), adding two more
sources of information. Peters et al. (2019) en-
hanced word representations with information from
external relational knowledge bases, specifically
for words that refer to entitites. Like them, we
use a structured lexicon (WordNet); we encode ev-
ery word in the lexicon using its neighbors. The
second follows Bahdanau et al. (2017), who used
definitions to represent out-of-vocabulary words;
we encode definitions for all words (regardless of
training-set frequency).

We begin by replacing the matrix Ein ∈ R|V|×d
with a neural network that defines a word’s em-
bedding compositionally from its surface form, its
position relative to other words in a structured lex-
icon, and a natural language definition. For each
word x, we refer to these, respectively, as the word
type’s surface embedding cx, relational embedding
rx, and definitional embedding dx. We assume
each has a dimensionality of d. The last two are
optional (if missing, they are set to zero), and we re-
define ex as the concatenation of the three, namely
ex = 〈cx, rx,dx〉. For rx and dx, we used the
structured relations (synonyms and hyponyms) and
free-text definitions in WordNet (Fellbaum, 1998).

In this study, we focus on simple, computation-
ally efficient options for the three encoders. A word
x’s character sequence is encoded as surface encod-
ing cx using a convolutional network followed by

a highway network (Józefowicz et al., 2016; Peters
et al., 2018). Its relational encoding rx is given by
an average of cx′ across WordNet synonyms and
hyponyms x′. The definitional encoding of x, dx,
we similarly take an average of the surface encod-
ings cx′ over words x′ appearing in the definition.
For computational efficiency, we set a maximum
limit to the number of words to be used for both
relations and definitions (see Appendix B.1).

If a word’s information is not in WordNet, we
set rx and/or dx to 0. In future work, additional en-
codings could be appended, such as contextualized
examples (Khandelwal et al., 2020).

A notable property of these input embeddings is
that their parameter count does not depend on the
vocabulary size |V|. Further, the vocabulary used
in training need not be identical to the one used
during finetuning, evaluation, or deployment. For
example, during training we can use the full vo-
cabulary combined with a softmax approximation
method (e.g., Grave et al., 2017b), or by dynami-
cally narrowing the choice of xt based on its his-
tory using co-occurrence statistics (L’Hostis et al.,
2016). During finetuning or evaluation, one can
use the same vocabulary (required for traditional
perplexity evaluations) or a different one chosen
statically or dynamically, since any word’s input
embedding can be calculated compositionally.

3.2 Compositional Output Embeddings

One straightforward option for vocabulary size-
independent output embeddings is to reuse the
compositional input embeddings from Section 3.1,
along the lines of Press and Wolf (2017). Con-
cretely, at timestep t, we take the set V ′t of output
word types allowed, embed each word type v ∈ V ′t
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as in Section 3.1, and stack these into a matrix Ein
t

which serves directly as Eout .
Though these compositional representations do

enable extensive sharing across the vocabulary, we
suspect that the features they capture may require
additional processing before capturing “output” dis-
tributional similarity, especially when another do-
main is the real target use case for the language
model. This follows prior work discussed in Sec-
tion 2.2, which showed that making the output em-
bedding a function of the input embeddings with
shared parameters improves over simple tying.2

We therefore adopt a depth-k residual network
for the output embedding function g (from Section
2.2) that consists of a feedforward function gi at
each layer j with d-dimensions each and apply it
to the input embedding at timestep t:

∀j : 1 ≤ j ≤ k,Eout
t

(j)
= gj

(
Eout

t
(j−1)

)
+ Ein

t

Eout
t

(0)
= Ein

t . (4)

Hence, we use Eout
t

(k) as the output embedding
at timestep t. To avoid overfitting, we apply varia-
tional dropout in between the layers, following Pap-
pas and Henderson (2019). In contrast to that work,
our resulting output embeddings are compositional.
The depth k and the dropout rate are hyperparame-
ters to be tuned on development data. The number
of parameters is proportional to k times the number
of parameters in the feedforward network (O(d2));
it does not depend on the vocabulary size.

3.3 Bias
In conventional language models, each word in
the vocabulary is assigned a bias parameter that
roughly captures its log-frequency under a unigram
distribution. This is the last part of a neural lan-
guage model whose parameters depend on the vo-
cabulary size. Instead of a dedicated, independent
bias parameter for each word v ∈ V , we define

bv = σ
(
w · eoutv + a

)
, (5)

where σ is the activation function and we introduce
parameters w ∈ Rd and a ∈ R. The bias values bv
are stacked to form b and used in Equation 3.

3.4 Training
Since all components are differentiable with respect
to their parameters, the entire model can be trained

2Note that the input embeddings are passed through the
prefix encoder f , which uses additional parameters to create
the hidden state ht−1.

to maximize training-data likelihood as described
earlier (Section 2.1). Parameters include:

• Input character embeddings, the convolutional
network for c∗, and 3d2 parameters for pro-
jection (Section 3.1);

• Output embedding transformation, including
the depth-k feedforward network for output
embeddings (Section 3.2) and the bias param-
eters (Section 3.3); and

• Prefix encoder f , an orthogonal design choice
to our method (an LSTM in our experiments).

The model size can be adjusted by changing out-
put embedding hyperparameters to fit a given mem-
ory requirement — this is the same as any other
neural network. Note that despite our vocabulary-
size independent parameterization, we still need
to process all the words in the supplied vocabu-
lary leading to increased training times despite the
model’s sample efficiency. This can be prohibitive
for very large vocabularies (≥ 100K), where we
recommend using softmax approximation methods
and making sparse updates of the output embedding
parameters (see Appendix 1.3). During inference,
Eout can be cached for fast access; there is no need
to execute a forward pass more than once.

4 Conventional Language Modeling

We first establish the performance of GroC in the
conventional closed-vocabulary setting, consider-
ing two datasets. We consider out-of-sample gener-
alization (measured by test-set perplexity) and also
analyze fit across the vocabulary by frequency bin.

4.1 Experimental Setup

Datasets. We evaluate our methods on two En-
glish datasets: penn (Marcus et al., 1993) and
wikitext2 (Merity et al., 2017). We report
test perplexity using the provided training/dev./test
splits (see details in Appendix B.3). Table 1 also
quantifies the percentage of each dataset’s vocab-
ulary that is covered by WordNet (used to derive
relational and definitional encodings).

Dataset genre |V| # tokens WNet cov.

penn news 10K 929K 78 86
wikitext2 Wikip. 33K 2M 73 76

Table 1: Language modeling dataset statistics.
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Models. All of the models compared use the
same prefix encoder: a vanilla recurrent neural net-
work based on the implementation by Merity et al.
(2017) with 2 layers and 1024 LSTM units, regu-
larized with hidden unit dropout of 0.65 along the
lines of Grave et al. (2017a). More details are given
in Appendix B.4. The following output embedding
approaches are compared:

• Lookup table: trains a full output embedding
lookup table that corresponds to the vocabu-
lary as defined in Eq. 3.

• Convolutional (Józefowicz et al., 2016): an
alternative to a lookup table that uses a
character-level convolutional neural network
followed by a highway network plus a linear
“correction” for each vocabulary element to
represent the outputs.3

• Tied (Press and Wolf, 2017): avoids training
separate input and output embedding matrices
by tying their parameters. This is a common
technique that mitigates the overparameteriza-
tion issue of the lookup table.

• Bilinear (Gulordava et al., 2018): performs a
simple linear transformation of the input em-
bedding to produce the output embedding that
effectively shares parameters across outputs.

• Deep residual (Pappas and Henderson, 2019):
performs a deep residual transformation of the
input embedding with variational dropout in
between its layers, which is more expressive
than the bilinear one.

• Adaptive (Baevski and Auli, 2019): uses a
bilinear transformation of the input and out-
put embedding with parameters proportional
to the word frequencies, to assign more ca-
pacity to frequent words and less capacity to
infrequent ones. This is considered to be a
state-of-the-art output embedding method.

• GroC (ours): the grounded compositional out-
put embedding described in Section 3.2.

For fair comparison, we apply variational
dropout to all output embeddings. Hyperparameter
selection of dropout rates, output network depth
and activation, linear “correction,” and adaptive
frequency cutoffs was conducted by grid search on
validation data. Details are given in Appendix B.2.

3Note that we chose not to use a linear “correction” with
GroCince it deviates from our goal of having a vocabulary-
independent parameterization, but it could be applied to
GroCn the future for additional improvements.

penn wikitext2
Output embedding |Θ| test |Θ| test

Lookup table 13M 90.8 23M 108.3
Convolutional [J16] 13M 101.6 23M 116.6
Tied [PW17] 10M 86.2 15M 97.3
Bilinear [G18] 10M 83.7 15M 95.9
Deep residual [PH19] 10M 80.5 15M 94.7
Adaptive [AM19] 8M 79.3 9M 90.7

GroC (ours) 9M 69.5 9M 82.5

Table 2: Perplexity scores on conventional language
modeling benchmarks with closed vocabulary. |Θ| de-
notes the total number of model parameters.

4.2 Results
Table 2 reports perplexities achieved by all seven
models. The main finding is that GroC achieves
lower perplexity than the previous models, on both
datasets. Note that GroC outperforms the state-of-
the-art output embedding method of Baevski and
Auli (2019); specifically, by −9.8 and −8.2 points
on penn and wikitext-2, respectively. The
difference with the other methods is even larger.
We also confirm the findings of Pappas and Hender-
son (2019), that output parameter sharing methods
outperform tied output embedding and the lookup
table, and, of Józefowicz et al. (2016), that convo-
lutional output embeddings lag behind full softmax
(lookup table). Notably, GroC outperforms the best
reported scores by Merity et al. (2017) and Grave
et al. (2017a) on penn, using about 11M fewer pa-
rameters and a similar prefix network to the latter.
See Appendix B.5 for a more detailed comparison
with state-of-the-art models of similar size.

Nevertheless, GroC is about 1.3× slower than
the convolutional method on penn; with sparse
updates (p > 0.3) we can make it 2.1× faster than
that method, which is comparable to the speed of
the bilinear method, while maintaining a perplexity
improvement of −26 points (see detailed speed
comparisons in Table 10 in Appendix B.4).

4.3 Analysis
The experiment above establishes that our approach
achieves improved perplexity relative to alternative
output embeddings. We next decompose its perfor-
mance in various ways to understand why.

Word frequency effects. We conjecture that
GroC’s main benefit comes from words that are
rare in the training data, since the core contribution
is to share representations across the vocabulary. To
evaluate this hypothesis, we consider the difference
in test loss (cross entropy) between GroC and a



1258

(4146 tokens) (1482 tokens) (381 tokens) (38 tokens) (10245 tokens) (3130 tokens) (706 tokens) (56 tokens)

Figure 3: Median loss difference between each baseline and GroC over different word frequency intervals on penn
(a) and wikitext2 (b). The biggest differences are mostly observed on words with low training frequencies.

baseline model, following Baevski and Auli (2019)
but computing the median instead of the average
to reduce the effect of outliers. We decompose this
score by data frequency bins (e.g., words occur-
ing 1–50 times in the training dataset). Figure 3 is
displayed for the penn and wikitext2 datasets.
The trend we observe is that GroC has the greatest
relative benefit for words in lower frequency bins,
compared to each model. The lowest-frequency
bin on penn deviates from this pattern, which we
take as an indication that generalizing to infrequent
words with only 1M training tokens and a small
10K vocabulary is inherently challenging.

Ablations. To assess the contributions of GroC’s
components, we performed ablation tests on penn
and wikitext2 (Table 3). These include remov-
ing relational and/or definitional forms, either with
or without a deep residual output network. For fair-
ness, we tune the hyperparameters of the ablated
model variants as above. Overall, removing the re-
lational and definitional forms from the main model
with or without output network on top increases the
perplexity. The largest drop in perplexity happens
when we remove both forms, which highlights their
notable contribution to the full model. Lastly, the
results on wikitext2 highlight the importance
of capturing the output similarity with an output
network (out) for datasets with a larger vocabu-
lary as opposed to merely reusing the grounded
compositional embeddings as output embeddings.

penn wikitext2
Model dev. test dev. test

GroC + out 75.0 71.4 - 87.0 82.5 -
− relations 77.1 72.7 ↑ 90.2 85.3 ↑
− definitions 75.6 72.0 ↑ 88.6 84.3 ↑
− both 79.8 75.8 ↑ 94.3 89.8 ↑
GroC 72.5 69.5 - 88.7 84.1 -
− relations 74.2 70.8 ↑ 93.0 88.0 ↑
− definitions 74.4 71.1 ↑ 87.6 83.1 ↓
− both 76.3 73.2 ↑ 94.5 89.5 ↑

Table 3: Ablated model variants on penn and
wikitext-2. out: the deep residual output network.

Lexicon coverage. To measure the effect of lexi-
con coverage on model performance in a controlled
setting, we artificially remove words from Word-
Net, making them unavailable for relational and
definitional encodings. In this experiment, we con-
sider the penn dataset, where WordNet’s coverage
over the (relatively small) vocabulary is highest to
begin with. Table 4 shows the resulting test perplex-
ity of a pretrained model (inference) and a model
trained from scratch (train) when such controlled
manipulation is applied to them from 0% up to the
maximum of 82% coverage (Table 1) . Note that
we treat relational independently of definitional
forms since they are not always co-present. Over-
all, the results indicate that the model is sensitive
to changes in the forms of words that have been
seen during training but it is robust to changes if
it is trained from scratch. In the next section, we

Coverage surf. 0% 16% 32% 48% 64% 82%

inference 73.1 187.8 159.3 128.5 102.6 83.5 69.5
train – 72.4 70.0 70.4 69.6 70.7 69.5

Table 4: External lexicon coverage effect on the per-
plexity of GroC on the penn test set. surf.: model with
surface forms only from Table 3, last row.

investigate what happens when we add forms for
words which the model has never seen before.

5 Cross-Domain Language Modeling

To demonstrate our model’s ability to generalize
beyond its training data, we evaluate it across do-
mains with an open vocabulary, in two settings:
zero-resource, where it is first trained on one do-
main and then tested on a new target domain, and
low-resource, in which the model is further exposed
to training data in the new domain.

5.1 Experimental Setup

Data. Following Grave et al. (2017a), we create
English datasets from News Crawl (Bojar et al.,
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near domains far domains
Model 2007→ 2008 2009 2010 2011 Web Wiki

Zero-resource setting
G

ra
ve

et
al

.

(2
01

7a
) Base 220.9 237.6 256.2 259.7 268.8 689.3 1003.2

Base + unigram 220.3 235.9 252.6 256.1 264.3 581.1 609.4
Base + local cache 218.9 234.5 250.5 256.2 265.2 593.4 316.5
Base + unbounded cache 166.5 191.4 202.6 204.8 214.3 383.4 337.4

B
as

el
in

e Tied 184.3 199.8 217.3 221.6 229.9 660.6 841.1
Tied + unigram [G17] 187.8 203.6 221.5 225.9 234.3 577.5 819.7
Tied + local cache [G17] 181.8 196.5 212.0 217.7 225.9 501.7 406.9

O
ur

s GroC 158.6 171.0 186.7 192.5 200.4 637.9 753.9
GroC + unigram [G17] 155.2 167.3 183.1 189.5 196.4 533.6 689.2
GroC + local cache [G17] 152.6 164.1 179.0 185.1 192.3 493.0 408.8

Low-resource setting
Tied + finetuning – 172.8 177.9 180.7 185.4 212.7 242.6
GroC + finetuning – 153.7 162.2 167.0 170.6 239.5 216.9

Table 5: Results on near and far cross-domain language modeling with an open vocabulary with a zero-resource
or a low-resource setting. Top four rows display scores from Grave et al. (2017a), while the next three are from
our re-implementation with a stronger base model. Boldface marks the best perplexity on each test set.

Dataset source train |V | test |V | OOV%

2007

News Crawl

81K 188K 2.0
2008 82K 197K 2.3
2009 81K 195K 2.5
2010 78K 181K 2.4
2011 80K 184K 2.5
web Common Crawl 75K 174K 5.8
wiki WikiText-103 67K 109K 5.4

Table 6: Dataset statistics for cross-domain experi-
ments. OOV% gives the percentage of tokens in the
test set not present in the 2007 train vocabulary.

2014), Common Crawl,4 and WikiText-103 (Mer-
ity et al., 2017). Dataset statistics are given in Table
6. All models are trained on 2M tokens from the
2007 dataset and evaluated on 10M tokens; fine-
tuning is done on an additional 2M tokens from
the target domain. We consider the domain of the
2008-2011 datasets to be similar (“near”) to that
of the training set, 2007, as they contain news
from different time periods. In comparison, web
and wiki are more different (“far”) from 2007.

Models. We compare GroC to the tied output
embedding model described in Section 4.1 when
combined with the following adaptation methods:

• Unigram: we interpolate the model’s distri-
bution with a unigram cache, which assigns
probabilities based on the counts of words in
the test data observed so far during evaluation.

• Local cache: we interpolate the model’s dis-
4We used the version from WMT 2014 (Bojar et al., 2014).

tribution with a neural cache (Grave et al.,
2017c), which assigns probabilities based on
the similarity of the current hidden state to
previous hidden states during evaluation.

• Finetuning: the model is finetuned on 2M
tokens from the target domain.

(We also compare to the reported unbounded cache
results from Grave et al., 2017a.) Cache models
provide effective adaptation without training by
using recent history to develop an auxiliary distri-
bution during evaluation, informing predictions of
unseen or rarely-seen words. However, as GroC al-
ready assigns non-negligible weight to new words
not seen prior to evaluation, the cache has less ef-
fect by default, even if its predictions are more
accurate, an effect we observed in validation. To
address this, we down-weighted the model’s pre-
dictions for new words prior to cache interpolation
by 0.1. For finetuning, both tied and GroC models
were trained for an additional 3 epochs on the target
domain, allowing them to adapt to the new domain.
See Appendix C.4 for hyperparameter details.

Vocabulary setting. For a fair comparison, all
models are evaluated on the union of the training
and test vocabularies. Tied models are interpolated
with the uniform distribution at test time to prevent
infinite perplexities on unseen words, prior to cache
interpolation if applicable. Words present in the
finetuning data but not in the original training data
are given random embeddings prior to finetuning.
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5.2 Results
The results for the cross-domain experiments are
shown in Table 5. Standalone GroC improves per-
plexity relative to the tied model in every domain
by up to −30 points, including the local neural
cache and the unbounded neural cache model in the
near-domain, even when the former is applied to
our own stronger tied-embedding baseline model.
In addition, finetuned GroC outperforms all pre-
vious baselines by a wide margin including the
unbounded cache by about −40 and −132 points
on near and far domains, respectively. Here, GroC
outperforms the finetuned tied model by up to −25
points except in web domain, and reaches lower
validation scores with fewer iterations in 5 out of 6
domains (see Appendix C.1). For the web domain,
caches and finetuning are more effective than in any
other domain, indicating unique domain dynamics
worthy of further study.

6 Conclusion

We proposed an adaptive language model based
on grounded compositional outputs. We demon-
strated that it reduces the number of parameters
and increases sample efficiency, outperforming
strong output embedding methods and adaptation
baselines on both in-domain and open-vocabulary
settings respectively. In principle, our results
should be applicable to word-piece language mod-
els which are currently based on lookup tables to
improve their sample efficiency and compactness.
In future work, it would be interesting to inves-
tigate to what extent pretrained language models
benefit from GroC on such zero-resource or low-
resource adaptation settings. This work indicates
several other future directions for language mod-
eling in low-resource domains: extension to other
languages, scaling training to even larger vocab-
ularies, and applying GroC in a large pretraining
setting to expand its zero-shot generalization.
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Daniela Gerz, Ivan Vulić, Edoardo Ponti, Jason Narad-
owsky, Roi Reichart, and Anna Korhonen. 2018.
Language modeling for morphologically rich lan-
guages: Character-aware modeling for word-level
prediction. Transactions of the Association for Com-
putational Linguistics, 6:451–465.

Joshua T. Goodman. 2001. A bit of progress in lan-
guage modeling. Computer Speech and Language,
15(4):403–434.

Edouard Grave, Moustapha Cisse, and Armand Joulin.
2017a. Unbounded cache model for online language
modeling with open vocabulary. In Proceedings of
the 31st International Conference on Neural Infor-
mation Processing Systems, pages 6044–6054, USA.
Curran Associates Inc.
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A Supplementary Material for
“Grounded Compositional Outputs for
Adaptive Language Modeling”

We report here the computer infrastructure, experi-
mental details, including hyperparameter bounds,
hyperparameter optimal values, training speed, de-
velopment scores, for both of the experiments
where applicable. We also provide a comparison
with state of the art by taking into account the
number of model parameters and guide the reader
through the replication effort we did to reproduce
the neural cache by Grave et al. (2017a).

B Conventional Language Modeling

For the experiments with a closed vocabulary on
penn5 and wikitext-2,6 we used the following
computing infrastructure: 5 GeForce RTX 2080 Ti
gpu cards. Our codebase is based on Pytorch7 and
is publicly available on Github.8

B.1 Model Configuration

The prefix network used by all output embedding
methods is a vanilla recurrent neural network based
on the implementation by Merity et al. (2017)9

with 2 layers and 1024 LSTM units, regularized
with hidden unit dropout of 0.65 along the lines
of Grave et al. (2017a). The maximum length of
the relational and definitional forms from Word-
net is set to 3 and 10 without search based on our
computational budget.10 The embedding size is
set to 300 for penn and 256 for wikitext2.
For optimization we use Adam with a learning
rate of 0.001, initial weight uniformly sampled in
the range [−0.05, 0.05], and a batch size of 20 for
penn and wikitext2. We clip the norm of the
gradient to 0.1 and unroll the network for 35 steps.
The learning rate is multiplied by 0.1 if the devel-
opment loss does not decrease for 4 consecutive
epochs and we perform early stopping if there is
no improvement for 8 consecutive epochs.

5www.fit.vutbr.cz/˜imikolov/rnnlm/
simple-examples.tgz

6s3.amazonaws.com/research.metamind.
io/wikitext/wikitext-2-v1.zip

7pytorch.org/get-started
8github.com/Noahs-ARK/groc
9github.com/salesforce/awd-lstm-lm

10We expect that a larger budget would generally allow to
increase these limits and obtain even better results.

Hyperparameter abbrev. range trials

Output dropout r {0, 0.1, . . . , 1.0} 10
Linear correction cor {32, 64, 128} 3
Adaptive cutoffs cut {253, 721, 118, 226, 6

424, 334}
Output net depth k {0, 1, 2, 3, 4} 4
Output net activation act {relu, selu, tanh} 3

Table 7: Hyperparameters, range of values, and, num-
ber of trials required to search them. Adaptive cutoffs
are read as follows: e.g. for 253 the cutoff array con-
tains

[
0.2 ∗ n, 0.5 ∗ n, 0.3 ∗ n

]
, n = |V| words per bin.

B.2 Hyperparameter Optimization

For all methods, the hyperparameter selection of
output embedding dropout rate (r), output network
depth (k) and activation (act), linear “correction”,
and adaptive frequency cutoffs was conducted by
grid search over specific range of values given in
Table 7 on development data. Note that not all the
hyperparameters apply to all methods, as can be
seen in Table 8 where we report the optimal hyper-
parameter values for each of the methods. For all
the baselines we performed exhaustive grid search
on both datasets, but for our method we performed
grid search only on penn and searched manually
on wikitext-2 by selecting values of hyperpa-
rameters that were ranked high based on the grid
search on penn to avoid the increased cost that
comes with training our method (see speed compar-
ison in Appendix B.4). The total number of trials
for all methods including our ablations were 204
and 67 respectively for penn and wikitext-2
respectively. Note that the reduced number of tri-
als is due to not performing exhaustive search for
our method and its ablations as explained above.
The number of trials per method can be derived by

penn wikitext2

Method r cor cut k act r cor cut k act

Lookup table 0.1 – – – – 0.2 – – – –
Convolutional 0.1 128 – – – 0.1 182 – – –
Tied 0.0 – – – – 0.0 – – – –
Bilinear 0.5 – – – – 0.4 – – – –
Deep residual 0.5 – – 4 selu 0.6 – – 1 selu
Adaptive 0.3 – 2k7k – – 0.2 – 6k21k – –

GroC (ours) 0.2 – – 0 – 0.2 – – 1 relu
− relations 0.3 – – 0 – 0.3 – – 1 selu
− definitions 0.2 – – 0 – 0.3 – – 2 relu
− both 0.3 – – 0 – 0.3 – – 1 selu

Table 8: Best hyperparameter values per method.

www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip
s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip
pytorch.org/get-started
github.com/Noahs-ARK/groc
github.com/salesforce/awd-lstm-lm


1264

multiplying the non-zero columns per row with the
number of trials required for each column.

B.3 Development Scores
Table 9 displays the development scores and num-
ber of parameters along with the test perplexities
for our model and all the baseline output embed-
ding methods for our main experiment. The devel-
opment scores for the models of the ablation study
and for the base models of the coverage experiment
have already been given in Table 3 in the main pa-
per (Section 4.3). Overall, we can observe that in
most cases the ranking based on the development
scores is indicative of the ranking of the methods
according to the test scores.

penn wikitext2

Method |Θ| dev. test |Θ| dev. test

Lookup table 13M 93.5 90.8 23M 113.8 108.3
Convolutional 13M 104.0 101.6 23M 121.2 116.6
Tied 10M 88.6 86.2 15M 101.0 97.3
Bilinear 10M 87.0 83.7 15M 101.3 95.9
Deep residual 10M 84.0 80.5 15M 100.1 94.7
Adaptive 8M 84.0 79.3 9M 95.8 90.7

GroC (ours) 9M 72.5 69.5 9M 87.0 82.5

Table 9: Development and test scores on conventional
language modeling benchmarks with closed vocabu-
lary. |Θ| denotes the total number of model parameters.

B.4 Training Speed
Table 10 displays the average training speed per
epoch in seconds for each of the methods. This ex-
periment was run on a single, dedicated11 GeForce
RTX 2080 Ti. As we mentioned in Section 3.1,
even though our model has vocabulary-size inde-
pendent parameterization it is not independent of
the computation that is required to encode the vo-
cabulary. This has a negative impact on the training
speed of GroC, making it a bit slower than the Con-
volutional method, namely 1.3× slower.

To mitigate this problem we recommend train-
ing GroC with sparse updates for the output em-
bedding parameters as described in the main paper
(Section 3.4). Concretely, at each training itera-
tion with probability p we make a full update and
keep the output embedding frozen otherwise. The
rest of the network is trained with full updates as
before. We can observe that this optimization strat-
egy makes GroC nearly as efficient as the base-

11By dedicated GPU card here we mean that no other pro-
cesses were using the GPU card when we performed the ex-
periments for each of the methods.

lines with p = 0.1 or p = 0.3. In particular, it
becomes even faster than the convolutional base-
line by 2.1×. Furthermore, our best model with
p = 0.3 which is much faster reaches 75.3 perplex-
ity on penn without additional hyperparameter
optimization which is still −4 points lower than
the second best, adaptive output embedding; tuning
the model from scratch should likely lead to even
better results. This is quite encouraging because it
means that the benefits of our model need not come
with a large computational cost. In future work, the
training speed could be optimized even further by
devising specialized efficient training methods for
compositional outputs.

Method penn wikitext-2

Lookup table 19.5 59.5
Convolutional 201.2 1301.9
Tied 18.6 53.6
Bilinear 35.0 120.1
Deep residual 61.2 114.5
Adaptive 27.2 77.6

GroC (ours) 259.8 1813.5
− 10% updates 236.3 1627.7
− 30% updates 173.5 1262.9
− 50% updates 131.5 936.4
− 70% updates 95.2 669.0
− 90% updates 46.0 299.0

Table 10: Training speed for each method. We report
the average time in seconds to complete one epoch.

B.5 Comparison with State-of-the-Art
Models

Table 11 displays several state-of-the-art models
which have number of parameters ranging from
9M to 20M on Penn Treebank. We can observe
that our model which has only 9.7M parameters
achieves better performance than all the models
that have lower than or equal to 21M parameters
and even the model by Inan et al. (2017) which has
24M parameters. Note that our model has lower
perplexity than the pointer sentinel mixture model
by Merity et al. (2017) and the neural cache model
by Grave et al. (2017a) while having 11M less
parameters than them.

Moreover, it is very close to the other models
which have around 23-25M parameters without
being highly regularized (weight dropout, input
dropout) or having advanced optimization strate-
gies (SGD + ASGD, finetuning) like AWD-LSTM
(Merity et al., 2017). Training larger models and
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Figure 4: Training and validation loss for GroC and the tied model during finetuning on near domains.

Model |Θ| test

Mikolov and Zweig (2012) – RNN-LDA 9M‡ 92.0
Zaremba et al. (2014) – LSTM 20M 82.7
Gal and Ghahramani (2016) – Var. LSTM 20M 78.6
Kim et al. (2016) – CharCNN 19M 78.9
Merity et al. (2017) – Pointer Sentinel-LSTM 21M 70.9
Grave et al. (2017c) – LSTM + cont. cache - 72.1
Inan et al. (2017) – Tied Variational LSTM 24M 73.2
Zilly et al. (2017) – Variational RHN 23M 65.4
Zoph and Le (2016) – NAS Cell 25M 64.0
Merity et al. (2018) – AWD-LSTM 24M 58.8

Ours – LSTM 10M 86.2
Ours – LSTM + GroC (sur,rel,def) 9.7M 69.5

Table 11: Comparison with state-of-the-art models of
comparable size to that of Grave et al. (2017a) and Mer-
ity et al. (2017) on the penn dataset.

investigating the potential of competing with even
higher capacity models is an interesting direction
which we hope will be explored in future studies.

C Cross-Domain Language Modeling

For the experiment in cross-domain language mod-
eling, we used the following computing infrastruc-
ture: 2 GeForce RTX 2080 Ti and 2 TITAN RTX
GPUs to train and finetune our GroC models, and 2
Tesla P100 GPUs to train and finetune the baselines
and to perform hyperparameter search.

C.1 Finetuning Dynamics

Figures 4 and 5 show the loss on the training and
validation data for the target domain during fine-
tuning. GroC generalizes better from the training
to the validation data than the tied model, consis-
tently having lower validation loss. The training
loss for GroC consistently starts out lower than that
the of the tied model, showing that it has less diffi-
culty adapting to the new data, and ends up higher,
indicating greater regularization vs the tied model.

The web dataset is a clear outlier, in which the
tied model improves much more dramatically than
in any other domain. The difference in validation
performance here is reflected in the test perplexity
(Table 5) but does not have a clear explanation.

C.2 Data

As described in Section 5, the choice of data and
preprocessing used for the cross-domain experi-
ments are based on Grave et al. (2017a). News
Crawl and Common Crawl can be downloaded
from the WMT 2014 website.12 WikiText-103 was
downloaded from Salesforce website13. For the
News Crawl datasets, the first 2M tokens of the
English data for each year were used as the train

12www.statmt.org/wmt14/translation-
task.html

13blog.einstein.ai/the-wikitext-long-
term-dependency-language-modeling-
dataset/

www.statmt.org/wmt14/translation-task.html
www.statmt.org/wmt14/translation-task.html
blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/
blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/
blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/
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near domains far domains
Model 2007→ 2008 2009 2010 2011 Web Wiki

Tied + finetuning – 167.44 175.95 177.46 180.63 144.13 232.06

Grounded + finetuning – 146.84 152.29 155.27 158.21 212.99 188.25

Table 12: Validation perplexity for finetuned models on cross-domain language modeling.

Figure 5: Training and validation loss for GroC and the
tied model during finetuning, on far domains.

set, the next 2M tokens as the validation set, and
the next 10M tokens as the test set. The same pro-
cedure was used for web (Common Crawl), for
which we used the English portion of the English-
German aligned data. While Grave et al. (2017a)
describes the Common Crawl data as shuffled at
the sentence level, we found that most sentences
seemed closely related to adjacent sentences, so
after creating train/valid/test splits for this dataset
we re-shuffled each file. WikiText-103 comes di-
vided into train/valid/test splits, so we used the first
2M/2M/10M tokens of each split respectively for
our dataset. All data was then tokenized using the
Europarl tokenizer14 and lowercased.

Our data preprocessing can be replicated with
the script create-data.sh, available with the
code for GroC.15

14statmt.org/europarl/v7/tools.tgz
15github.com/<anon>/groc

C.3 Finetuning Validation Results

Because no target-domain training is required for
most of our cross-domain experiments, validation
scores were not computed for most model-domain
combinations; however, we report the validation
perplexity for the finetuned models in Table 12, to
aid in replication.

C.4 Hyperparameter Selection

Cache hyperparameters were selected via grid
search, with θ, the flattening hyperparameter de-
scribed in Grave et al. (2017c), ranging over 5 val-
ues from 0 to 1, and λ ranging over 5 values from
0.833 to 0.966 (bounds which were selected based
on the optimal hyperparameter ranges in (Grave
et al., 2017c)). Perplexity of a model trained on
2007 and evaluated on the 2008 validation set
was the metric used to select the optimal hyperpa-
rameters: λ = 0.966 for unigram and neural cache
and θ = 0.5 for neural cache. Because the cache
is only used during evaluation, this hyperparam-
eter search was quite efficient to carry out using
the tied model, requiring no additional training,
only 25 evaluation runs on the validation set. This
hyperparameter search is illustrated in Figure 6.

Figure 6: Validation accuracy for various hyperparam-
eter settings on the 2008 validation set.

We then used the same hyperparameters for all
cache models. This provides a slight advantage to
the tied model, as the optimal hyperparameters for
GroC might be different from those selected with
the tied model. A cache size of 5,000 was used

statmt.org/europarl/v7/tools.tgz
github.com/<anon>/groc
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Figure 7: Validation accuracy for various hyperparam-
eter settings on the penn validation set.

during hyperparameter tuning, but at test time we
used 10,000 for all experiments based on its use in
Grave17. Figure 7 shows a separate hyperparame-
ter search performed over the penn validation set
to confirm the accuracy of our neural cache reim-
plementation. Compare to Figure 2a in Grave et al.
(2017c); note their λ is 1 minus ours.

For GroC, we also selected a downweighting hy-
perparameter dw, based on validation performance
on the wiki dataset only. We searched over 5 val-
ues (0.1, 0.3, 0.5, 0.7, and 0.9) using GroC with
the neural cache, and selected dw = 0.1 as the best
value with a validation ppl of 154.01.


