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Abstract

There exists a token imbalance phenomenon
in natural language as different tokens ap-
pear with different frequencies, which leads
to different learning difficulties for tokens
in Neural Machine Translation (NMT). The
vanilla NMT model usually adopts trivial
equal-weighted objectives for target tokens
with different frequencies and tends to gener-
ate more high-frequency tokens and less low-
frequency tokens compared with the golden
token distribution. However, low-frequency
tokens may carry critical semantic informa-
tion that will affect the translation quality once
they are neglected. In this paper, we ex-
plored target token-level adaptive objectives
based on token frequencies to assign appropri-
ate weights for each target token during train-
ing. We aimed that those meaningful but rela-
tively low-frequency words could be assigned
with larger weights in objectives to encourage
the model to pay more attention to these to-
kens. Our method yields consistent improve-
ments in translation quality on ZH-EN, EN-
RO, and EN-DE translation tasks, especially
on sentences that contain more low-frequency
tokens where we can get 1.68, 1.02, and 0.52
BLEU increases compared with baseline, re-
spectively. Further analyses show that our
method can also improve the lexical diversity
of translation.

1 Introduction

Neural machine translation (NMT) systems (Kalch-
brenner and Blunsom, 2013; Cho et al., 2014;

∗Corresponding author: Yang Feng.
Joint work with Pattern Recognition Center, WeChat AI,

Tencent Inc, China.
Reproducible code: https://github.com/ictnlp/TLAT-NMT.

Token Order Average
Reference

Vanilla
(Descending) Frequency NMT
[0, 10%) 10, 857 81.75% 87.26%
[10%, 30%) 516 11.40% 9.06%
[30%, 50%) 133 3.43% 2.21%
[50%, 70%) 60 1.95% 0.99%
[70%, 100%] 25 1.47% 0.48%

Table 1: The average frequency on the NIST training
set and proportion of tokens with different frequencies
in reference and the translation of the vanilla NMT
model (a Transformer model) on the NIST test sets. All
the target tokens (BPE sub-words with 30K merge oper-
ations ) of the training set are ranked by their frequen-
cies in descending order. The ’Token Order’ column
represents the frequency interval ([10%, 30%) means
the frequency of token is between top 10% and 30%).
The ’Average Frequency’ column represents the aver-
age frequencies of the tokens in each interval, which
show the token imbalance phenomenon in natural lan-
guage. The last two columns show the vanilla NMT
model tends to generate more high-frequency tokens
and less low-frequency tokens than reference.

Sutskever et al., 2014; Bahdanau et al., 2015;
Gehring et al., 2017; Vaswani et al., 2017) are data
driven models, which highly depend on the train-
ing corpus. NMT models have a tendency towards
over-fitting to frequent observations (e.g. words,
word co-occurrences) while neglecting those low-
frequency observations. Unfortunately, there ex-
ists a token imbalance phenomenon in natural lan-
guages as different tokens appear with different fre-
quencies, which roughly obey the Zipf’s Law (Zipf,
1949). Table 1 shows that there is a serious im-
balance between high-frequency tokens and low-
frequency tokens. NMT models rarely have the
opportunity to learn and generate those ground-
truth low-frequency tokens in the training process.
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Some work tries to improve the rare word transla-
tion by maintaining phrase tables or back-off vo-
cabulary (Luong et al., 2015; Jean et al., 2015; Li
et al., 2016; Pham et al., 2018) or adding extra com-
ponents (Gülçehre et al., 2016; Zhao et al., 2018),
which bring in extra training complexity and com-
puting expense. Some NMT techniques which are
based on smaller translation granularity can allevi-
ate this issue, such as hybrid word-character-based
model (Luong and Manning, 2016), BPE-based
model (Sennrich et al., 2016) and word-piece-based
model (Wu et al., 2016). These effective work alle-
viate the token imbalance phenomenon to a certain
extent and become the de-facto standard in most
NMT models. Although sub-word based NMT
models have achieved significant improvements,
they still face the token-level frequency imbalance
phenomenon, as Table 1 shows.

Furthermore, current NMT models generally as-
sign equal training weights to target tokens without
considering their frequencies. It is very likely for
NMT models to ignore the loss produced by the
low-frequency tokens because of their small pro-
portion in the training sets. The parameters related
to them can not be adequately trained, which will,
in turn, make NMT models tend to prioritize output
fluency over translation adequacy, and ignore the
generation of low-frequency tokens during decod-
ing, which is illustrated in Table 1. It shows that the
vanilla NMT model tends to generate more high-
frequency tokens and less low-frequency tokens.
However, low-frequency tokens may carry critical
semantic information which may affect translation
quality once they are neglected.

To address the above issue, we proposed token-
level adaptive training objectives based on target
token frequencies. We aimed that those meaning-
ful but relatively low-frequency tokens could be
assigned with larger loss weights during training
so that the model will learn more about them. To
explore suitable adaptive objectives for NMT, we
first applied existing adaptive objectives from other
tasks to NMT and analyzed their performance. We
found that though they could bring modest improve-
ment on the translation of low-frequency tokens,
they did much damage to the translation of high-
frequency tokens, which led to an obvious degrada-
tion on the overall performance. This implies that
the objective should ensure the training of high-
frequency tokens first. Then, based on our observa-
tions, we proposed two heuristic criteria for design-

ing the token-level adaptive objectives based on the
target token frequencies. Last, we presented two
specific forms for different application scenarios
according to the criteria. Our method yields consis-
tent improvements in translation quality on ZH-EN,
EN-RO, and EN-DE translation tasks, especially on
sentences that contain more low-frequency tokens
where we can get 1.68, 1.02, and 0.52 BLEU in-
creases compared with baseline, respectively. Fur-
ther analyses show that our method can also im-
prove the lexical diversity of translation.

Our contributions can be summarized as follows:

• We analyzed the performance of the exist-
ing adaptive objectives when they were ap-
plied to NMT. Based on our observations, we
proposed two heuristic criteria for designing
token-level adaptive objectives and present
two specific forms to alleviate the problem
brought by the token imbalance phenomenon.

• The experimental results validate that our
method can improve not only the translation
quality, especially on those low-frequency to-
kens, but also the lexical diversity.

2 Background

In our work, we apply our method in the frame-
work of Transformer (Vaswani et al., 2017) which
will be briefly introduced here. We denote the in-
put sequence of symbols as x = (x1, . . . , xJ), the
ground-truth sequence as y∗ = (y∗1, . . . , y

∗
K) and

the translation as y = (y1, . . . , yK).
The Encoder & Decoder The encoder is com-

posed ofN identical layers. Each layer has two sub-
layers. The first sublayer is a multi-head attention
unit used to compute the self-attention of the input,
named self-attention multi-head sublayer, and the
second one is a fully connected feed-forward net-
work, named FNN sublayer. Both of the sublayers
are followed by a residual connection operation
and a layer normalization operation. The input se-
quence x will be first converted to a sequence of
vectors Ex = [Ex[x1]; . . . ;Ex[xJ ]], where Ex[xj ]
is the sum of the word embedding and the position
embedding of the source word xj . Then, this input
sequence of vectors will be fed into the encoder and
the output of the N -th layer will be taken as source
hidden states. The decoder is also composed of N
identical layers. In addition to the same kind of
two sublayers in each encoder layer, the third cross-
attention sublayer is inserted between them, which
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Valid High Low
Baseline 45.46 49.27 41.35
Linear 45.33(-0.13) 48.59(-0.68) 41.64(+0.29)

Focal 44.91(-0.55) 48.17(-1.10) 41.36(+0.01)

Focal + 1 45.71(+0.25) 49.36(+0.09) 41.93(+0.58)

Table 2: BLEU on the validation set of the Chinese-
English translation task. ’Low’ is the subset of the val-
idation set which contains more low-frequency tokens
while ’High’ contains more high-frequency tokens.

performs multi-head attention over the output of the
encoder. The final output of the N -th layer gives
the target hidden states S = [s1; . . . ; sI ], where si
is the hidden states of yk.

The Objective The model is optimized by mini-
mizing a cross-entropy loss with the ground-truth:

L = − 1

K

K∑
k=1

log p(y∗k|y<k,x), (1)

where K is the length of the target sentence.

3 Method

Our work aims to explore suitable adaptive ob-
jectives that can not only improve the learning of
low-frequency tokens but also avoid harming the
translation quality of high-frequency tokens. We
first investigated two existing adaptive objectives,
which were proposed for solving the token imbal-
ance problems in other tasks, and analyzed their
performance. Then, based on our observations, we
introduced two heuristic criteria for designing the
adaptive objective. Based on the proposed criteria,
we put forward two simple but effective functional
forms from different perspectives, which can be
adapted to various application scenarios in NMT.

3.1 Existing Adaptive Objectives
Investigation

The form of adaptive objective is as follows:

L = −1

I

I∑
i=1

w(yi) log p(yi|y<i,x), (2)

where w(yi) is the weight assigned to the target to-
ken yi, which varies as the token frequency changes.
Actually, there are some existing adaptive objec-
tives which have been proven effective for other
tasks. It can help us understand what is necessary
for a suitable adaptive objective for NMT if we ap-
ply these methods to it. The first objective we have
investigated is the form in Focal loss (Lin et al.,

2017), which was proposed for solving the label
imbalance problem in the object detection task:

w(yi) = (1− p(yi))γ . (3)

Although it doesn’t utilize the frequency informa-
tion directly, it actually reduces the weights of the
high-frequency classes more because they are usu-
ally easier to classify with higher prediction proba-
bilities. We set γ to 1 as suggested by their experi-
ments. We noticed that this method greatly reduced
the weights of high-frequency tokens, and the vari-
ance of weights is large. The second is the linear
weighting function (Jiang et al., 2019), which was
proposed for the dialogue response generation task:

w(yi) = − Count(yi)

max(Count(yk))
+ 1, yk ∈ Vt, (4)

where Count(yk) is the frequency of token yk in
the training set and Vt denotes the target vocabu-
lary. Then, the normalized weights w(yi), which
have a mean of 1, are assigned to the target tokens.
We noticed that the weights of high-frequency to-
kens are only slightly less than 1, and the variance
of weights is small. We tested these two objec-
tives on the Chinese to English translation task and
the results on the validation set are given in Ta-
ble 21. To verify their effects on the high- and
low-frequency tokens, we also divided the valida-
tion set into two subsets based on the average token
frequency of the sentences, the results of which
are also given in Table 2. It shows that although
these two methods can bring modest improvement
in the translation of the low-frequency tokens, it
does much harm to high-frequency tokens, which
has a negative impact on the overall performance.
We noted that both of these two methods reduced
the weights of the high-frequency tokens to dif-
ferent degrees, and we argued that when the high-
frequency tokens account for a large proportion in
NMT corpus, this hinders the normal training of
them. To validate our argument, we simply add 1
to the weighting term of focal loss:

w(yi) = (1− p(yi))γ + 1. (5)

The results are also given in Table 2 (Row 5), which
indicates that this method actually avoids the dam-
age to the high-frequency tokens. The overall re-
sults indicate that it is not robust enough to improve

1The details about the data will be given in the experiment
section
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the learning of low-frequency tokens by reducing
the weight of high-frequency tokens during the
training of NMT. Although our goal is to improve
the training of low-frequency tokens, we should
first ensure the training of high-frequency tokens,
and then increase the weights of low-frequency to-
kens appropriately. Based on the above findings,
we proposed the following criteria.

3.2 Heuristic Criteria for Token Weighting
We proposed two heuristic criteria for designing
the token-level training weights:

Minimum Weight Ensurence. The training
weight of any token in the target vocabulary should
be equal to or bigger than 1, which can be described
as:

∀yk ∈ Vt, w(yk) ≥ 1 (6)

Although we can force the model to pay more at-
tention to low-frequency tokens by shrinking the
weights of high-frequency tokens, the previous
analyses have proved that the training performance
is more sensitive to the change of high-frequency
tokens’ weights due to their large proportion in
the training set. A relatively small decrease in
the weights of high-frequency tokens will prevent
the generation probabilities of ground-truth tokens
from ascending continually, which may result in
an obvious degradation of the overall performance.
Therefore, we ensure that all the token weights are
equal to or bigger than 1 considering the training
stability as well as designing convenience.

Weights Expectation Range Control. On the
condition that the first criterion is satisfied, those
high-frequency tokens could have already been
well learned without any extra attention. Now,
those low-frequency tokens could be assigned with
higher weights. Meanwhile, we also need to en-
sure that the weights of low-frequency tokens can’t
be too large, or it will hurt the training of high-
frequency tokens certainly. Therefore, the expecta-
tion of the training weights on the whole training
set should be in [1, 1 + δ]:∑|Vt|

k=1 Count(yk)w(yk)∑|Vt|
k=1 Count(yk)

= 1 + δ, δ ≥ 0, (7)

where |Vt| denotes the size of the target vocabulary,
δ is a relatively small number compared with 1. A
larger weight expectation means we allocate larger
weights to those low-frequency tokens. In contrast,
an appropriate weight expectation as defined in this
criterion can help improve the overall performance.

Figure 1: Plots of our two weighting functions. The
blue curve is the Exponential form and the orange curve
is the Chi-Square form. Both of the hyperparamters are
set to 1.

The two criteria proposed here are not the only
options for NMT, but the adaptive objective satis-
fying these two criteria can improve not only the
translation performance of low-frequency tokens
but also the overall performance based on our ex-
perimental observations.

3.3 Two Specific Adaptive Objectives
In this paper, we proposed two simple functional
forms forw(yk) heuristically based on the previous
criteria and justified them with some intuitions.

Exponential: Given the target token yk, we de-
fine the exponential weighting function as:

w(yk) = A · e−T·Count(yk) + 1. (8)

There are two hyperparameters in it, i.e., A and
T, which control the shape and the value range
of the function. They can be set up according to
the two criteria above. The plot of this weighting
function is presented in Figure 1. In this case, we
don’t consider the factor of noisy tokens so that the
weight increases monotonically as the frequency
decreases. Therefore, this weighting function is
suitable for cleaner training data where the ex-
tremely low-frequency tokens only take up a small
proportion.

Chi-Square: The exponential form weighting
function is not suitable for the training data which
contain many noisy tokens, because they would
be assigned with relatively large weights and have
bigger impacts when their weights are summed
together. To alleviate this problem, we proposed
another form of the weighting function:

w(yk) = A · Count2(yk)e−T·Count(yk) + 1. (9)

The form of this function is similar to the form
of chi-square distribution, so we named it as chi-
square. Plot of this weighting function is presented
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in Figure 1. We can see from the plot that the
weight increases as the frequency decreases at first.
Then, after a specific frequency threshold, which
is decided by the hyperparameter T, the weight de-
creases as the frequency decreases. In this case, the
most frequent tokens and the extremely rare tokens,
which could be noise, all will be assigned with
small weights. Meanwhile, those middle-frequency
words will have larger weights. Most of them are
meaningful and valuable for translation but can’t be
well learned with an equal-weighted objective func-
tion. This form of weighting function is suitable
for more noisy training data.

4 Experiments

4.1 Data Preparation

ZH→EN. The training data consists of 1.25M sen-
tence pairs from LDC corpora which has 27.9M
Chinese words and 34.5M English words, respec-
tively 2. The data set MT02 was used as valida-
tion and MT03, MT04, MT05, MT06, MT08 were
used for the test. We tokenized and lowercased
English sentences using the Moses scripts3, and
segmented the Chinese sentences with the Stan-
ford Segmentor4. The two sides were further seg-
mented into subword units using Byte-Pair Encod-
ing (BPE) (Sennrich et al., 2016) with 30K merge
operations separately.

EN→RO. We used the preprocessed version of
the WMT2016 English-Romanian dataset released
by Lee et al. (2018) which includes 0.6M sentence
pairs. We used news-dev 2016 for validation and
news-test 2016 for the test. The two languages
shared the same vocabulary generated with 40K
merge operations of BPE.

EN→DE. The training data is from WMT2016
which consists of about 4.5M sentences pairs with
118M English words and 111M German words. We
chose the news test-2013 for validation and news-
test 2014 for the test. 32K merge operations BPE
were performed on both sides jointly.

4.2 Systems

We used the open-source toolkit called Fairseq-
py (Edunov et al., 2017) released by Facebook as
our Transformer system.

2The corpora include LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06.

3http://www.statmt.org/moses/
4https://nlp.stanford.edu/

• Baseline. The baseline system was implemented
as the base model configuration in Vaswani et al.
(2017) strictly. Since our method is further trained
based on the pre-trained model at a low learning
rate, we also trained another baseline model fol-
lowing the same procedures as our methods have
except that all the target tokens share equal weights
in the objective, denoted as Baseline-FT.
• Fine Tuning (Luong and Manning, 2015). This
model was first trained with all the training sen-
tence pairs and then further trained with sentences
containing more low-frequency tokens. To filter out
sentences containing more low-frequency tokens,
the method in Platanios et al. (2019) was adopted
as our judging metric with a small modification:

drarity(y) , −1

I

I∑
i=1

log
Count(yi)∑|Vt|
k=1 Count(yk)

,

(10)
where I is the sentence length. We added a factor
1
I to eliminate the influence of sentence length. All
the target sentences were ranked by this metric in
ascending order and the bottom one third of the
training sentences were chosen as the in-domain
data. This method tries to utilize frequency infor-
mation at the sentence level, while our work uses it
at the token level in contrast.
• Sampler (Chu et al., 2017). This method
oversampled the sentences containing more low-
frequency tokens filtered by Eq. 10 three times and
then concatenated them with the rest of the training
data. Thus the NMT model will be trained with
more low-frequency tokens in every epoch.
• Entropy Regularization (ER) (Pereyra et al.,
2017). This method was proposed for solving the
overconfidence problem, which adds a confidence
penalty term to the original objective:

LER = L− α1

I

I∑
i=1

p(yi|x) log(p(yi|x)). (11)

It is known that token imbalance is one of the
causes of overconfidence problem (Jiang and de Ri-
jke, 2018), so this method may also alleviate the
token imbalance problem. We varied α from 0.05
to 0.4 and chose the best one according to the re-
sults on the validation sets for different languages.
Noting that the label smoothing is applied in the
vanilla transformer model which has a similar ef-
fect on the output, we removed it from the model
when we tested this method.



1040

T ZH-EN EN-RO EN-DE
Baseline - 45.49 33.60 25.45

Our Exp

0.25 46.07 - -
0.35 46.28 - -
0.50 46.19 34.10 -
0.75 46.13 34.11 -
1.00 46.01 34.24 26.02
1.25 - 34.26 26.01
1.50 - 34.15 26.06
1.75 - 34.15 26.10
2.00 - - 26.03

Our K2

1.50 46.14 - -
1.75 46.24 - -
2.00 46.00 34.07 -
2.50 45.98 - 26.06
3.00 - 34.07 25.93
4.00 - 34.15 25.87
5.00 - 34.10 25.95

Table 3: Performance of our methods on the validation
sets for all the three language pairs with different hyper-
parameters T. Although the best hyperparameter for
different languages may be different, it is easy for our
method to get a stable improvement.

• Linear (Jiang et al., 2019). This method was
proposed for solving the token imbalance problem
in the the dialogue response generation task:

w(yi) = − Count(yi)

max(Count(yk))
+ 1, yk ∈ Vt. (12)

Then, the normalized weights, which had a mean
of 1, were applied to the training objective.
• Our Exp. This system was first trained with the
normal objective (Equation 1), where all the tar-
get tokens have the same training weights. Then
the model was further trained with the adaptive ob-
jective at a low learning rate. The weights were
produced by the Exponential form (Equation 8).
For computing stability, we used Count(yk)

Cmedian
instead

of Count(yk) in the weighting function, where
Cmedian is the median of the token frequency.
• Our K2. This system was trained following the
same procedure as system Our Exp except that the
training weights were produced by the Chi-Square
form (Equation 9).

The translation quality was evaluated by 4-gram
BLEU (Papineni et al., 2002) with the multi-bleu.pl
script. Besides, we used beam search with a beam
size of 4 and a length penalty of 0.6 during the
decoding process.

4.3 Hyperparameters
There are two hyperparameters in our weighting
functions, A and T. In our experiments, we fixed
A to narrow search space and the overall weight
range is [1, e]. We tuned another hyperparame-
ter T on the validation data sets under the criteria
proposed in section 3.2. The results are shown in
Table 3. According to the results, the best hyper-
parameters differed across different language pairs.
It is affected by the proportion of low-frequency
words and high-frequency words. Generally speak-
ing, when the proportion of low-frequency words
gets smaller, the hyperparameter T should be set
smaller too. But it also shows that it is easy for
our methods to get a stable improvement over the
baseline system following the criteria above. Fi-
nally, we used the best hyperparameters as found
on the validation data sets for the final evaluation
of the test data sets. For example, T = 0.35 in the
exponential form for ZH→EN and T = 4.00 in the
chi-square form for EN→RO.

4.4 Main Results
The results are shown in Table 4. It shows that
the contrast methods can not bring stable improve-
ments over the baseline system. They bring exces-
sive damages to the translation of high-frequency
tokens which can be proved by the analyzing exper-
iments in the next section. As a contrast, our meth-
ods can bring stable improvements over Baseline-
FT almost without any additional computing or
storage expense. On the EN→RO and EN→DE
translation tasks, Our Exp is more effective than
Our K2 while on the ZH→EN translation task the
result is reversed. The reason is that the NIST train-
ing data set contains more noisy tokens, which can
be ignored by the Our K2 method. More analyses
based on the token frequency are shown in the next
section.

5 Analysis

5.1 Effects on Translation Quality with
Considering Token Frequencies

To further illustrate the effects of our method, we
evaluated the performance based on the token fre-
quency. For the ZH→EN translation task, we con-
catenated the MT03-08 test sets together as a big
test set. For the EN→RO and EN→DE translation
tasks, we just used their test sets. Each sentence
was scored according to Eq. 10 and sorted in as-
cending order. Then the test set was divided into
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ZH→EN EN→RO EN→DE
MT03 MT04 MT05 MT06 MT08 AVE ∆ WMT16 ∆ WMT16 ∆

Baseline 44.63 45.79 44.03 43.78 35.63 42.77 32.85 27.15
Baseline-FT 44.69 46.24 44.01 44.33 35.83 43.02 33.15 27.21
Fine Tuning 45.06 46.30 45.30 43.61 34.68 42.99 -0.03 33.28 +0.13 26.56 -0.65

Sampler 44.85 46.02 44.57 44.04 35.02 42.90 -0.12 32.75 -0.40 - -

ER 44.31 46.38 45.13 44.29 35.71 43.16 +0.14 33.21 +0.06 27.19 -0.02

Linear 44.26 46.02 43.99 44.08 34.71 42.62 -0.60 33.35 +0.20 27.37 +0.16

Our Exp 45.67** 47.02** 45.43** 44.51 36.11 43.75 +0.73 33.77** +0.62 27.60** +0.39
Our K2 45.87** 47.07** 45.62** 44.72 36.20 43.90 +0.88 33.54* +0.49 27.51* +0.30

Table 4: BLEU scores on three translation tasks. The column of ∆ shows the improvement compared to Baseline-
FT. ** and * mean the improvements over Baseline-FT is statistically significant (Collins et al., 2005) (ρ < 0.01
and ρ < 0.05, respectively). The results show that our methods can achieve significant improvements on translation
quality.

ZH→EN EN→RO
HIGH MIDDLE LOW HIGH MIDDLE LOW

Baseline-FT 50.88 43.06 34.90 35.68 33.61 29.86
Fine Tuning 49.85(-1.03) 42.68(-0.38) 35.85(+0.95) 35.51(-0.17) 33.45(-0.16) 30.56(+0.70)

Sampler 49.77 (-1.11) 42.63(-0.43) 35.77(+0.87) 35.22(-0.46) 33.07(-0.54) 30.10(+0.42)

ER 50.59 (-0.29) 42.82(-0.25) 35.48(+0.58) 35.66(-0.03) 33.25(-0.36) 30.26(+0.41)

Linear 50.21 (-0.67) 43.06(-0.68) 35.19(+0.29) 35.57(-0.11) 33.65(+0.04) 30.35(+0.49)

Our Exp 50.88(+0.00) 43.30(+0.24) 36.45**(+1.55) 36.08(+0.40) 34.26*(+0.65) 30.88**(+1.02)
Our K2 51.07(+0.19) 43.31(+0.25) 36.58**(+1.68) 35.94(+0.26) 33.97(+0.36) 30.65**(+0.79)

Table 5: BLEU scores on different test subsets which are grouped by their rarities according to Eq. 10. Sentences
in the ‘Low’ contain more low-frequency tokens while the ‘High’ is reverse. The results show that our methods
can improve the translation of low-frequency tokens significantly without hurting the translation of high-frequency
tokens.

HIGH MIDDLE LOW
Baseline-FT 28.88 26.97 25.55
Fine Tuning 26.40(-2.48) 26.69(-0.28) 25.84(+0.29)

ER 28.72(-0.16) 26.86(-0.11) 25.74(+0.19)

Linear 28.88(+0.00) 27.07(+0.10) 25.70(+0.15)

Our Exp 28.91(+0.03) 27.33*(+0.36) 26.07**(+0.52)
Our K2 28.90(+0.02) 27.28*(+0.31) 25.99*(+0.44)

Table 6: EN→DE BLEU scores on different test sub-
sets. The conclusion is identical to that in Table 5.

three subsets with equal size, denoted as HIGH,
MIDDLE, and LOW, respectively. Sentences in the
subset LOW contain more low-frequency tokens
while the HIGH is reverse.

The results are given in Table 5 and Table 6. The
contrast methods outperform the Baseline-FT on
the LOW subset but are worse than it in the HIGH

and MIDDLE subsets, which indicates that the gains
on the translation of low-frequency tokens come
at the expense of the translation of high-frequency
tokens. As a contrast, both of our methods can not
only bring a significant improvement on the LOW

subset but also get a modest improvement on the
HIGH and MIDDLE subsets. It can be concluded

Figure 2: BLEU with different BPE sizes on ZH→EN
translation task. It shows that our method can always
bring a stable improvement compared with the base-
line.

that our methods can ameliorate the translation of
low-frequency tokens without hurting the transla-
tion of high-frequency tokens.

5.2 Effects on Translation Quality with
Different BPE Sizes

It is known that the BPE sizes have a large impact
on the data distribution. Intuitively, a smaller size
of BPE will bring a more balanced data distribu-
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Figure 3: The count of tokens with different frequen-
cies in references, translations of the baseline systems
and our methods on the ZH→EN translation task. The
tokens are ranked by their frequencies in the train-
ing sets. The x-axis represents the frequency interval
([20%, 30%) means the frequency of tokes is between
top 20% and 30%), the y-axis is the count of the tokens
applied with a common logarithm operation in each in-
terval.

TTR(×10−2) HD-D MTLD
Baseline-FT 5.32 0.829 59.1
Our Exp 5.87 0.836 62.2
Our K2 5.95 0.835 61.9
Reference 6.79 0.852 69.2

Table 7: The lexical diversity of translations. A larger
value represents higher diversity. The results show that
our method can improve the lexical diversity.

tion, but it will also increase the average sentence
length and neglect some token co-occurrences. To
verify the effectiveness of our method with differ-
ent BPE sizes, we varied the BPE sizes from 1K to
40K on the ZH→EN translation task. The results
are shown in Figure 2. It shows that as the number
of BPE size increases, the BLEU of baseline rises
first and then declines. Compared with the baseline
systems, our method can always bring improve-
ments, and the larger the BPE size, i.e., the more
imbalanced the data distribution, the larger the im-
provement brought by our method. In practice, the
BPE size either comes from the experience or is
chosen from several trial-and-errors. No matter
what the situation is, our method can always bring
a stable improvement.

5.3 Effects on Token Distribution and Lexical
Diversity

Compared with the reference, the outputs of the
vanilla NMT model contain more high-frequency
tokens and have lower lexical diversity (Van-

Source búduàn guānbı̀ nàxiē wūrǎn huánjı̀ng
de méikuàng .

Reference those coalmines pollute the environment
should be continuously shut down .

Baselie-FT continually close down those mines
that pollute the environment .

Our Exp those coalmines that pollute the environment
should be continuously closed.

Our K2 those coalmines that pollute the environment
should be continuously closed.

Source yı̌hòu kěyı̌ gěi wǒ dāndú pèi jiān bàngōngshı̀ .
Reference an exclusive office could be assigned me later on .
Baselie-FT later i could match my office alone .
Our Exp i could be assigned an office alone later .
Our K2 later i could be assigned an office alone .

Table 8: Translation examples of the Basline-FT and
our methods. The results show that our methods can
generate low-frequency but more accurate tokens.

massenhove et al., 2019b). To verify whether our
methods can alleviate these problems, we did the
following experiments based on the ZH→EN trans-
lation task. The tokens in the target vocabulary
were first arranged in descending order according
to their token frequencies. Then they were divided
into ten intervals equally. Finally, we counted the
number of tokens in each token frequency inter-
val of the reference and the translation of differ-
ent systems. The results are shown in Figure 3
and we did a common logarithm for display con-
venience. It shows that there is an obvious gap
between the Baseline-FT and reference, and the
curve of Baseline-FT is lower than the curve of
reference in every frequency interval except for the
top 10%. As a contrast, our methods can reduce
this gap, and the tokens distribution is closer to the
real distribution. Besides, we also measure the lexi-
cal diversity of the translations with several criteria,
namely, type-token ratio (TTR) (Templin, 1957),
the approximation of hypergeometric distribution
(HD-D) and the measure of textual lexical diversity
(MTLD) (Mccarthy and Jarvis, 2010). The results
are given in Table 7. It shows that our method can
also improve the lexical diversity of the translation.

5.4 Case Study

Table 8 shows two translation examples in the
ZH→EN translation direction. In the first sen-
tence, the Baseline-FT system failed to generate the
low-frequency noun ‘coalmine’ (frequency: 43),
but generated a relatively high-frequency word
‘mine’ (frequency: 1155). We can see that this low-
frequency token carries the central information of
this sentence, and the mistranslation of it prevents
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people from understanding this sentence correctly.
In the second sentence, our methods generated the
low-frequency verb ‘assigned’ (frequency: 841)
correctly, while the Baseline-FT generated a more
frequent token ‘match’ (frequency: 1933), which
reduced the translation accuracy and fluency. These
examples can be part of the evidence to show the
effectiveness of our methods.

6 Related Work

Rare Word Translation. Rare word translation is
one of the key challenges for NMT. For word-level
NMT models, NMT has its limitation in handling
a larger vocabulary because of the training com-
plexity and computing expense. Some work tries
to solve this problem by maintaining phrase tables
or back-off vocabulary (Luong et al., 2015; Jean
et al., 2015; Li et al., 2016). The subword-based
NMT (Sennrich et al., 2016; Luong and Manning,
2016; Wu et al., 2016) reduces the size of vocabu-
lary greatly and become the mainstream technology
gradually. Gowda and May (2020) gave a detailed
analysis about the effects of the BPE size on the
data distribution and translation quality. Some re-
cent work tried to further improve the translation
of the rare words with the help of the memory net-
work or the pointer network (Zhao et al., 2018;
Pham et al., 2018). In contrast, our methods can
improve the translation performance without extra
cost and can be combined with other techniques.

Class Imbalance. Class imbalance means the
total number of some classes of data is far less than
the total number of other classes. This problem
can be observed in various tasks (Wei et al., 2013;
Johnson and Khoshgoftaar, 2019). In NMT, the
class imbalance problem might be the underlying
cause of, among others, the gender-biased output
problem (Vanmassenhove et al., 2019a), the inabil-
ity of MT system to handle morphologically richer
language correctly (Passban et al., 2018), or the
exposure bias problem (Ranzato et al., 2016; Shao
et al., 2018; Zhang et al., 2019). The methods of
trying to solve this can be divided into two types.
The data-based methods (Baloch and Rafi, 2015;
Ofek et al., 2017) make use of over- and under-
sampling to reduce the imbalance. The algorithm-
based methods (Zhou and Liu, 2005; Lin et al.,
2017) give extra reward to different classes. Our
method is algorithm-based which brings no extra
cost.

Word Frequency-based Methods. Some work

also makes use of word frequency information
to help learning, such as in the word segmenta-
tion (Sun et al., 2014) and term extraction (Frantzi
et al., 1998; Vu et al., 2008). In NMT, word fre-
quency information is used for curriculum learn-
ing (Kocmi and Bojar, 2017; Zhang et al., 2018;
Platanios et al., 2019) and domain adaptation data
selection (Wang et al., 2017; Zhang and Xiong,
2018; Gu et al., 2019). Wang et al. (2020) analyzed
the miscalibration problem on the low-frequency
tokens. Jiang et al. (2019) proposed a linear weight-
ing function to solve the word imbalance problem
in the dialogue response generation task. Com-
pared with it, our method is more suitable for NMT.

7 Conclusion

In this work, we focus on the token imbalance prob-
lem of NMT. We show that the output of vanilla
NMT contains more high-frequency tokens and
has lower lexical diversity. To alleviate this prob-
lem, we investigated existing adaptive objectives
for other tasks and then proposed two heuristic cri-
teria based on the observations. Next, we gave
two simple but effective forms based on the crite-
ria, which can assign appropriate training weights
to target tokens. The final results show that our
methods can achieve significant improvement in
performance, especially on sentences that contain
more low-frequency tokens. Further analyses show
that our method can also improve the lexical diver-
sity.
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