ENT-DESC: Entity Description Generation by Exploring
Knowledge Graph

Liying Cheng* ', Dekun Wu'3, Lidong Bing?, Yan Zhang'', Zhanming Jie'', Wei Lu', Luo Si’

! Singapore University of Technology and Design
2 DAMO Academy, Alibaba Group 3 York University, Canada

{liying.cheng, l.bing, luo.si}Ralibaba-inc.com,

jackwuleecs.yorku.ca,

{van_zhang, zhanming_jie}@mymail.sutd.edu.sg, luwei@sutd.edu.sg

Abstract

Previous works on knowledge-to-text genera-
tion take as input a few RDF triples or key-
value pairs conveying the knowledge of some
entities to generate a natural language descrip-
tion. Existing datasets, such as WIKIBIO,
WebNLG, and E2E, basically have a good
alignment between an input triple/pair set and
its output text. However, in practice, the input
knowledge could be more than enough, since
the output description may only cover the most
significant knowledge. In this paper, we intro-
duce a large-scale and challenging dataset to
facilitate the study of such a practical scenario
in KG-to-text. Our dataset involves retrieving
abundant knowledge of various types of main
entities from a large knowledge graph (KG),
which makes the current graph-to-sequence
models severely suffer from the problems of in-
formation loss and parameter explosion while
generating the descriptions. We address these
challenges by proposing a multi-graph struc-
ture that is able to represent the original graph
information more comprehensively. Further-
more, we also incorporate aggregation meth-
ods that learn to extract the rich graph informa-
tion. Extensive experiments demonstrate the
effectiveness of our model architecture. !

1 Introduction

KG-to-text generation, automatically converting
knowledge into comprehensive natural language,
is an important task in natural language process-
ing (NLP) and user interaction studies (Daml-
janovic et al., 2010). Specifically, the task takes
as input some structured knowledge, such as re-
source description framework (RDF) triples of
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Peter Gene Hernandez (born October 8, 1985), known professionally as
Bruno Mars, is an American singer, songwriter, multi-instrumentalist,
record producer, and dancer. He is known for his stage performances,
retro showmanship and for performing in a wide range of musical
styles, including R&B, funk, pop, soul, reggae, hip hop, and rock.

Figure 1: An example showing our proposed task.

WebNLG (Gardent et al., 2017), key-value pairs of
WIKIBIO (Lebret et al., 2016) and E2E (Novikova
et al., 2017), to generate natural text describing the
input knowledge. In essence, the task can be formu-
lated as follows: given a main entity, its one-hop at-
tributes/relations (e.g., WIKIB10 and E2E), and/or
multi-hop relations (e.g., WebNLG), the goal is to
generate a text description of the main entity de-
scribing its attributes and relations. Note that these
existing datasets basically have a good alignment
between an input knowledge set and its output text.
Obtaining such data with good alignment could
be a laborious and expensive annotation process.
More importantly, in practice, the knowledge re-
garding the main entity could be more than enough,
and the description may only cover the most signif-
icant knowledge. Thereby, the generation model
should have such differentiation capability.

In this paper, we tackle an entity description
generation task by exploring KG in order to work
towards more practical problems. Specifically, the
aim is to generate a description with one or more
sentences for a main entity and a few topic-related
entities, which is empowered by the knowledge
from a KG for a more natural description. In
order to facilitate the study, we introduce a new
dataset, namely entity-to-description (ENT-DESC)
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extracted from Wikipedia and Wikidata, which con-
tains over 110k instances. Each sample is a triplet,
containing a set of entities, the explored knowledge
from a KG, and the description. Figure 1 shows
an example to generate the description of the main
entity, i.e., Bruno Mars, given some relevant key-
words, i.e., retro style, funk, etc., which are called
topic-related entities of Bruno Mars. We intend to
generate the short paragraph below to describe the
main entity in compliance with the topic revealed
by topic-related entities. For generating accurate
descriptions, one challenge is to extract the underly-
ing relations between the main entity and keywords,
as well as the peripheral information of the main
entity. In our dataset, we use such knowledge re-
vealed in a KG, i.e., the upper right in Figure 1
with partially labeled triples. Therefore, to some
extent, our dataset is a generalization of existing
KG-to-text datasets. The knowledge, in the form
of triples, regarding the main entity and topic en-
tities is automatically extracted from a KG, and
such knowledge could be more than enough and
not necessarily useful for generating the output.

Our dataset is not only more practical but also
more challenging due to lack of explicit alignment
between the input and the output. Therefore, some
knowledge is useful for generation, while others
might be noise. In such a case that many different
relations from the KG are involved, standard graph-
to-sequence models suffer from the problem of low
training speed and parameter explosion, as edges
are encoded in the form of parameters. Previous
work deals with this problem by transforming the
original graphs into Levi graphs (Beck et al., 2018).
However, Levi graph transformation only explicitly
represents the relations between an original node
and its neighbor edges, while the relations between
two original nodes are learned implicitly through
graph convolutional networks (GCN). Therefore,
more GCN layers are required to capture such in-
formation (Marcheggiani and Perez-Beltrachini,
2018). As more GCN layers are being stacked,
it suffers from information loss from KG (Abu-El-
Haija et al., 2018). In order to address these limita-
tions, we present a multi-graph convolutional net-
works (MGCN) architecture by introducing multi-
graph transformation incorporated with an aggre-
gation layer. Multi-graph transformation is able
to represent the original graph information more
accurately, while the aggregation layer learns to
extract useful information from the KG. Extensive

experiments are conducted on both our dataset and
benchmark dataset (i.e., WebNLG). MGCN outper-
forms several strong baselines, which demonstrates
the effectiveness of our techniques, especially when
using fewer GCN layers.

Our main contributions include:

e We construct a large-scale dataset ENT-DESC
for a more practical task of entity description
generation by exploring KG. To the best of our
knowledge, ENT-DESC is the largest dataset
of KG-to-text generation.

e We propose a multi-graph structure transforma-
tion approach that explicitly expresses a more
comprehensive and more accurate graph infor-
mation, in order to overcome limitations asso-
ciated with Levi graphs.

e Experiments and analysis on our new dataset
show that our proposed MGCN model incor-
porated with aggregation methods outperforms
strong baselines by effectively capturing and
aggregating multi-graph information.

2 Related Work

Dataset and Task. There is an increasing num-
ber of new datasets and tasks being proposed in
recent years as more attention has been paid to
data-to-text generation. Gardent et al. (2017) in-
troduced the WebNLG challenge, which aimed to
generate text from a small set of RDF knowledge
triples (no more than 7) that are well-aligned with
the text. To avoid the high cost of preparing such
well-aligned data, researchers also studied how to
leverage automatically obtained partially-aligned
data in which some portion of the output text can-
not be generated from the input triples (Fu et al.,
2020b). Koncel-Kedziorski et al. (2019) introduced
AGENDA dataset, which aimed to generate paper
abstract from a title and a small KG built by infor-
mation extraction system on the abstracts and has
at most 7 relations. In our work, we directly create
a knowledge graph for the main entities and topic-
related entities from Wikidata without looking at
the relations in our output. Scale-wise, our dataset
consists of 110k instances while AGENDA is 40k.
Lebret et al. (2016) introduced WIKIBIO dataset
that generates the first sentence of biographical ar-
ticles from the key-value pairs extracted from the
article’s infobox. Novikova et al. (2017) introduced
E2E dataset in the restaurant domain, which aimed
to generate restaurant recommendations given 3 to
8 slot-value pairs. These two datasets were only
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for a single domain, while ours focuses on multiple
domains of over 100 categories, including people,
event, location, organization, etc. Another differ-
ence is that we intend to generate the first paragraph
of each Wikipedia article from a more complicated
KG, but not key-value pairs. Another popular task
is AMR-to-text generation (Konstas et al., 2017).
The structure of AMR graphs is rooted and denser,
which is quite different from the KG-to-text task.
Researchers also studied how to generate texts from
a few given entities or prompts (Li et al., 2019; Fu
et al., 2020a). However, they did not explore the
knowledge from a KG.

Graph-to-sequence Modeling. In recent years,
graph convolutional networks (GCN) have been
applied to several tasks (e.g., semi-supervised node
classification (Kipf and Welling, 2017), seman-
tic role labeling (Marcheggiani and Titov, 2017)
and neural machine translation (Bastings et al.,
2017)) and also achieved state-of-the-art perfor-
mance on graph-to-sequence modeling. In order
to capture more graphical information, Velickovic
et al. (2017) introduced graph attention networks
(GATs) through stacking a graph attentional layer,
but only allowed to learn information from adjacent
nodes implicitly without considering a more global
contextualization. Marcheggiani and Titov (2017)
then used GCN as the encoder in order to capture
more distant information in graphs. Since there
are usually a large amount of labels for edges in
KG, such graph-to-sequence models without graph
transformation will incur information loss and pa-
rameter explosion. Beck et al. (2018) proposed
to transform the graph into Levi graph in order to
work towards the aforementioned deficiencies, to-
gether with gated graph neural network (GGNN) to
build graph representation for AMR-to-text prob-
lem. However, they face some new limitations
brought in by Levi graph transformation: the entity-
to-entity information is being ignored in Levi trans-
formation, as also mentioned in their paper. Af-
terwards, deeper GCNs were stacked (Guo et al.,
2019) to capture such ignored information implic-
itly. In contrast, we intend to use fewer GCN layers
to capture more global contextualization by explic-
itly stating all types of graph information with dif-
ferent transformations.

3 Task Description

In this paper, we tackle a practical problem of entity
description generation by exploring KG. In prac-

WebNLG AGENDA E2E ENT-DESC

# instances 43K 41K 51K 110K
Input vocab 44K 54K 120 420K
Output vocab 7.8K 78K 52K 248K
# distinct entities 3.1K 297K 77 691K
# distinct relations 358 7 8 957

Avg. # triples per input 3.0 44 5.6 27.4

Avg. # words per output ~ 23.7 1413 203 31.0

Table 1: Dataset statistics of WebNLG, AGENDA and
our prepared ENT-DESC.

tice, it is difficult to describe an entity in only a few
sentences as there are too many aspects for an entity.
Now, if we are given a few topic-related entities
as topic restrictions to the main entity, the text to
be generated could be more concrete, particularly
when we are allowed to explore the connections
among these entities in KG. As seen in Figure 1,
when we are asked to use one or two sentences
to introduce “Bruno Mars™?, his popular singles
will first come into some people’s minds, while
his music genres might be in other people’s first
thought. With the introduction of topic-related en-
tities, the description will have some focus. In this
case, when topic-related entities, i.e., R&B, hip hop,
rock, etc., are provided, we are aware of describing
Bruno Mars in the direction of music styles on top
of their basic information.

Formally, given a set of entities € = {Ej, ..., E, }
and a KG G = (V,€&), where E; is main en-
tity, Eo, ..., Ey, are topic-related entities, V is the
set of entity nodes and &£ is the set of directed
relation edges. We intend to generate a natu-
ral language text y = {y1,¥2, - ,yr}. Mean-
while, we explore G for useful information to al-
low a more natural description. Here, the KG
G can also be written as a set of RDF triples:
G = {(Vsy,P1,Vo,) s s (Vsys Pu, Voo ) }» Where
M is the total number of triples, Vs,, Vo, € V are
the subject and object entities respectively, P; is the
predicate stating the relation between Vg, and V,.

4 ENT-DESC Dataset

To prepare our dataset, we first use Nayuki’s im-
plementation? to calculate the PageRank score for
more than 9.9 million Wikipedia pages. We then
extract the categories from Wikidata for the top
100k highest scored pages and manually select 90
categories out of the top 200 most frequent ones as

Zhttps://en.wikipedia.org/wiki/Bruno_Mars
*https://www.nayuki.io/page/
computing-wikipedias—internal-pageranks
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Figure 2: Dataset comparison among WebNLG, AGENDA, E2E and our ENT-DESC.

the seed categories. The domains of the categories
mainly include humans, events, locations and or-
ganizations. The entities from these categories are
collected as our candidate set of main entities. We
further process their associated Wikipedia pages
for collecting the first paragraphs and entities with
hyperlink as topic-related entities. We then search
Wikidata to gather neighbors of the main entities
and 1-hop/2-hop paths between main entities and
their associated topic-related entities, which finally
results in a dataset consisting of more than 110k
entity-text pairs with 3 million triples in the KG. Al-
though more-hop paths might be helpful, we limit
to 1-hop/2-hop paths for the first study. The com-
parison of our dataset with WebNLG, AGENDA
and E2E is shown in Table 1 and Figure 2.

In the comparison of these four datasets, there
are some obvious differences. First, our dataset
is significantly larger than WebNLG, AGENDA
and E2E (i.e., more than twice of their instances).
Meanwhile, our vocabulary size and numbers of
distinct entities/relations are all much larger. Sec-
ond, the average number of input triples per in-
stance is much larger than those of the other two.
More importantly, our dataset provides a new genre
of data for the task. Specifically, WebNLG has
a strict alignment between input triples and out-
put text, and accordingly, each input triple roughly
corresponds to 8 words. AGENDA is different
from WebNLG for generating much longer output,
namely paper abstracts, with the paper title also
given as input. Moreover, as observed, quite a por-
tion of text information cannot be directly covered
by the input triples. E2E focuses on the restaurant
domain with relatively simple inputs, including 77
entities and 8 relations in total. Considering the
construction details of these 3 datasets, all their in-
put triples provide useful information (i.e., should
be used) for generating the output. In contrast, our
dataset has a much larger number of input triples,
particularly considering the length difference of
output texts. Lastly, another unique characteristic

of our dataset is that not every input triple is useful
for generation, which brings in the challenge that a
model should be able to distill the helpful part for
generating a better output sequence.

5 Our MGCN Model

Given the explored knowledge, our task can be
cast as a problem of generating text from KG. We
propose an encoder-decoder architecture with a
multi-graph transformation, shown in Figure 3.

5.1 Multi-Graph Encoder

We first briefly introduce the general flow of multi-
graph encoder which consists of n MGCN layers.
Before the first layer, graph embedding h(®) repre-
senting a collection of node embeddings is initial-
ized from input KG after multi-graph transforma-
tion. By stacking n» MGCN layers accordingly with
multi-graph transformation and aggregation, we ob-
tain the final graph representation by aggregating
the outputs of n MGCN layers for decoding. We
explain the details of an MGCN layer as follows.

Graph Encoder. Before introducing our multi-
graph transformation, we first look at our basic
graph encoder in each MGCN layer (i.e., Graph En-
coder 1 to 6 in Figure 3 left). In this paper, we adopt
graph convolutional networks (GCNs) (Duvenaud
et al., 2015; Kearnes et al., 2016; Kipf and Welling,
2017; Marcheggiani and Titov, 2017) as the ba-
sic encoder to consider the graph structure and to
capture graph information for each node. More
formally, given a directed graph G* = (V*, &%),
we define a feature vector xy € R? for each node
v € V*. In order to capture the information of
neighbors A/ (-), the node representation hy for
each v; € V* is calculated as:

hy, = ReLU( 5 Wi %y, +bugi) ),
VieN(v;)
where P(7, j) denotes the edge between node V;

and Vv; including three possible directions: (1) v;
to V;, (2) v, to vy, (3) V; to itself when 4 equals to
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Figure 3: Overview of our model architecture. There are n MGCN layers in the multi-graph encoder, and 2
LSTM layers in the decoder. h(*~1) is the input graph representation at Layer k, and its 6 copies together with
the corresponding adjacent matrices A;’s of transformed graphs in the multi graph (refer to Figure 4) are fed into
individual basic encoders. Finally, we obtain the graph representation h(*) for the next layer by aggregating the

representations from these encoders.

j. Weight matrix W € R%*? and bias b € R? are
model parameters. ReLU is the rectifier linear unit
function. Only immediate neighbors of each node
are involved in the equation above as it represents
a single-layer GCN.

Multi-Graph Transformation. The basic graph
encoder with GCN architecture as described above
struggles with the problem of parameter explosion
and information loss, as the edges are encoded
in the form of parameters. Previous works (Beck
et al., 2018; Guo et al., 2019; Koncel-Kedziorski
et al., 2019) deal with this deficiency by transform-
ing the graph into a Levi graph. However, Levi
graph transformation also has its limitations, where
entity-to-entity information is learned implicitly.
In order to overcome all the difficulties, we intro-
duce a multi-graph structure transformation. A
simple example is shown in Figure 4. Given such a
directed graph, where E1, Eo, E3, E4 represent enti-
ties and Ry, Ro, R3 represent relations in the KG, we
intend to transform it into multiple graphs which
capture different types of information. Similar to
Levi graph transformation, all the entities and rela-
tions are represented as nodes in our multi-graph
structure. By doing such transformation, we are
able to represent relations in the same format as
entities using embeddings directly, which avoids
the risk of parameter explosion. This multi-graph
transformation can be generalised for any graph
regardless of the complexity and characteristic of
the KG, and the transformed graph can be applied
to any model architecture.

In this work, we employ a six-graph structure

for our multi-graph transformation as shown in
Figure 4. Firstly, in self graph (1), each node is as-
signed a self-loop edge namely self label. Secondly,
graphs (2) and (3) are formed by connecting the
nodes representing the entities and their adjacent
relations. In addition to connecting them in their
original direction using defaultl label, we also add
a reversel label for the inverse direction of their
original relations. Thirdly, we create graphs (4)
and (5) by connecting the nodes representing adja-
cent entities in the input graph, labeled by default2
and reverse2, respectively. These two graphs over-
come the deficiency of Levi graph transformation
by explicitly representing the entity-to-entity infor-
mation from the input graph. It also allows us to
differentiate entities and relations by adding edges
between entities. Finally, in order to consider more
global contextualization, we add a global node on
top of the graph structure to form graph (6). Each
node is assigned with a global edge directed from
global node. In the end, the set of transformed
graphs can be represented by their edge labels T =
{self, default, reverse, default2, reverse2, global}.

Given the six transformed graphs mentioned
above, we construct six corresponding adjacency
matrices: {Aj, Ag, - ,Ag}. As shown in Figure
3 (left), these adjacency matrices are used by six
basic graph encoders to obtain the corresponding
transformed graph representations (i.e., hy).

Aggregation Layer. After learning 6 embed-
dings of multi graphs from the basic encoders at
the current MGCN layer k£ — 1, the model goes
through an aggregation layer to obtain the graph
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Figure 4: An example of multi-graph transformation.

embedding for the next MGCN layer k. We can get
it by simply concatenating all 6 transformed graph
embeddings with different types of edges. How-
ever, such simple concatenation of the transformed
graphs involves too many features and parameters.
In order to address the challenge mentioned above,
we propose three aggregation methods for the multi-
graph structure: sum-based, average-based and
CNN-based aggregation.

Firstly, in sum-based aggregation layer, we com-
pute the representation h(¥) at k-th layer as:

h() — zgieT h_s]]:_l) :

where hgf_l) represents the ¢-th graph represen-
tation, and 7 is the set of all transformed graphs.
Sum-based aggregation allows a linear approxima-
tion of spectral graph convolutions and helps to
reduce data sparsity and over-fitting problems.

Similarly, we apply an average-based aggrega-
tion method by normalizing each graph through a
mean operation:

B9 = 15w,

where m is the number of graphs in 7.

We also try to employ a more complex CNN-
based aggregation method. Formally, the represen-
tation h(®) at k-th layer is defined as:

h(k) = Wconvhgig_l) + bgs; .
Here, we use convolutional neural networks
(CNN) to convolute the multi-graph representation,

where h,,; = [hy,, ..., hy] is the representation of

multi-graph and bgﬁ; is the bias term.

By applying these aggregation methods, we ob-
tain the graph representation for the next layer h(*),
which is able to capture different aspects of graph
information more effectively by learning different
types of edges in each transformed graph.

Stacking MGCN Layers. With the introduction
of MGCN layer as described above, we can cap-
ture the information of higher-degree neighbors by
stacking multiple MGCN layers. Inspired by Xu

et al. (2018), we employ a concatenation operation
over h(V ... (" to aggregate the graph repre-
sentations from all MGCN layers (Figure 3 right) to
form the final layer h(/"@)  which can be written
as follows:

h(final) — [h(l)’ . h(n)] )

Such a mechanism allows weight sharing across
graph nodes, which helps to reduce overfitting prob-
lems. To further reduce the number of parameters
and overfitting problems, we apply the softmax
weight tying technique (Press and Wolf, 2017) by
tying source embeddings and target embeddings
with a target softmax weight matrix.

5.2 Attention-based LSTM Decoder

We adopt the commonly-used standard attention-
based LSTM as our decoder, where each next word
¢ is generated by conditioning on the final graph
representation h(f790) and all words that have been
predicted y1, ..., y+—1. The training objective is to
minimize the negative conditional log-likelihood.
Thus, the objective function can be written as:

T .
L=—3 logpe(ye|y1, ..., ye—1, hFnab)y,
t=1

where T represents the length of the output se-
quence, and p is the probability of decoding each
word y; parameterized by 6. As shown in the de-
coder from Figure 3, we stack 2 LSTM layers and
apply a cross-attention mechanism in our decoder.

6 Experiments

6.1 Experimental Settings

We implement our MGCN architecture based on
MXNET (Chen et al., 2015) and Sockeye toolkit.
Hidden units and embedding dimensions for both
encoder and decoder are fixed at 360. We use Adam
(Kingma and Ba, 2014) with an initial learning rate
of 0.0003 and update parameters with a batch size
of 16. The training phase is stopped when detecting
the convergence of perplexity on the validation set.
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Models BLEU METEOR TER| ROUGE; ROUGE, ROUGE; PARENT
S2S (Bahdanau et al., 2014) 6.8 10.8 80.9 38.1 21.5 40.7 10.0
GraphTransformer (Koncel-Kedziorski et al., 2019)  19.1 16.1 94.5 53.7 37.6 54.3 214
GRN (Beck et al., 2018) 24.4 18.9 70.8 54.1 383 55.5 21.3
GCN (Marcheggiani and Perez-Beltrachini, 2018) 24.8 19.3 70.4 54.9 39.1 56.2 21.8
DeepGCN (Guo et al., 2019) 24.9 19.3 70.2 55.0 393 56.2 21.8
MGCN 25.7 19.8 69.3 55.8 40.0 57.0 23.5
MGCN + CNN 26.4 20.4 69.4 56.4 40.5 574 24.2
MGCN + AVG 26.1 20.2 69.2 56.4 40.3 57.3 239
MGCN + SUM 26.4 20.3 69.8 56.4 40.6 574 23.9
GCN + delex 28.4 229 65.9 61.8 455 62.1 30.2
MGCN + CNN + delex 29.6 23.7 63.2 63.0 46.7 63.2 31.9
MGCN + SUM + delex 30.0 23.7 67.4 62.6 46.3 62.7 315
The rows below are results of generating from entities only without exploring the KG.
E2S 233 204 68.7 58.8 41.9 58.2 27.7
E2S + delex 21.8 20.5 67.5 59.5 39.5 59.2 23.4
E2S-MEF 24.2 213 65.8 59.8 433 60.0 26.3
E2S-MEF + delex 20.6 20.3 66.5 59.1 40.0 59.3 243

Table 2: Main results of models on ENT-DESC dataset. | indicates lower is better.

During decoding, we use beam search with a beam
size of 10. All models are run with V100 GPU.

We evaluate our models by applying both au-
tomatic and human evaluations. For automatic
evaluation, we use several common evaluation
metrics: BLEU (Papineni et al., 2002), ME-
TEOR (Denkowski and Lavie, 2011), TER (Snover
et al., 2006), ROUGE;, ROUGE,, ROUGE}
(Lin, 2004), PARENT (Dhingra et al., 2019). We
adapt MultEval (Clark et al., 2011) and Py-rouge
for resampling and significance test.

6.2 Main Experimental Results

We present our main experiments on ENT-DESC
dataset and compare our proposed MGCN mod-
els with various aggregation methods against
several strong GNN baselines (Bahdanau et al.,
2014), GraphTransformer (Koncel-Kedziorski
et al., 2019), GRN (Beck et al., 2018), GCN
(Marcheggiani and Perez-Beltrachini, 2018) and
DeepGCN (Guo et al., 2019), as well as a sequence-
to-sequence (S2S) baseline. We re-implement
GRN, GCN and DeepGCN using MXNET. We re-
arrange the order of input triples following the oc-
currence of entities in output for S2S model to ease
its limitation of not able to capture the graph struc-
ture. We also apply sequence-to-sequence models
on generating outputs directly from entities with-
out exploring KG by (1) randomly shuffling the
order of all input entities (E2S) and (2) randomly
shuffling the order of all topic-related entities while
keeping the Main Entity at Front (E2S-MEF). Fur-
thermore, we apply a delexicalization technique
on our dataset. We delexicalize the main entity

and topic-related entities by replacing these entities
with tokens indicating the entity types and indices.

Main results on our ENT-DESC dataset are
shown in Table 2. Here, the numbers of layers in all
baseline models and our MGCN models are set to
be 6 for fair comparisons. Our models consistently
outperform the baseline models on all evaluation
metrics. S2S model has poor performance, mainly
because the structure of our input triples is compli-
cated as explained earlier. Compared to GRN and
GCN models, the BLEU score of MGCN model
increases by 1.3 and 0.9, respectively. This re-
sult suggests the effectiveness of multi-graph trans-
formation, which is able to capture more compre-
hensive information compared to the Levi graph
transformation used by GCN and GRN (especially
entity-to-entity information in the original graph).
We then apply multiple methods of aggregation
on top of the multi-graph structure. MGCN+CNN
and MGCN+SUM report the highest BLEU score
of 26.4, followed by MGCN+AVG. By applying
our delexicalization technique, the results are fur-
ther boosted by 3.2 to 3.6 BLEU scores for both
baseline and our proposed models. Moreover, our
MGCN models and most baseline models outper-
form E2S and E2S-MEF, suggesting the impor-
tance of exploring KG when generating entity de-
scriptions. Compared to E2S and E2S-MEF, there
is no further improvement after applying delexi-
calization (i.e., E2S+delex and E2S-MEF+delex).
We speculate it is because the copy mechanism is
incorporated in the sequence-to-sequence model.
Some useful information in original entities may
be lost when further applying the delexicalization.
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Figure 5: Effect of different numbers of layers.

# Input triples # Instances GCN MGCN+SUM A (BLEU)

1to 10 1,790 19.4 21.3 +1.9
11t0 20 2,999 22.6 24.6 +2.0
21to0 30 2,249 23.2 25.0 +1.8
31to 50 2,830 31.6 32.8 +1.2
51 to 100 1,213 23.9 24.7 +0.8

Table 3: Effect of different numbers of input triples.

6.3 Analysis and Discussion

Effect of different numbers of MGCN layers.
In order to examine the robustness of our MGCN
models, we conduct further experiments by using
different numbers of MGCN layers. The results are
shown in Figure 5. We use MGCN to compare with
the strongest baseline models using GCN accord-
ing to the results in Table 2. More specifically, we
compare to GCN on 2 to 9 layers and DeepGCN
on 9, 18, 27 and 36 layers. As shown in Figure
5, both models perform better initially as more
GCN/MGCN layers are being stacked and start to
drop afterward. In general, MGCN/DeepMGCN
achieves decent performance improvements of 0.3
to 1.0 from 2 to 36 layers, as shown in the line
chart. DeepMGCN achieves 26.3 BLEU score at 18
MGCN layers, which is 1.0 higher than deepGCN.
It shows that, compared with learning the informa-
tion implicitly by Levi graph, our multi-graph trans-
formation brings in robust improvements by explic-
itly representing all types of information in the
graph. Another observation is that the BLEU score
of MGCN with 3 layers (25.4) is already higher
than the best performance of GCN/deepGCN.

Effect of various numbers of input triples. In
order to have a deeper understanding of how multi-
graph transformation helps the generation, we fur-
ther explore the model performance under different
numbers of triples on the test set. Table 3 shows
the BLEU comparison between MGCN+SUM and
GCN when using 6 layers. Both models perform
the best when the number of triples is between
31 and 50. They both have a poorer performance

Model BLEU A (BLEU)
MGCN + SUM 26.4 -

— ge: global 26.0 -0.4

— g5: reverse2 25.8 -0.6

— g4: defaulr2 26.1 -0.3

— g3: reversel 25.7 -0.7

— go: defaultl 26.1 -0.3
MGCN 25.7 -0.7
GCN 24.8 -14

Table 4: Results of the ablation study.

when the number of triples is too small or too large,
which should be due to the fact that the models
have insufficient or very noisy input information
for generation. Another observation is that the im-
provement of BLEU (A) by our model is greater
with a smaller number of input triples. It is plau-
sibly because when the graph is larger, although
our transformation techniques still bring in overall
BLEU improvements, the increased graph com-
plexity due to the transformation also hinders the
generation.

Ablation Study. To examine the impact of each
graph in our multi-graph structure, we show the
ablation study in Table 4. Each transformed graph
is removed respectively from MGCN+SUM with
6 layers, except for the g (self), which is al-
ways enforced in the graph (Kipf and Welling,
2017). We notice that the result drops after re-
moving any transformed graph from the multi-
graph. Particularly, we observe the importance of
{defaulr2, reverse2} and {defaultl,reversel} are
equivalent, as the BLEU scores after removing
them individually are almost the same. This ex-
plains how multi-graph structure addresses the de-
ficiency of Levi graph, i.e., entity-to-entity infor-
mation is not represented explicitly in Levi graph.
Additionally from the results, it is beneficial to rep-
resent the edges in the reverse direction for more
effective information extraction in directed graphs
as there are relatively larger gaps in BLEU drop
after removing g3 (reversel) or gs (reverse2).

Case Study. Table 5 shows example outputs gen-
erated by GCN and MGCN+SUM, as compared to
the gold reference. The main entity is highlighted
in red, while topic-related entities are highlighted in
blue. Given the KG containing all these entities, we
intend to generate the description about “New Jer-
sey Symphony Orchestra”. Firstly, MGCN+SUM is
able to cover the main entity and most topic-related
entities correctly, while GCN fails to identify the
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Gold  The New Jersey Symphony Orchestra is an American

symphony |orchestra, based in the state of [ New Jersey .
The NJSO is the state orchestra of New Jersey, performing
concert series in six venues across the state, and is the resi-
dent orchestra of the [New Jersey Performing Arts Center

in Newark, New Jersey .

GCN  The Newark Philharmonic Orchestra is an American orches-

tra based in | Newark, New Jersey , United States.

MGCN The New Jersey Symphony Orchestra is an American

+SUM  chamber [orchestral based in Newark, New Jersey . The

orchestra performs at the Newark Symphony Center at the
Newark Symphony Center in [Newark, New Jersey .

Table 5: An example of generated sentences.

5 L ’ [0 GON + delex | I MGCN + SUM + delex
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T T
Fluency Grammar

Figure 6: Results for human evaluation.

main entity. This suggests that without multi-graph
transformation or effective aggregation methods, it
is hard for GCN to extract useful information given
a large number of triples in the KG. Length-wise,
the output generated by MGCN+SUM is relatively
longer than the one generated by GCN, and thus
covers more information. We attribute the reason
to GCN’s deficiency of information loss, as men-
tioned earlier.

Human Evaluation In order to further assess
the quality of the generated sentences, we conduct
human evaluation by randomly selecting 100 sen-
tences from outputs generated by GCN+delex and
MGCN+SUM-+delex. We hire 6 annotators to eval-
uate the quality based on three evaluation metrics:
fluency, grammar and authenticity. In terms of au-
thenticity, annotators rate this metric based on the
KG (i.e., Wikidata). More specifically, we give
our annotators all main entities’ neighbors, 1-hop
and 2-hop connections between main entities and
topic-related entities as references. A full score
will be given if the statements in the generated
sentences are consistent with the facts shown in
the KG. All three metrics take values from 1 to
5, where 5 states the highest score. The results
are shown in Figure 6. Recall that BLEU scores
of GCN+delex and MGCN+SUM-+delex are 28.4
and 30.0 respectively, we can see from Figure 6

Models BLEU
TILB-SMT (Gardent et al., 2017) 44.28
MELBOURNE (Gardent et al., 2017)  45.13
MGCN 45.79
MGCN + CNN 45.83
MGCN + AVG 46.55
MGCN + SUM 45.23

Table 6: Results on WebNLG dataset.

that MGCN+SUM-+delex only performs slightly
better than GCN+delex on the two language qual-
ity metrics, namely, fluency and grammar. For
authenticity, the improvement is more significant.
Plausibly it is because the 1.6 BLEU improvement
results in more impact on the factual correctness.

6.4 Additional Experiments

To examine our model’s efficacy on a dataset of
different characteristics, we conduct an auxiliary
experiment on WebNLG (Gardent et al., 2017),
which shares the most similarity with ENT-DESC
dataset among those benchmark datasets (e.g., E2E,
AGENDA, WIKIBIO, etc.). The experiments on
WebNLG dataset are under the same settings as the
main experiments on our ENT-DESC dataset.

As shown in Table 6, we observe that our pro-
posed models outperform the state-of-the-art model
MELBOURNE. However, the performance im-
provement is less obvious on this dataset, largely
due to different characteristics between WebNLG
and ENT-DESC. As mentioned in the dataset com-
parison, the input graphs in WebNLG dataset are
much simpler and smaller, where all the informa-
tion is useful for generation. Our MGCN model
would show stronger advantages when applied to
a larger and more complicated dataset (e.g. ENT-
DESC dataset), where extracting more useful enti-
ties and relations from the input graphs and effec-
tively aggregating them together is more essential.

7 Conclusions and Future Work

We present a practical task of generating sentences
from relevant entities empowered by KG, and con-
struct a large-scale and challenging dataset ENT-
DESC to facilitate the study of this task. Extensive
experiments and analysis show the effectiveness
of our proposed MGCN model architecture with
multiple aggregation methods. In the future, we
will explore more informative generation and con-
sider applying MGCN to other NLP tasks for better
information extraction and aggregation.
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